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In the machine learning (ML) era, people are paying more and more attention to the 

economic value of data in improving the efficiency of analysis, simulation, calculation, 

forecasting, and decision-making. It results the rise of data markets. As ML requires high-

complexity calculations, individuals and companies tend to use cloud computing with data 

markets. However, this platform is known to have data security issues in privacy protection. 

The most modern method for privacy protection in cloud computing is fully homomorphic 

encryption (FHE). However, the high calculation cost makes conventional FHE impracti-

cal for real-world applications. Although many researchers use CKKS FHE to resolve this 

problem, our experiments show that the calculation cost of some operators in CKKS FHE 

are still very high. In this paper, we propose new security protocols to design a new data 

packing method and to reduce the usage of time-consuming calculations. Then, an out-

sourced K-means clustering method based on these new security protocols is proposed for 

demonstration and evaluation. Experiments show that our method is faster than SEOKC. 

It has shown good performance in high-dimensional data analysis with our new data pack-

ing method. 

 

Keywords: privacy protection, K-means clustering, cloud computing, high-dimensional 

data analysis, fully homomorphic encryption 

1. INTRODUCTION 

In the machine learning (ML) era, people pay more and more attention to the eco-

nomic value of data in improving the efficiency of analysis, simulation, forecasting, and 

decision-making. It results the rise of data markets, such as Statista [1], Snowflake [2], 

Datarade [3]. ML often requires processing with high computational complexity. ML as a 

Service (MLaaS) has become popular because of its cost-benefit advantages. Many cloud 

computing companies, e.g., Alibaba [4], AWS [5], Microsoft [6], and Google [7], provide 

users with ML platforms to use the high-performance computing resources. However, 

there is a challenge of MLaaS to generate ML models on the cloud under the protection of 

privacy and confidentiality of user data. The security problem of private data has become 

an important research topic to train ML models. In data applications, privacy is defined as 
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people’s right to control the use of their personal information, exclude others from viewing, 

using, or intruding, including the collection, processing, storage, and use of personal in-

formation [8-12]. Data privacy and confidentiality are now considered indispensable. 

Companies, organizations, and other institutions must securely handle users’ personal in-

formation. While providing user services, they must also pay attention to confidentiality 

and privacy.  

To protect data privacy in MLaaS, a modern method is to use Homomorphic Encryp-

tion (HE). HE is a form of encryption which allows specific types of calculations to be 

carried out on ciphertexts and generate an encrypted result which, when decrypted, mat-

ches the result of operations performed on the plaintexts [13]. Conventional MLaaS up-

loads the data x to the cloud for calculation f and then send the calculated result f(x) back 

(as shown in Fig. 1 (a)). There may have a data privacy problem if the uploaded data is not 

properly deleted after the calculation. HE solves data privacy problem by uploading the 

homomorphically encrypted data E(x) to the cloud. Perform the homomorphic operation g 

(related to f) on this homomorphically encrypted data E(x) in the cloud, then return the 

result g(E(x)) to the user. The user uses the secret key (related to E) to decrypt the result 

of the homomorphic operation as D(g(E(x))). This decrypted result is exactly the expected 

target f(x) (as shown in Fig. 1 (b)). As the data uploaded to the cloud for computing are 

encrypted, no one can read the content of the data even if the data is not deleted afterward. 

    
(a)               (b) 

Fig. 1. (a) Conventional MLaaS operation method; (b) HE MLaaS operation method. 

 

Nowadays, there are three categories of HE algorithms; (1) Partially HE (PHE), which 

only allows an unlimited number of limited operations to be performed on the ciphertext; 

(2) Somewhat HE (SWHE) supports a limited number of calculations; (3) Fully HE (FHE) 

has no restrictions on the number of times and calculation methods, but the efficiency is 

poor [14-17]. Due to the theoretical breakthrough in these years, FHE has made great pro-

gress in efficiency [18]. The current mainstream FHE algorithms include BFV (Brakerski/ 

Fan-Vercauteren) [19, 20]. CKKS (Cheon-Kim-Kim-Song) [21], and TFHE (Fast Fully 

Homomorphic Encryption over the Torus) [22-24]. [25] evaluated the suitable application 

scenarios of these three HE algorithms and shown that CKKS has the best performance for 

the homomorphic operation of floating-point data with approximated precision. However, 

our experiments show that the calculation cost of some operators in CKKS FHE (such as 

ciphertext multiplication, ciphertext rotation, encryption, and decryption) are still very 
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high. In this paper, we propose new security protocols to design a new data packing method 

and to reduce the usage of time-consuming calculation. Then, an outsourced K-means clus-

tering method based on these new security protocols is proposed for demonstration and 

evaluation. 
We adopt two non-colluding servers same as SEOKC (Secure and Efficient Outsourc-

ed K-Means Clustering) [26] to design our security protocols. The data packing method of 

SEOKC is based on attributes. