
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 145-169 (2020)
DOI: 10.6688/JISE.202001 36(1).0009

On Mining Progressive Positive and Negative Sequential
Patterns Simultaneously

JEN-WEI HUANG, YONG-BIN WU AND BIJAY PRASAD JAYSAWAL
Institute of Computer and Communication Engineering

National Cheng Kung University
Tainan, 701 Taiwan

E-mail: {jwhuang; Q36021135}@mail.ncku.edu.tw; bijay@jaysawal.com.np

Positive sequential pattern (PSP) mining focuses on appearing items, while negative
sequential pattern (NSP) mining tends to find the relationship between occurring and non-
occurring items. There are few works involved in NSP mining, and the definitions of NSP
are inconsistent in each work. The support threshold for PSP is always applied on NSP,
which cannot bring out interesting patterns. In addition, PSP has been discovered on incre-
mental databases and progressive databases, while NSP mining is only performed on static
databases. Progressive sequential pattern mining finds the most up-to-date patterns, which
can provide more valuable information. However, the previous progressive sequential pat-
tern mining algorithm contains some redundant process. In this paper, we aim to find NSP
on progressive databases. A new definition of NSP is given to discover more meaningful and
interesting patterns. We propose an algorithm, Propone, for efficient mining process. We
also propose a level-order traversal strategy and a pruning strategy to reduce the calculation
time and the number of negative sequential candidates (NSC). By comparing Propone with
some modified previous algorithms, the experimental results show that Propone outperforms
comparative algorithms.

Keywords: progressive mining, negative sequential pattern, frequency ratio of interest,
sequential pattern mining, data mining

1. INTRODUCTION

With advances in technology, the amount of data that is now being collected has in-
creased dramatically, along with its diversity. However, finding useful information hidden
in such data is very difficult. Therefore, data mining is applied to mine valuable knowl-
edge from a large amount of data. The knowledge and information discovered in this
way can be used for a wide range of applications, such as market analysis, biotechnology,
customer behavior analysis, and fraud detection.

Among these research topics, sequential pattern mining has been extensively studied
and attracted a lot of research interest. The concept of sequential pattern mining was first
introduced by Agrawal and Srikant in [1], which described the problem as follows: “Given
a sequence database, where each sequence consists of an ordered list of elements and each
element contains a set of items, and a user-defined minimum support threshold min sup,
sequential pattern mining aims to find all subsequences whose occurrence frequency is
no less than min sup in the set of sequences.” Sequential pattern mining is important
because it can be applied in many applications related to sequence data, such as customer

Received February 26, 2018; revised July 25, 2018; accepted August 29, 2018.
Communicated by Wen-Chih Peng.

145



146 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

DB1,3

DB2,4

DB3,5

DB4,6

DB5,7

DB6,8

S01 A B C C AD B C BD

S02 AD B A D

S03 A BC C D A C D

S04 D B A BC D

S05 B D A C D

S06 A C

SID t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 … time

Fig. 1. An example progressive database.

purchasing records, web clickstreams, DNA sequences, sequences of the symptoms of a 
patient, and sequences of social events. Extensive research have been done on the mining 
of sequential patterns in a large database [2–5].

The sequential pattern mining algorithms mentioned above focus on static databases. 
In the other words, the data in these works do not change over time. The algorithms mine 
the whole database and return a complete set of results. However, in the real world, 
many applications deal with databases where the amount of data grows incrementally. 
Static sequential pattern mining algorithms are not suitable for such databases, as the 
results could be incorrect once the database is updated. In addition, re-mining the updated 
database is an inefficient p rocess. S ome a lgorithms f or i ncremental s equential pattern 
mining have been proposed to solve this problem, such as [6–9].

Incremental sequential pattern mining handles newly arriving data and finds sequen-
tial patterns in the updated database. However, an incremental database where the old 
data stays may not be applicable for some applications. Finding more recent or up-to-
date sequential patterns without considering the obsolete data is thus of interest, because 
this could provide more accurate and valuable information. A database which not only 
adds new data but also removes obsolete data at the same time is defined as a “progressive 
database [10].” In addition, new sequential patterns in recent data may not be considered 
as frequent sequential patterns if the database size is never reduced. Therefore, those 
sequences which have no newly arriving data should be removed from the database.

Neither static sequential pattern mining nor incremental sequential pattern mining 
can cope efficiently with progressive d atabases. T herefore, p rogressive sequential pat-
tern mining was introduced in [10]. The authors proposed an efficient algorithm called 
Progressive mIning of Sequential pAtterns (Pisa) for mining sequential patterns in a pro-
gressive database. In [10], the concept of period of interest (POI) was first introduced, 
which is used for the progressive mining task. POI is defined below.

Definition 1  Period of Interest (POI)
POI is a sliding window whose length is user-defined, a dvancing w ith t ime. T he part 
within the POI can be seen as a subset of the whole database. The sequences having 
elements whose timestamp falls in this period, POI, contribute to the size of the database 
for the current sequential patterns. However, the sequences having only elements whose 
timestamp is older than the POI should be pruned away from the database and do not 
contribute to the size of the database.

As per the POI, progressive sequential pattern mining finds the complete set of fre-
quent sequential patterns for each progressing POI whose occurrence frequency is greater 
than the user-defined threshold m in sup times the number of sequences in the current POI 
of the progressive database. Fig. 1 shows an example of a progressive database. There are 
six sequences S01 to S06 and four different items A,B,C, and D in the database. t1 to t10



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 147

represent timestamps, and for each timestamp there may be some elements which contain
single or multiple items appearing in different sequences. The length of the POI is three
timestamps in this example, and thus each subset of the database contains elements in a
particular interval of three successive timestamps. A subset of the database is denoted
by DBp,q, where p and q are the start and the end timestamps respectively. Suppose the
min sup is 0.5, then < A B > is a frequent pattern in DB1,3 since its occurrence frequency,
3, is greater than 5 (the size of DB1,3) * 0.5 = 2.5. However, < A B > is no longer a
frequent pattern in the later POIs.

Rather than mining items occurring in the database, some research focuses on non-
occurring items. Non-occurring items are called negative items, and sequential patterns
consisting of both occurring and non-occurring items are called Negative Sequential Pat-
terns (NSP). In contrast, the sequential patterns composed of only positive items, i.e., only
occurring items, are also called Positive Sequential Patterns (PSP). The notation of a neg-
ative item or element begins with a ¬, for example, s1 =< A B C > is a positive sequence
and s2 = < A ¬B C > is a negative sequence without B occurring between A and C. The
relationship between occurring and non-occurring items can be useful and give important
information. For example, the reaction to a series of treatments that were provided or not
provided may help monitor patients’ conditions. Zhao et al. [11] improved the accuracy
of debt detection by using both PSP and NSP rather than PSP alone for the sequence
classification. However, NSP cannot be found by traditional sequential pattern mining
algorithms, and although there are also some works on the mining of NSP [12–14], the
development is very limited. In [12–14], the Negative Sequential Candidates (NSC) are
generated by joining the shorter patterns, resulting in an enormous number of candidates.
The calculation of the number of sequences that contain a NSC also requires multiple
scans of the database. For these two reasons, the mining of NSP is difficult and it is not
easy to find meaningful NSP in a database. Dong et al. [15] then proposed the concept of
converting the “negative containment” problem into a positive containment problem, and
presented an algorithm, named e-NSP, to mine NSP efficiently. By applying the conver-
sion, the support of an NSC can be calculated by using the mined PSP instead of scanning
the database many times.

Although the concept of NSP, i.e., sequential patterns containing negative items or
elements, has been discussed for several years, the definitions of NSP and negative con-
tainment remain inconsistent in these previous works. For example, in [12], a data se-
quence is not allowed to contain an NSC which has a negative element before the begin-
ning element of the data sequence, while that in [13–15] is. The authors had different
views on whether a data sequence can contain an NSC because the negative containment
problem may vary depending on the applications. Besides, to the best of our knowledge,
so far NSP mining has been performed only on static databases. However, NSP can pro-
vide more information when mined from a progressive database because of the dynamic
nature of progressive database where new data are added and obsolete data are deleted
based on the POI. The patterns mined using progressive database are not influenced by
the obsolete data and thus NSP in progressive database provide information based on the
data inside a POI and without influence of obsolete data. We thus combine progressive
sequential pattern mining and negative sequential pattern mining, leveraging the notions
of data structure and negative containment from [10] and [15], respectively. The data
structure used in [10] is a tree structure called a , and it records the information of all se-
quential patterns in the database. For NSP mining, we follow the constraints on negative
sequences and the concept of negative containment in [15]. However, in [10], the PS-tree
is maintained by the Pisa algorithm with the post-order traversal, and thus the descendants



148 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

of a tree node cannot be pruned efficiently. In addition, in the previous works, the NSP are
defined as negative sequences whose occurrence frequency is greater than the user-defined
threshold min sup, which is the same as that for PSP. While the number of NSP can still
be large with such a threshold, most of them are not necessarily meaningful. To improve
the mining process and find NSP which better fit the users’ needs, in this paper we propose
an efficient algorithm Propone, which stands for PROgressive mining of POsitive and
NEgative sequential patterns, combining progressive and negative sequential pattern
mining. Instead of maintaining the PS-tree in post-order, Propone processes the nodes
of the PS-tree in level-order, avoiding the redundant processing of the nodes that will be
performed if post-order traversal is adopted. We also give a new definition of NSP, which
requires the occurrence frequency of an NSC to be greater than multiple times that of the
NSC’s corresponding PSP, i.e., the positive sequence obtained by turning each element
in the NSC into a positive one, rather than the same threshold min sup which is for PSP.
The ratio between an NSC’s frequency and PSP’s is defined as the Frequency Ratio of
Interest (FRI). This new definition helps users find the NSP that contradicts the PSP, so
that they can know which elements in the PSP may not be necessary, thus improving their
decision making strategies. Moreover, by combining NSP with the concept of POI, the
POI can help find out the longest period where a negative element does not occur. This
is helpful when we want to say that something not occurring leads to some other things
occurring. Some approaches for pruning the infrequent NSC are proposed and adopted in
Propone to reduce the search space. The experimental results show that Propone speeds
up the mining process by preventing the nodes which should be deleted from being pro-
cessed. When the minimum support is small or the number of sequences is large, the
advantages of Propone become more significant. The pruning approaches also have good
effects on reducing the number of infrequent NSC, especially when FRI gets larger.

The rest of the paper is organized as follows. Section 2 introduces some previous
works on PSP mining and NSP mining. The preliminaries of PSP and NSP and the prob-
lem definition are given in Section 3. Section 4 describes the algorithm Propone in detail.
We present and analyze its performance in Section 5. Finally, the conclusions of this work
are given in Section 6.

2. RELATED WORK

In this section, we introduce the works related to PSP mining and NSP mining. PSP
mining can be separated into static, incremental, and progressive sequential pattern min-
ing, depending on the type of the databases used.

2.1 Positive Sequential Pattern Mining

Sequential pattern mining was first addressed by Agrawal and Srikant [1], and ini-
tially focused on static databases. AprioriAll [1] and GSP [2], which are very important
for the development of sequential pattern mining, use a property “any superset of an in-
frequent subset is infrequent” from an association rule mining algorithm, Apriori [16],
to prune infrequent candidates effectively. Zaki proposed SPADE [3] that transforms the
database into a vertical id-list database format and utilizes lattice search techniques. Pei
et al. proposed PrefixSpan [4] that utilizes the pattern growth approach and takes advan-
tage of the projected databases. SPAM [5] was then introduced by Ayres et al., using
a vertical bitmap representation of the database and a depth-first traversal of a lexico-
graphic sequence lattice for efficient candidate generation and support counting. Besides
these typical sequential pattern mining algorithms, several extensions have been proposed



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 149

for different fields and different types of data. Some works were proposed on closed se-
quential pattern mining [17–19] and on maximal sequential pattern mining [20, 21] in
order to obtain a compact result set. Constrained sequential pattern mining [22–24] helps
in cases where some constraints are required. Several other extensions with various kinds
of data are also presented, for example, data stream mining [25,26], and temporal pattern
mining [27–29].

Static databases may not be suitable for cases in the real world, because data can
grow with time. New data are added into database over time and this type of database is
called incremental database. The typical sequential pattern mining algorithms for static
databases cannot maintain the sequential patterns efficiently. Incremental sequential pat-
tern mining algorithms [6–9] were thus proposed to deal with such incremental databases.

Updating databases by only adding new data to the original databases cannot meet
the needs of some situations, as the old data may affect the quality of the results. How-
ever, maintaining the sequential patterns while removing the obsolete data and appending
new ones at the same time is a difficult task. To handle this problem, Huang et al. [10]
proposed the concept of a progressive database which considers updating database not
only by addition of the new data, but also by the removal of old data. The Pisa algorithm
in [10] uses a special data structure named a PS-tree to store information about all the se-
quential patterns in a database. The PS-tree is then maintained by Pisa in the post-order,
including the insertion of the information of new data, removal of the obsolete candidates,
and the updating of existing nodes.

2.2 Negative Sequential Pattern Mining

There are a limited number of works on NSP mining, but to the best of our knowledge
these only deal with static databases. Lin et al. proposed the algorithms NSPM [30] and
PNSPM [31], and allowed only the last element of a negative sequence to be negative.
Ouyang et al. provided the GNSP approach [32] to mine sequential patterns which are
in the form of the relation between a pair of itemsets. Another work by Zhao et al. [33]
is similar to [32], and aims to find positive and negative impact-oriented sequential rules.
Ouyang et al. proposed an algorithm called CPNFSP [34], which is able to deal with
multiple minimum supports so that sequential patterns hidden among the rare sequences
can be found. Hsueh et al. proposed the algorithm PNSP [12] that uses the concepts of
n-cover and n-contain to determine whether a negative candidate is contained in a data
sequence. Zheng et al. introduced the algorithm Negative-GSP [13] based on the PSP
mining algorithm GSP, using joining and pruning strategies. The authors of [13] presented
another work [14] which applies the concept of the genetic algorithm (GA). The GA-
based NSP mining utilizes the crossover and mutation operations, avoiding the generation
of negative candidates. Dong et al. proposed the conversion of the negative containment
problem into a positive containment problem in their algorithm, the e-NSP [15], to prevent
the re-scanning of the database. With their conversion method the support of an NSC can
be calculated by using the mined PSP instead of re-scanning the database. The conversion
strategy and the approach to candidate generation are applied in this work to efficiently
mine NSP. However, the definition of NSP, the negative containment, and the constraints
on negative sequences are different in these earlier works. For instance, NSP in [12]
are required to satisfy both the min sup and an extra parameter miss f req while there is
only the min sup in most of the algorithms. In addition, the authors of [12] do not allow
a data sequence to contain a negative sequence which has negative elements before the
corresponding first element in the data sequence or after the last one, while those of [13]
and [14] do. For example, a data sequence ds = < B C > does not contain negative



150 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

Root

Label

Sequence ID

Timestamp

DB1,2(4)

A

01 02 03

1 1 1

D

02 04

1 2

AD

02

1

B

01 02 03

1 1 1

C

03

1

BC

03

1

B

02

1

B

02

1

B

01 02 03

2 2 2

C

03

2

BC

03

2

Fig. 2. left) Root and common node; right) an example PS-tree.

sequences n1 = < ¬A B > and n2 = < B ¬C >. We present a different perspective on the 
definition of NSP but keep the same constraints as those in [15], in order to find NSP that 
are of more interest to users.

3. PRELIMINARIES

3.1 Positive Sequential Pattern (PSP)

First we give the definitions i n t ypical s equential p attern m ining. L et I  = 
{I1, I2, ..., In} be a set of distinct items. An element e (or called itemset), denoted by 
(IiI j...), is a subset of I whose items appear at the same time. A sequence s = < 
e1e2...em > is an ordered list of elements. Without loss of generality, we assume that the 
items in an element are ordered alphabetically. The size of a sequence, denoted by |s|, is 
the number of elements in the sequence. The length of a sequence, denoted by l(s), is the 
total number of items in each element in the sequence. A sequence α = < a1,a2, ...,an > 
is a subsequence of another sequence β = < b1,b2, ...,bm > and β is a supersequence 
of α , denoted by α v β , if there exist integers 1 ≤ i1 < i2 < · · · < in ≤ m such that 
a1 ⊆ bi1 ,a2 ⊆ bi2 , ..., and an ⊆ bin . We say β contains α if α is a subsequence of β . A se-
quence database DB = {s1,s2, ...,sk} is a set of sequences and |DB| represents the number 
of sequences in DB. Each sequence in the sequence database has a sequence id, sid. The 
support set of a sequence α in a database DB, denoted by {α}, is the set of sequences in 
DB containing α , and the support of α , denoted by sup(α), is the length of the support 
set, that is, sup(α) = |{s|s ∈ DB and α v s}|. Given a user-defined minimum support 
threshold min sup, a sequence α is f requent in a database DB if sup(α) ≥ min sup∗|DB|. 
A frequent sequence is also called a (positive) sequential pattern.

For progressive sequential pattern mining, each element in a sequence is associated 
with a timestamp at which the element appears. A sequence is a list of elements ordered 
by timestamp in ascending order. A time interval, denoted by [p,q], represents the period 
from timestamp p to timestamp q. The subset of a database DB containing the elements 
of sequences in the time interval [p,q] is denoted by DBp,q.

The data structure adopted by Pisa [10] is PS-tree. The right side of Fig. 2 shows 
an example PS-tree, which represents the PS-tree of the example database in Fig. 1 from 
t1 to t2. PS-tree stores the information of all sequences and candidates in a progressive 
database and keeps the frequent sequential patterns in each POI. There are two types of 
nodes in a PS-tree: the root and common nodes, as shown on the left side of Fig. 2. The 
root of PS-tree is an empty node with only a list of common nodes as its children. Every 
common node contains a label and a sequence list. The label represents an element in a 
sequence. The sequence list records the ids of the sequences where this element appears. 
Each sequence id in the sequence list is associated with a timestamp, showing the starting 
timestamp of a sequential candidate contained in this sequence. When there is a sequence



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 151

with a single or multiple elements, a node with the first element as the label and the
sequence id is connected to the root, then another node with the second element, if any,
and the same sequence id will be connected to the first node. The following nodes are
connected in the same manner. Note that, different from [10], we keep the timestamps in
the nodes that are below the second level as well, because we mine the sequential patterns
with repeated elements.

3.2 Negative Sequential Pattern (NSP)

Negative sequences are sequences with non-occurring items. The non-occurring
items or elements are called negative items/elements. The symbol ¬ is used to indi-
cate the negative items and elements. However, using only this definition, the number of
negative sequences can be considerably large, but most of them are meaningless. Con-
straints should thus be placed on negative sequences to reduce the number of NSC and
find useful NSP.

3.2.1 Constraints on negative sequence

There are numerous possible combinations to generate an NSC, but most of them
lack useful information. To simplify the problem and avoid considering meaningless
sequences, this work applies some constraints to negative sequences. Let us take the
frequency of sequences as an example. Users tend to be more interested in the absences
of certain items or elements in a frequent sequential pattern. In addition, PSP is the most
commonly used information in sequential pattern mining that users then apply to their
decision making. Therefore, we focus on the negative sequences related to the frequent
PSP. Other related constraints are introduced below.

Definition 2 Positive Partner
The positive partner of a negative element ¬e, denoted by p(¬e), is its corresponding
positive element e. The positive partner of a positive element e, denoted by p(e), is
e itself. The positive partner of a negative sequence ns = < e1e2...en >, denoted by
p(ns), is a positive sequence obtained by changing each element in ns to their positive
partners, i.e., p(ns) = < e′1e′2...e

′
n > where ∀e′i ∈ p(ns),e′i = p(ei). For example, p(<

A ¬(BC) (AD) ¬E >) = < A (BC) (AD) E >.

Constraint 1 Frequency constraint
The positive partner of a negative sequence ns should be frequent. This is because users
tend to be more interested in the absences of certain items or elements in a frequent
sequential pattern. Note that we follow the constraint in [15], while in [12] and [13] only
the positive partner of each element in ns is required to be frequent.

Constraint 2 Continuity constraint
A negative sequence must not have any contiguous negative elements. For example, <
A ¬(BC) ¬B D > is not allowed. Here, positions of the two contiguous negative elements
can be exchanged, while the meaning of the sequence is still the same, i.e., there are no
(BC) and B between A and D. This constraint is the same as Constraint 2 in [15].

Constraint 3 Element consistency constraint
The minimum negative unit in a negative sequence is an element, that is, all the items in
an element should be positive or negative at the same time. For example, < A (¬BC) D >
is not allowed while < A ¬(BC) D > is. It is because we can add as many items as we



152 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

want to the element (¬BC), such as (¬B¬DC), but the meanings are the same, that is, a
simple C appearing. This constraint is the same as Constraint 3 in [15].

In this work, we focus on the negative sequences satisfying these three constraints
and generate NSC.

3.2.2 Subsequence of negative sequence

Given an arbitrary, i.e., positive or negative, sequence α = < a1,a2, ...,an > and a
negative sequence β = < b1,b2, ...,bm > where ai and b j are either positive or negative
elements, 1≤ i≤ n,1≤ j ≤m, we say α is a subsequence of β and β is a supersequence
of α , denoted by α vn β , if there exist integers 1 ≤ i1 < i2 < · · · < in ≤ m such that
a1 = bi1 ,a2 = bi2 , ..., and an = bin . In addition, the subsequence which contains all the
positive element(s) in β is the Maximum Positive Subsequence of β , denoted by MPS(β ).

Example 1 Given a negative sequence β = < A ¬(AC) B ¬(DE) >, < A ¬(AC) B >
and < ¬(AC) B ¬(DE) > are subsequences of β , while < A ¬(AC) ¬(DE) > is not
because there are two contiguous negative elements. < A B > is the maximum positive
subsequence of β , i.e., MPS(β ) = < A B >.

3.2.3 Support counting of negative sequences

The support counting of negative sequences can be very complicated. In earlier
works, such as [12] and [13], the task of support counting involves multiple scans of
the databases However, the authors of [15] proposed a conversion strategy to convert the
problem of negative containment to the positive containment that helps to calculate the
support of negative sequences using the mined PSP instead of rescanning the databases.
For more details, we refer the readers to [15]. To describe the negative containment, a
special sequence named 1-neg-size Maximum Subsequence (1-NMS) is first defined.

Definition 3 1-neg-size Maximum Subsequence (1-NMS)
Given a negative sequence ns, let En be the set of all negative elements in ns. A sub-
sequence of ns that includes the maximum positive subsequence MPS(ns), and one neg-
ative element e ∈ En, is called a 1-neg-size Maximum Subsequence (1-NMS) of ns, de-
noted by 1-NMS(ns,e). The set of all 1-neg-size maximum subsequences of ns is called
1-neg-size maximum subsequence set, denoted by 1-NMSS(ns), i.e., 1-NMSS(ns) = {1-
NMS(ns,ei)|∀ei ∈ En}.

Example 2 Given a negative sequence ns = < A ¬(AC) B ¬(DE) >, 1-
NMS(ns,¬(AC)) = < A ¬(AC) B > is a 1-neg-size maximum subsequence of ns. The
1-neg-size maximum subsequence set of ns is 1-NMSS(ns) = {< A ¬(AC) B >, <
A B ¬(DE)>}.

Definition 4 Negative Containment
Given a data sequence ds = < d1,d2, ...,dk >, and a negative sequence ns = <
e1,e2, ...,em >, the data sequence ds contains the negative sequence ns if both the follow-
ing conditions hold: (1) MPS(ns)⊆ ds; (2) ∀1-NMS ∈ 1-NMSS(ns), p(1-NMS)* ds.

Example 3 Given a data sequence ds =< A (BCD) A (DE)C > and negative sequences
ns1 = < A ¬E (DE) ¬(AB) > and ns2 = < ¬B A ¬(BD) C >, (1) ds contains ns1 be-
cause (i) MPS(ns1) = < A (DE)> ⊆ ds, and (ii) 1-NMSS(ns1) = {< A ¬E (DE)>, <
A (DE) ¬(AB)>} such that p(< A ¬E (DE)>)* ds and p(< A (DE) ¬(AB)>)* ds;



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 153

(2) ds does not contain ns2 because 1-NMSS(ns2) = {< ¬B A C >, < A ¬(BD) C >}
and p(< ¬B A C >)⊆ ds.

The support of a negative sequence ns is obtained by counting the number of se-
quences containing MPS(ns) but not containing the positive partners of any negative
elements in ns between the corresponding neighboring positive elements. We give the
formula below.

Corollary 1 Support of negative sequence
Given a m-size and n-neg-size negative sequence ns and a sequence database DB, let
En = {e1,e2, ...,en} be the set of all negative elements in ns. The support of the negative
sequence ns in DB is:

sup(ns) = |{ns}|= |{MPS(ns)}−
n⋃

i=1

{p(1-NMS(ns,ei))}| (1)

Since
⋃n

i=1{p(1-NMS(ns,ei))} ⊆ {MPS(ns)}, equation (3.1) can be rewritten as:

sup(ns) = |{MPS(ns)}|− |
n⋃

i=1

{p(1-NMS(ns,ei))}|

= sup(MPS(ns))−|
n⋃

i=1

{p(1-NMS(ns,ei))}| (2)

If there is only one negative element in ns, the formula can be simplified as:

sup(ns) = sup(MPS(ns))− sup(p(ns)) (3)

Particularly, if ns contains nothing but a negative element ¬e, the support is:

sup(ns) = sup(< ¬e >) = |DB|− sup(< e >) (4)

The support of the negative sequences can then be obtained from only the informa-
tion of the mined PSP instead of the rescans of the database. |

⋃n
i=1{p(1-NMS(ns,ei))}|

can be calculated using the data structure explained in Section 4.2, which is able to quickly
access the support of the required PSP from PS-tree.

3.2.4 Definition of NSP

This work aims at finding the NSP which contradicts its positive partner by over-
whelming support. Because the support of an NSP can usually be large, applying the
same min sup on both PSP and NSP is not feasible. We define that the support of an NSP
should be no less than the support of its positive partner times a user-defined parameter,
Frequency Ratio of Interest (FRI), so that the NSP is sure to be much more frequent
than the corresponding PSP. The definition of NSP is given below.

Definition 5 Negative Sequential Pattern (NSP)
Given a user-defined Frequency Ratio of Interest (FRI) α , α ≥ 1, a negative sequence
ns is a Negative Sequential Pattern (NSP) if the support of ns is greater than or equal to
the support of the positive partner of ns times α , i.e., sup(ns)≥ sup(p(ns))∗α .

Note that, to the best of our knowledge, all the previous works take the min sup
for PSP as the threshold for NSP, except for [12]. The authors of [12] take into account
another threshold called miss f req, which is used to limit the support of negative elements
in a negative sequence. Finally, we state the problem definition of this work, as follows.



154 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

Algorithm 1 : Propone(DB, min sup, POI, FRI)
Require: A progressive database DB, min sup, POI, FRI
Ensure: Output the complete set of PSP and NSP for each POI

1: PST = a empty root node; . PS-tree
2: current time = t1; . current timestamp, initialized as the first timestamp
3: eleSet = φ ; . a set of elements at current time
4: while there still exist new transaction in DB do
5: eleSet = read all ele at current time;
6: traverse(DB, min sup, current time, PST, POI, FRI);
7: current time++;

Problem Definition 1 Given a progressive database DB, a length of POI, a minimum
support threshold min sup, and a Frequency Ratio of Interest α , find the complete set of
both positive and negative sequential patterns in the recent POI of DB.

4. PROGRESSIVE MINING of POSITIVE and NEGATIVE
SEQUENTIAL PATTERNS

In this section, we present the algorithm Propone which mines PSP and NSP pro-
gressively. Propone leverages PS-tree to maintain the information of PSP in the current
POI, and applies the techniques of negative containment and support counting of neg-
ative sequence to find NSP. The following subsections describe the details of Propone
algorithm.

4.1 Propone: Algorithm Overview

The framework of Propone is composed of mining PSP progressively and finding
NSP based on mined PSP. To progressively mine the up-to-date PSP in the database, Pro-
pone utilizes PS-tree to maintain the information of sequential patterns from one POI to
the next. The concept of maintaining the PS-tree is traversing the PS-tree of the previous
POI in level-order and transforming it to the PS-tree of next POI. This traversal involves:
1) the updating of sequences, 2) the deletion of obsolete elements, and 3) the insertion
of new elements in the PS-tree. If a positive sequential candidate is certified to be a PSP
while traversing PS-tree, we generate NSC based on the PSP and then check whether the
NSC can be NSP. The algorithm is introduced step-by-step as follows.

Step 1: If there is new data at the current timestamp in the database, collect the elements
from each sequence.

Step 2: Traverse PS-tree in level-order. For each node of PS-tree, process the node and
update its children according to the type of node.

Step 2.1: If the node is a common node and the positive sequential candidate it represents
is frequent, a) output the positive sequential candidate as a PSP, and b) generate NSC
and output them as NSP if they are frequent after checking the support.

Step 3: Move POI forward. Repeat Steps 1 and 2.

The main procedure of the algorithm Propone is shown in Algorithm 1.



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 155

DB1,1(3)

A

01 02 03

1 1 1

D

02

1

AD

02

1

DB1,2(4)

A

01 02 03

1 1 1

D

02 04

1 2

AD

02

1

B

01 02 03

1 1 1

C

03

1

BC

03

1

B

02

1

B

02

1

B

01 02 03

2 2 2

C

03

2

BC

03

2

DB1,3(5)

A

01 02 03

1 1 1

D

02 04

1 2

AD

02

1

B

01 02 03

1 1 1

C

01 03

1 1

BC

03

1

B

02 04

1 2

B

02

1

B

01 02 03 04 05

2 2 2 3 3

C

01 03

3 3

BC

03

2

C

01 03

1 1

C

03

1

C

03

1

C

01 03

2 2

C

03

2

C

03

2

(t1) (t2)

(t3)

Fig. 3. PS-tree of the example database (t1 to t3).

4.2 PS-tree Traversal

In this section, we illustrate how to update and maintain the PS-tree. The algorithm 
traverse is shown in Algorithm 2, and Fig. 3 presents the PS-tree of the example database 
from t1 to t3. Propone traverses PS-tree in level-order. The root is processed first, then 
Propone goes to the nodes on the first l evel. O nce a ll t he n odes o n t he fi rst level are 
processed, we start with the nodes on the second level and so on. The main task of the 
algorithm traverse is to add the newly arriving elements to PS-tree while removing the 
obsolete elements. The nodes in the PS-tree can be divided into two types: the root 
and common nodes. For the root, as shown in Fig. 3 (t1), Propone takes each element 
collected at the current timestamp in eleSet and uses them to update the children under 
the root. In the example database shown in Fig. 1, there are sequences S01, S02 and 
S03 having elements (A), (AD) and (A), respectively. Propone then appends the elements 
to the children through the procedure UPDATE CHILD, which is given in Procedure 1. 
The newly appearing elements in the eleSet are used for generating all combinations of 
candidate elements. For example, if the element is (ABC), we generate (A), (B), (C), (AB),
(AC), (BC), and (ABC) as the candidate elements. For each candidate element, Propone 
checks whether there is already a child under the root with the same element as the label. 
If there is a child with the same element as the label, meaning that this element has 
appeared at the previous timestamps, Propone examines if the sequence id has been in 
the sequence list of the child. If so, then this means that the element occurred in the same 
sequence. Therefore, Propone updates the timestamp of that sequence with the given 
timestamp, which is current time for the root. Otherwise, we create a new sequence in 
the sequence list with current time. If no child under the root has the same label, Propone 
creates a new child with the candidate element as its label, the corresponding sequence 
id, and current time. The newly created node is then also appended to the rear of the 
traversal queue of next level.

For common nodes, such as the node labeled A in Fig. 3 (t2), Propone checks if 
the node is not a newly created one. The newly created nodes, i.e., the gray nodes in 
Fig. 3, represent the newest data in the database. These nodes themselves have been 
processed in the earlier iterations, and there is no possibility that they have descendants. 
Therefore, we do not need to perform any operation on them except examining if there 
are some sequential patterns that need to be output. If the node is not newly created,



156 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

Algorithm 2 : traverse(DB, min sup, current time, PST, POI, FRI)
Require: A progressive database DB, min sup, the current timestamp current time, a PS-tree

PST, POI, and FRI
Ensure: An updated PS-tree PST

1: PSP-Hash = φ ; . a hash table mapping from PSP to their supports or corresponding nodes
2: for each tree node, p, of PST in level-order do
3: if p is Root then
4: for ele of every seq in eleSet do
5: UPDATE CHILD(ele, p, seq, current time)
6: else . the node is a common node
7: if p is NOT newly created then
8: for every seq except the newly created ones in p.seq list do
9: if seq.timestamp≤ current time−POI then

10: delete seq from p.seq list and continue to the next seq;
11: if there is new ele of the seq in eleSet then
12: if p.seq list.seq is updated then
13: if seq.old timestamp≤ current time−POI then
14: continue to the next seq;
15: else
16: ts = seq.old timestamp;
17: else
18: ts = seq.timestamp;
19: UPDATE CHILD(ele, p, seq, ts)
20: noDesc = |newly created seq| + |seq whose old timestamp≤ current time−POI|
21: if p.seq list.size−noDesc == 0 then
22: delete all p’s children from p;
23: if noDesc == 0 then
24: delete p;
25: if p.seq list.size≥ min sup∗ |DB| then
26: output patterns(p, PSP-Hash);

then Propone checks each sequence in the sequence list except the newly created ones.
If the sequence is obsolete, it is removed from the sequence list. If the sequence is not
obsolete and there is a new element of the sequence in eleSet, Propone checks further
whether the sequence is updated. If the sequence is updated, Propone takes the previous
timestamp, namely old timestamp, which is the timestamp before being updated. Note
that there can be several ways to retrieve the old timestamp. In this work, we update a
timestamp in a child node with the result of old timestamp plus new timestamp times
current time. While we are processing the child node, we can retrieve the old timestamp
and the correct new timestamp from the remainder and the quotient of the division of the
result by current time, respectively. Another approach is storing the old timestamp in
tree nodes, although this would require more memory usage. If the old timestamp of the
sequence is obsolete, Propone continues to the next sequence because the same sequence
in the children must be obsolete as well. Otherwise, Propone takes old timestamp and
executes UPDATE CHILD. The reason is that in level-order the parent is processed first
and the timestamp has been updated, but the new timestamp is incorrect for the candidate
sequential patterns of the children. It is the old timestamp where the candidate sequential
patterns of the children begin. If the sequence is not updated, which means the timestamp
remains the same, Propone uses the timestamp of the sequence directly and updates the
children. After all the sequences in the sequence list are processed, Propone calculates the



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 157

Procedure 1 UPDATE CHILD(ele, p, seq, time)
Require: An element ele, a PS-tree node p, a sequence id seq, and a timestamp time
Ensure: Update all the children of node p

1: for each combination comb of elements in the ele do
2: if comb == label of one of p.child then
3: if seq is in p.child.seq list then
4: update timestamp of seq in p.child to time;
5: else
6: create a new sequence in p.child.seq list with time;
7: else
8: create a new child with comb, seq and time;
9: add this child to traversal queue of next level;

C

01 03

3 2

D

03 05

2 3

DB2,4(5)

A

02

4

D

03 04 05

4 2 4

B

01 02 03 04 05

2 2 2 3 3

C

01 03

4 3

BC

03

2

C

03

2

C

01 03

2 2

A

02

2

D

03

3

D

03

2

D

03

2

C

01

2

D

03

2

D

03

2

B

04

2

(t4)

Fig. 4. PS-tree of the example database (t2 to t4).

number of sequences which cannot have any descendants, noDesc. The sequences having 
no descendants include those which are newly created and those whose old timestamp is 
obsolete. The number noDesc is used to determine whether the subtree under the node, 
and even the node itself, should be pruned from PS-tree. If the number of sequences in 
the sequence list of the node minus noDesc is 0, it means that all the remaining sequences 
in the node are either newly created or possess an obsolete old timestamp. This indicates 
that every sequence in each descendant is obsolete, and thus Propone deletes all the 
children of the node from PS-tree. For example, the subtree of node A in the first level in 
Fig. 3 (t3) is removed after the POI advances, which is shown in Fig. 4. Then, if noDesc is 
equal to 0, Propone removes the node from the PS-tree because there is no sequence left 
in the sequence list of the node. For instance, the node AD and its subtree in Fig. 3 (t3) 
are discarded in Fig. 4. At the last step of processing a common node, Propone examines 
the support of a candidate sequential pattern. If the number of sequences in the sequence 
list of a common node is greater than or equal to the minimum support min sup times 
the number of sequences in the current POI, |DB|, a procedure named output patterns is 
executed to output the corresponding PSP and to discover potential NSP.

4.3 Outputting PSP and NSP

The output of PSP and NSP is handled by the procedure output patterns. Note that 
output patterns requires a special data structure named PSP-Hash. PSP-Hash is a hash 
table which maps from PSP to either their supports or corresponding PS-tree nodes. Fig. 
5 shows the PSP-Hash of the example PS-tree in Fig. 2. The keys of PSP-Hash are the 
PSP mined in each traversal. The values are the supports of the PSP if the size of the 
PSP is 1, or a link to the corresponding PS-tree node that represents the PSP if the size



158 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

DB1,2(4)

A

01 02 03

1 1 1

D

02 04

1 2

AD

02

1

B

01 02 03

1 1 1

C

03

1

BC

03

1

B

02

1

B

02

1

B

01 02 03

2 2 2

C

03

2

BC

03

2

PSP Support/Link

< A > 3

< D > 2

< B > 3

< A B >

Fig. 5. PSP-Hash of the example PS-tree in Fig. 2.

Algorithm 3 : output patterns(p, PSP-Hash)
Require: A PS-tree node p and a map from PSP to their supports or corresponding nodes PSP-

Hash
Ensure: Output the PSP and potential NSP

1: PSP = labels of path from Root to p;
2: neg ele = φ ; . a set of necessarily negative elements
3: if PSP.size == 1 then
4: PSP-Hash.put(PSP, sup(PSP));
5: else
6: PSP-Hash.put(PSP, pointer to p);
7: for each element e of PSP do
8: if sup(e)− sup(PSP)< sup(PSP)∗FRI then
9: insert e into neg ele;

10: if all the elements in neg ele are not contiguous in PSP then
11: for each NSC generated based on neg ele do
12: if NSC contains more than 1 negative element then
13: if sup(MPS(NSC))− sup(PSP)< sup(PSP)∗FRI then . Avoid support checking
14: continue to the next NSC;
15: if sup(NSC)≥ sup(PSP)∗FRI then
16: output NSC as an NSP;

of the PSP is larger than 1. The reason for storing the link to the corresponding node is
that Propone can retrieve the sequence id set of a PSP quickly. We can use PSP-Hash to
speed up the calculation of the support of NSP because the formulas for this involves the
union of sequence id sets. For 1-size PSP, only the support is stored because the formulas
do not require the calculation of union for such PSP.

To output NSP, we need to use an identified PSP mined during the PS-tree traversal
to generate Negative Sequential Candidates (NSC), and then check their supports to de-
termine whether they are NSP. The approach used for generating NSC follows the method
in [15]. NSC are generated by changing any non-contiguous elements in a PSP to their
corresponding negative ones. The definition of NSC Generation is given as below.

Definition 6 Negative Sequential Candidate Generation
Given a k-size PSP, NSC are generated from the PSP by changing any m non-contiguous
element(s) to the corresponding negative one(s), where m = 1,2, . . . ,

⌈ k
2

⌉
.

Example 4 Based on a PSP < A (BC) D >, the NSC generated are:
m = 1, < ¬A (BC) D >, < A ¬(BC) D >, < A (BC) ¬D >;
m = 2, < ¬A (BC) ¬D >.

With a PSP mined during the PS-tree traversal, many NSC can be generated. How-
ever, we can utilize the information from the given PSP to reduce the number of NSC. We



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 159

propose a pruning strategy to discard infrequent NSC in advance, reducing the time spent
on counting support. The pruning strategy is based on a property as follows.

Property 1 Given a PSP s, a subsequence of s, s′, an NSC n, and a FRI α , the NSC n
is not frequent if all the following conditions hold: (1) p(n) = s; (2) n contains s′; (3)
sup(s′)− sup(s)< sup(s)∗α .

Pruning Strategy 1 Given a PSP s, an NSC n, and a FRI α , for each element e in s,
let < e > be a 1-size PSP containing only e. If sup(< e >)− sup(s) < sup(s) ∗α , NSC
which contain e, and whose positive partner is s, must be infrequent. Therefore, e should
be negative while generating NSC.

Example 5 Given a PSP s = < (AB) C D (EFG) H >, we can obtain five 1-size PSP:
s1 = < (AB)>, s2 = <C >, s3 = < D >, s4 = < (EFG)>, s5 = < H >.
1) Suppose s1 and s3 satisfy the inequality, then NSC containing (AB) or D must be in-
frequent. Thus, (AB) and D should be negative while generating NSC. According to this
information, the NSC generated are:
neg-size = 1⇒ φ

neg-size = 2⇒ < ¬(AB) C ¬D (EFG) H >
neg-size = 3⇒ < ¬(AB) C ¬D (EFG) ¬H >.
The number of NSC is reduced from 12 (5, 6, 1 for neg-size 1, 2, 3 NSC respectively) to 3.
2) Suppose s1 and s2 satisfy the inequality, then NSC containing (AB) or C must be in-
frequent. Thus, (AB) and C should be negative while generating NSC. According to this
information, NO NSC are generated because there must be two contiguous negative ele-
ments in the NSC.

By taking advantage of Property 1, the pruning strategy examines what elements in
a PSP should be negative while we are generating NSC, and thus can avoid producing
infrequent NSC. However, there may be few infrequent NSC being generated after the
pruning. Before the supports of these infrequent NSC are calculated, which takes some
time, we can leverage Property 1 again to skip the calculation. We propose a simple
technique, named avoiding support checking, to avoid the calculation of support of the
infrequent NSC not pruned by the pruning strategy, as described below.

Avoiding Support Checking 1 Given an NSC n and a FRI α , suppose n is not pruned by
the pruning strategy. If sup(MPS(n))−sup(p(n))< sup(p(n))∗α , then n is not frequent.
Therefore, we skip the support checking for n.

With the techniques presented above, Propone can deal with the output of NSP
once it discovers a PSP during the PS-tree traversal. The detailed steps of the procedure
output patterns are shown in Algorithm 3. As per the PSP, PSP-Hash is updated. Then,
NSC are generated with the utilization of pruning strategy and avoiding support counting
strategy discussed above. Finally, support is calculated to output NSP according to FRI.

5. PERFORMANCE EVALUATION

In this section, a series of experiments are conducted to evaluate the performance of
the Propone algorithm with different parameters. Since there are still no works which
find PSP and NSP at the same time in a progressive database, we modify GSP [2] and
Pisa [10] to suit the purpose of this study and for comparison purposes. We let GSP



160 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

Table 1. Parameters for synthetic data generation.
Symbol Meaning

D Number of sequences
C Average number of elements per sequence
N Number of different items
T Total number of timestamps

statically remine the database in each POI, and combine this with the same approach to
mining NSP as in e-NSP [15], i.e., the approach also adopted by Propone, but without our
proposed pruning strategy, with both of the modified GSP and Pisa. The two comparative
algorithms are named GSP PN and Pisa PN, respectively. For the testing datasets, we use
the IBM data generator [1] to generate synthetic datasets and then transform them into
the desired format of a progressive database. A real dataset from Netflix, which was used
in the 2007 KDD Cup [35], is also included in the experiments. GSP PN, Pisa PN and
Propone are all implemented in Python 2.7.9, and the experiments are performed on a
computer with Intel Core i5 3.4-GHz CPU and 8GB memory.

5.1 Experimental Setup

The synthetic datasets are generated by the IBM data generator and transformed into
the format of a progressive database. There are several adjustable parameters in the IBM
data generator, such as the number of sequences and the average length of sequences, so
that various datasets can be generated to meet different needs. Moreover, we include a
real dataset employed by the 2007 KDD Cup, the Netflix Prize training dataset, which
consists of 480189 users, 17770 movies, and over 100 million rating records.

Unlike an incremental database, which only appends new data to the end of the se-
quences, a progressive database has to further remove the obsolete data. For this reason,
each element in the sequences should be assigned a timestamp after the datasets are gen-
erated by the IBM data generator. Once each element is given a timestamp, we divide the
whole generated dataset into m timestamps. Suppose the length of POI is set as n (n < m),
then every n timestamp is seen as a subset to be processed. Note that m should be larger
than the maximal number of elements in a sequence.

The major parameters used in our experiments, as shown in Table 1, are: number
of sequences (D), average number of elements per sequence (C), and number of different
items (N). Another parameter not provided by the IBM data generator is the total number
of timestamps (T ). This parameter indicates how many timestamps the datasets should be
divided into. The total number of timestamps (T ) is fixed at 40, which is the same setting
adopted in [10]. For the average number of elements per sequence (C), we choose two
values to generate two kinds of datasets with different density, so that we can observe their
effects. Because the total number of timestamps (T ) is 40, we set one C as 20, which is a
half of 40, and the other one as 25, which is a higher value without generating sequences
longer than 40. For the number of different items (N), we set the value as 10K.

To shape the real dataset into the same format as the synthetic datasets, we follow the
approach that is taken in [10] to obtain an equal comparison environment. We randomly
extract 120 successive days from the Netflix dataset and set three days as a timestamp,
gathering the items in every three-day interval as an element. In this way there are 40
timestamps in the dataset, the same as the total number of timestamps in the synthetic
datasets. The resulting dataset contains 46,871 sequences and 10,102 items.



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 161

0

200

400

600

800

1000

1200

1400

1600

0.001 0.0025 0.005 0.0075 0.01

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

min_sup

GSP_PN

Pisa_PN

Propone

(a) sparser (C = 20)

0

1000

2000

3000

4000

5000

0.001 0.0025 0.005 0.0075 0.01

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

min_sup

GSP_PN

Pisa_PN

Propone

(b) denser (C = 25)
Fig. 6. Execution time with different minimum supports on the sparser and denser synthetic dataset.

0

2000

4000

6000

8000

10000

0.001 0.0025 0.005 0.0075 0.01

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

min_sup

GSP_PN Pisa_PN Propone

(a) sparser (C = 20)

0

10000

20000

30000

40000

50000

0.001 0.0025 0.005 0.0075 0.01

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

min_sup

GSP_PN Pisa_PN Propone

(b) denser (C = 25)
Fig. 7. Memory usage with different minimum supports on the sparser and denser synthetic dataset.

5.2 Different Minimum Support Thresholds

First we perform the experiments on different minimum support thresholds. Fig. 6a
and Fig. 6b show the execution time of the three algorithms over the minimum supports,
ranging from 0.001 to 0.01, on the two synthetic datasets, which are the sparser one
(C = 20) and the denser one (C = 25). The number of sequences (D) is 20K. The POI
and FRI both are set at 10. When the minimum support decreases, the execution time
of all three algorithms increases, because there will be more sequential patterns to be
processed. However, the execution time of GSP PN increases significantly, while there is
only a slight increase in those of Pisa PN and Propone. This is because GSP PN has to
scan the subdatabases many times, while Pisa PN and Propone only need to process the
newly arriving elements. Furthermore, Propone takes less execution time than Pisa PN
because the level-order traversal skips the redundant processing of the nodes which need
to be deleted, and the pruning strategy discards many infrequent NSC. In addition, with
the denser dataset the difference in execution time between Pisa PN and Propone is larger
when the minimum support is small. Fig. 7a and Fig. 7b show the memory usage for the
two datasets. With regard to the memory usage, GSP PN requires less because it rescans
the database rather than stores the information of all the sequential patterns. Although
Pisa PN and Propone use more memory, the maximum memory usage is not too large
and the execution time is much less than GSP PN’s, as shown in Figs. 6a and 6b. Propone
needs more memory than Pisa PN due to the utilization of the hash table data structure,
PSP-Hash, but the difference is very small. Both Pisa PN and Propone require much
more memory than GSP PN in the denser dataset, because more elements appearing in
the POI leads to an increase in the number of candidate sequences.

5.3 Different Length of POI

We then examine the performance when the length of the POI is varying. The length
of the POI ranges from 8 to 12. The number of sequences (D) is 20K. The minimum
support and FRI are set at 0.005 and 10 respectively. As shown in Figs. 8 (a) and (b), the
execution time of all the algorithms increases as the POI becomes longer. GSP PN has to



162 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

0

500

1000

1500

2000

8 9 10 11 12

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Length of POI

GSP_PN

Pisa_PN

Propone

(a) sparser (C = 20)

0

1000

2000

3000

4000

5000

6000

8 9 10 11 12

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Length of POI

GSP_PN

Pisa_PN

Propone

(b) denser (C = 25)
Fig. 8. Execution time with different lengths of POI on the sparser and denser synthetic dataset.

0

10000

20000

30000

40000

50000

8 9 10 11 12

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

Length of POI

GSP_PN

Pisa_PN

Propone

(a) sparser (C = 20)

0

50000

100000

150000

200000

8 9 10 11 12

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

Length of POI

GSP_PN

Pisa_PN

Propone

(b) denser (C = 25)
Fig. 9. Memory usage with different lengths of POI on the sparser and denser synthetic dataset.

deal with more elements in the sequences or even more sequences as POI grows longer.
The number of levels of the PS-tree also depends on the length of the POI. A longer POI
will lead to a larger PS-tree for Pisa PN and Propone to traverse, and thus more execution
time will be needed. However, the difference between GSP PN and the two PS-tree based
algorithms is still significant, and the execution time of Propone increases slower than
that of Pisa PN. Furthermore, by comparing Figs. 8 (a) and (b) we can see that in the
denser dataset the execution time of the two PS-tree based algorithms grows a little faster
than that in the sparser one. Figs. 9 (a) and (b) show that the memory usage of Pisa PN
and Propone grows faster than that of GSP PN. This is because when the POI is longer,
there are more elements lying in the POI, and the PS-tree will thus have to generate more
branches to store the candidate sequences.

5.4 Different Number of Sequences

To observe the scalability of the three algorithms, we generate several synthetic
datasets with different number of sequences (D). There are five datasets with 5K, 10K,
20K, 40K, and 80K sequences for each kind of densities. The minimum support is set
at 0.005. The POI and FRI both are set at 10. Figs. 11 (a) and (b) show that the execu-
tion time of all algorithms becomes longer as the number of sequences (D) increases, but
Pisa PN and Propone take much less time than GSP PN to deal with extra sequences.
The reason is that when the size of the database increases, GSP PN needs to perform
multiple rescans on more sequences, but Pisa PN and Propone only have to deal with the
candidate sequences in the PS-tree, whose quantity is smaller than that of additional se-
quences in the database. However, there is an overhead that Pisa PN and Propone utilize
more memory as the number of sequences (D) increases, as shown in Figs. 11 (a) and (b),
because the sequence id list in each PS-tree node will contain more sequence entries.

5.5 Analyses of FRI

In this section, we analyze the performance with different FRI and the pruning effect
of the pruning strategy. FRI is a ratio between the support of an NSP and the support of



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 163

64

256

1024

4096

5 10 20 40 80

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Number of sequences (in 1000s)

GSP_PN

Pisa_PN

Propone

(a) sparser (C = 20)

64

256

1024

4096

16384

5 10 20 40 80

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Number of sequences (in 1000s)

GSP_PN

Pisa_PN

Propone

(b) denser (C = 25)
Fig. 10. Execution time with different no. of sequences on the sparser and denser synthetic dataset.

256

1024

4096

16384

65536

5 10 20 40 80

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

Number of sequences (in 1000s)

GSP_PN

Pisa_PN

Propone

(a) sparser (C = 20)

256

1024

4096

16384

65536

262144

5 10 20 40 80
M

e
m

o
ry

 U
sa

ge
 (

K
B

)
Number of sequences (in 1000s)

GSP_PN Pisa_PN Propone

(b) denser (C = 25)
Fig. 11. Memory usage with different no. of sequences on the sparser and denser synthetic dataset.

the NSP’s corresponding PSP, i.e., the positive partner of the NSP. It is used to extract
those NSP which are overwhelming against their positive partner in support, giving new
applications to NSP. When FRI gets larger, the condition with regard to the NSP is stricter,
and thus the number of NSP will be reduced. Once less NSC are not able to become NSP
and thus can be pruned before they are processed, the execution time of the algorithm will
decrease. In this experiment, the number of sequences (D) is 20K, and the length of the
POI is 10. We set the minimum support as 0.0005, which is smaller than in the previous
experiments, to induce more PSP and also more NSP. Furthermore, we implement another
algorithm, called Propone noPS, which is obtained by removing the pruning strategy from
Propone, to observe the effects of doing this. In addition, GSP PN is dropped in this
experiment because of its considerable execution time. Figs. 12 (a) and (b) show the
execution time of the three algorithms with different FRI ranging from 2 to 20. From
Figs. 12 (a) and (b), we can see that the execution time of Pisa PN and Propone noPS
do not change across different FRI, because Pisa PN and Propone noPS lack pruning
strategies. On the other hand, the execution time of Propone deceases as FRI becomes
larger. This is because a larger FRI results in the reduction in the number of NSP, and thus
there are more potential infrequent NSC to be pruned. We can also see that the difference
in execution time between Propone noPS and Propone is larger in the denser dataset than
in the sparser one, because there are more PSP, and thus more NSC will be generated,
increasing the space of reduction. To investigate the effectiveness of the pruning strategy,
an experiment on the percentage of pruned infrequent NSC is conducted, with the results
shown in Figs. 13 (a) and (b). The trend shows that the pruning strategy is more effective
when FRI is larger and the percentage of pruned infrequent NSC rises quickly. About
80% of the infrequent NSC can be pruned when FRI is at 10, and 90% can be pruned
when FRI equals 14. The percentages are even higher in the results of the denser dataset.
Therefore, the pruning strategy is effective in reducing the number of the infrequent NSC
to speed up the mining process.



164 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

275

285

295

305

370

400

2 4 6 8 10 12 14 16 18 20

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

FRI

Pisa_PN Propone_noPS Propone

(a) sparser (C = 20)

950

965

980

995

1010
1000

1200

1400

2 4 6 8 10 12 14 16 18 20

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

FRI

Pisa_PN Propone_noPS Propone

(b) denser (C = 25)
Fig. 12. Execution time with different FRI on the sparser and denser synthetic dataset.

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

ge
 (

%
)

FRI

Percentage of pruned
infrequent NSC

(a) sparser (C = 20)

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20

P
e

rc
e

n
ta

ge
 (

%
)

FRI

Percentage of pruned
infrequent NSC

(b) denser (C = 25)
Fig. 13. Pruning effect with different FRI on the sparser and denser synthetic dataset.

5.6 Number of Patterns

To understand the densities of the two datasets, we give an insight into the number 
of PSP, NSC, and NSP which are mined or generated during the mining processes. Table 
2 shows the average number of PSP, NSC, and NSP in each run (there are 31 runs in 
each experiment) in the two datasets, with the minimum supports ranging from 0.001 to 
0.01. The number of sequences (D) is 20K. The length of the POI is 10, and FRI is set 
as 10. As we can see in Table 2, there are more PSP in the denser dataset, because the 
data sequences are longer in the POI, and thus longer patterns could appear. Due to the 
increase in the number and length of PSP, the number of NSC also becomes more, along 
with that of NSP. Moreover, a smaller minimum support allows more and longer PSP, 
and a longer PSP can generate more NSC. This is the reason that the number of NSC 
grows fast as the minimum support becomes smaller. The columns of NSP show that the 
numbers of NSP are all smaller than that of PSP, indicating that setting FRI as 10 is strict 
to NSP.

5.7 Test on Real Data

Finally, we conduct the experiments on the real dataset to study the practicability of 
Propone algorithm. To show the effect of varying minimum support, we executed the 
experiment with the minimum support set at 0.0005 to 0.0025. The POI and FRI are set at

Table 2. Average no. of patterns in the two datasets with different minimum supports.

min sup Sparse (C = 20) Dense (C = 25)
PSP NSC NSP PSP NSC NSP

0.001 2495.6 6110.3 1264.0 6098.0 21030.9 1984.1
0.0025 1013.6 1823.5 505.2 2015.1 4865.7 683.3
0.005 459.7 640.3 321.3 718.9 1151.8 437.9
0.0075 280.0 341.8 231.6 378.7 470.4 309.8

0.01 190.9 217.9 169.8 232.7 253.7 214.8



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 165

0

200

400

600

800

1000

1200

1400

0.0005 0.001 0.0015 0.002 0.0025
Ex

e
cu

ti
o

n
 T

im
e

 (
Se

c.
)

min_sup

GSP_PN

Pisa_PN

Propone

(a) Execution time

0

2000

4000

6000

8000

0.0005 0.001 0.0015 0.002 0.0025

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

min_sup

GSP_PN

Pisa_PN

Propone

(b) Memory usage
Fig. 14. Effect of varying minimum supports, POI 10 and FRI 15 on the real dataset.

0

50

100

150

200

250

300

350

400

8 9 10 11 12

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Length of POI

GSP_PN Pisa_PN Propone

(a) Execution time

0

1000

2000

3000

4000

5000

8 9 10 11 12

M
e

m
o

ry
 U

sa
ge

 (
K

B
)

Length of POI

GSP_PN Pisa_PN Propone

(b) Memory usage
Fig. 15. Effect of varying POI, minsup 0.0015 on the real dataset.

10 and 15 respectively. As shown in Fig. 14 (a), although the difference in execution time 
between Pisa PN and Propone is not obvious with a larger minimum support, it is more 
significant when the minimum support gets s maller. This is because when the minimum 
support is small, the number of PSP increases, and thus leads to an increase in NSP. The 
pruning strategy and PSP-Hash help speed up the mining of NSP. The memory usage of 
GSP PN becomes higher than those of Pisa PN and Propone when the minimum support 
is at 0.0005, as shown in Fig. 14 (b), because the Netflix dataset is much sparser, which 
will not make the PS-tree too big, while GSP PN still has to generate many candidate 
sequences.

In the experiment on different length of the POI, the minimum support is set at 
0.0015 and FRI is set at 15. Fig. 15 (a) shows that the execution time of Propone remains 
nearly the same across various POI, while that of Pisa PN keeps increasing slowly. The 
difference is small because the Netflix dataset is sparse, and increasing the length of the 
POI does not substantially make the sequences longer. The memory usage of all three 
algorithms, as shown in Fig. 15 (b), are growing, and Pisa PN and Propone still require 
more memory than GSP PN does.

We executed another set of experiments to show the effect of low minimum supports. 
Fig. 16 (a) shows the execution time for varying minimum supports. For this experiment, 
the minimum support ranges from 0.0002 to 0.0010. The POI and FRI are set at 10 and 1 
respectively. Fig. 16 (b) shows the execution time for varying POIs. For this experiment, 
the POI ranges from 6 to 16. The minimum support and FRI are set at 0.0005 and 1 
respectively.

6. CONCLUSIONS

NSP is useful but its definition varies among the previous works depending on the 
views of users and the field of a pplication. In this paper, we combine NSP mining with 
progressive sequential pattern mining by presenting an efficient algorithm, Propone. Pro-
pone traverses the PS-tree in level-order instead of post-order to reduce the unnecessary 
processes. We also give a new definition of NSP which requires that the support of an NSP



166 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

0

500

1000

1500

2000

2500

0.0002 0.0004 0.0006 0.0008 0.001
Ex

e
cu

ti
o

n
 T

im
e

 (
Se

c.
)

min_sup

GSP_PN

Pisa_PN

Propone

(a) Varying min. sup., POI 10

0

100

200

300

400

500

600

6 8 10 12 14 16

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

Length of POI

GSP_PN Pisa_PN Propone

(b) Varying POI, min. sup. 0.0005
Fig. 16. Execution time showing effect of low minimum supports on the real dataset.

should be greater than or equal to the PSP’s support times a parameter FRI. A pruning 
strategy is proposed to reduce the number of infrequent NSC in this paper. The experi-
mental results show that Propone outperforms the comparative algorithms and is efficient 
in execution time without requiring too much memory. The experiments on FRI also show 
that the pruning strategy is effective in discarding the infrequent NSC.

REFERENCES

1. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the 11th
International Conference on Data Engineering, 1995, pp. 3-14.

2. R. Agrawal and R. Srikant, “Mining sequential patterns: Generalizations and per-
formance improvements,” in Proceedings of the 5th International Conference on Ex-
tending Database Technology, 1996, pp. 1-17.

3. M. J. Zaki, “Spade: An efficient algorithm for mining frequent sequences,” Machine
Learning, Vol. 42, 2001, pp. 31-60.

4. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, “Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth,”
in Proceedings of the 17th International Conference on Data Engineering, 2001, pp.
215-224.

5. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using a bitmap
representation,” in Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002, pp. 429-435.

6. S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, “Incremental and in-
teractive sequence mining,” in Proceedings of the 8th International Conference on
Information and Knowledge Management, 1999, pp. 251-258.

7. F. Masseglia, P. Poncelet, and M. Teisseire, “Incremental mining of sequential pat-
terns in large databases,” Data & Knowledge Engineering, Vol. 46, 2003, pp. 97-121.

8. H. Cheng, X. Yan, and J. Han, “Incspan: Incremental mining of sequential patterns in
large database,” in Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2004, pp. 527-532.

9. S. N. Nguyen, X. Sun, and M. E. Orlowska, “Improvements of incspan: Incremental
mining of sequential patterns in large database,” in Proceedings of the 9th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, 2005, pp. 442-451.

10. J.-W. Huang, C.-Y. Tseng, J.-C. Ou, and M.-S. Chen, “A general model for sequential
pattern mining with a progressive database,” IEEE Transactions on Knowledge and
Data Engineering, Vol. 20, 2008, pp. 1153-1167.

11. Y. Zhao, H. Zhang, S. Wu, J. Pei, L. Cao, C. Zhang, and H. Bohlscheid, “Debt de-
tection in social security by sequence classification using both positive and negative



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 167

patterns,” in Proceedings of European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases, 2009, pp. 648-663.

12. S.-C. Hsueh, M.-Y. Lin, and C.-L. Chen, “Mining negative sequential patterns for
e-commerce recommendations,” in Proceedings of IEEE Asia-Pacific Services Com-
puting Conference, 2008, pp. 1213-1218.

13. Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao, “Negative-gsp: An efficient method for
mining negative sequential patterns,” in Proceedings of the 8th Australasian Data
Mining Conference, Vol. 101, 2009, pp. 63-67.

14. Z. Zheng, Y. Zhao, Z. Zuo, and L. Cao, “An efficient ga-based algorithm for mining
negative sequential patterns,” in Proceedings of the 14th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2010, pp. 262-273.

15. X. Dong, Z. Zheng, L. Cao, Y. Zhao, C. Zhang, J. Li, W. Wei, and Y. Ou, “e-nsp: Effi-
cient negative sequential pattern mining based on identified positive patterns without
database rescanning,” in Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, 2011, pp. 825-830.

16. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Pro-
ceedings of the 20th International Conference on Very Large Data Bases, 1994, pp.
487-499.

17. X. Yan, J. Han, and R. Afshar, “Clospan: Mining closed sequential patterns in large
datasets,” in Proceedings of SIAM International Conference on Data Mining, 2003,
pp. 166-177.

18. J. Wang and J. Han, “Bide: Efficient mining of frequent closed sequences,” in Pro-
ceedings of the 20th International Conference on Data Engineering, 2004, pp. 79-90.

19. A. Gomariz, M. Campos, R. Marin, and B. Goethals, “Clasp: An efficient algorithm
for mining frequent closed sequences,” in Proceedings of the 17th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, 2013, pp. 50-61.

20. C. Luo and S. M. Chung, “Efficient mining of maximal sequential patterns using
multiple samples,” in Proceedings of SIAM International Conference on Data Min-
ing, 2005, pp. 415-426.

21. P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Mining maximal sequential patterns
without candidate maintenance,” in Proceedings of the 9th International Conference
on Advanced Data Mining and Applications, 2013, pp. 169-180.

22. M. N. Garofalakis, R. Rastogi, and K. Shim, “Spirit: Sequential pattern mining with
regular expression constraints,” in Proceedings of the 25th International Conference
on Very Large Data Bases, 1999, pp. 223-234.

23. J.-Z. Ouh, P.-H. Wu, and M.-S. Chen, “Experimental results on a constraint based
sequential pattern mining for telecommunication alarm data,” in Proceedings of the
2nd International Conference on Web Information Systems Engineering, Vol. 2, 2001,
pp. 186-193.

24. I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, “Mind the gap: Large-scale
frequent sequence mining,” in Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, 2013, pp. 797-808.

25. A. Marascu and F. Masseglia, “Mining sequential patterns from data streams: a cen-
troid approach,” Journal of Intelligent Information Systems, Vol. 27, 2006, pp. 291-
307.

26. A. Koper and H. S. Nguyen, “Sequential pattern mining from stream data,” in Pro-
ceedings of the 7th International Conference on Advanced Data Mining and Appli-
cations, 2011, pp. 278-291.



168 JEN-WEI HUANG, YONG-BIN WU, BIJAY PRASAD JAYSAWAL

27. S.-Y. Wu and Y.-L. Chen, “Mining nonambiguous temporal patterns for interval-
based events,” IEEE Transactions on Knowledge and Data Engineering, Vol. 19,
2007, pp. 742-758.

28. Y.-C. Chen, J.-C. Jiang, W.-C. Peng, and S.-Y. Lee, “An efficient algorithm for min-
ing time interval-based patterns in large database,” in Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, 2010, pp. 49-
58.

29. K.-Y. Chen, B. P. Jaysawal, J.-W. Huang, and Y.-B. Wu, “Mining frequent time
interval-based event with duration patterns from temporal database,” in Proceedings
of International Conference on Data Science and Advanced Analytics, 2014, pp. 548-
554.

30. N. P. Lin, H.-J. Chen, and W.-H. Hao, “Mining negative sequential patterns,” in Pro-
ceedings of the 6th WSEAS International Conference on Applied Computer Science,
2007, pp. 654-658.

31. N. P. Lin, H.-J. Chen, W.-H. Hao, H.-E. Chueh, and C.-I. Chang, “Mining strong pos-
itive and negative sequential patterns,” WSEAS Transactions on Computers, Vol. 7,
2008, pp. 119-124.

32. W.-M. Ouyang and Q.-H. Huang, “Mining negative sequential patterns in transaction
databases,” in Proceedings of the 2007 International Conference on Machine Learn-
ing and Cybernetics, 2007, pp. 830-834.

33. Y. Zhao, H. Zhang, L. Cao, C. Zhang, and H. Bohlscheid, “Mining both positive and
negative impact-oriented sequential rules from transactional data,” in Proceedings of
the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2009,
pp. 656-663.

34. W. Ouyang and Q. Huang, “Mining positive and negative sequential patterns with
multiple minimum supports in large transaction databases,” in Proceedings of the
2nd WRI Global Congress on Intelligent Systems, 2010, pp. 190-193.

35. “Kdd cup 2007,” https://www.cs.uic.edu/ liub/Netflix-KDD-Cup-2007.html.

Jen-Wei Huang received the BS and Ph.D. degrees in Elec-
trical Engineering from National Taiwan University, Taiwan in
2002 and 2009 respectively. He was a visiting scholar in IBM
Almaden Research Center from 2008 to 2009, an Assistant Pro-
fessor in Yuan Ze University from 2009 to 2012, and a visiting
scholar in. University of Chicago in 2016. He is now an As-
sistant Professor in the Department of Electrical Engineering,
National Cheng Kung University, Taiwan. He majors in com-
puter science and is familiar with data mining. His research in-
terests include data mining, mobile computing, and bioinformat-

ics. Among these, social network analysis, spatial-temporal data mining, and multimedia
information retrieval are his special interests. In addition, some of his research is on data
broadcasting, privacy preserving data mining, e-learning and bioinformatics.



ON MINING PROGRESSIVE PSP AND NSP SIMULTANEOUSLY 169

Yong-Bin Wu received the BS degree in Mathematics from
National Cheng Kung University, Taiwan in 2013. He is now
working towards the MS degree in the Institute of Computer and
Communication Engineering, National Cheng Kung University,
Taiwan. His research interests include positive and negative se-
quential pattern mining, progressive mining, and mining time
series.

Bijay Prasad Jaysawal received the MS degree in Com-
puter Science and Engineering from Yuan Ze University, Taiwan
in 2013. He is currently working towards the Ph.D. degree in
the Institute of Computer and Communication Engineering, Na-
tional Cheng Kung University, Taiwan. His research interests
include sequential pattern mining, high utility pattern mining,
mining data streams, mining time interval-based events data, and
mining time series.


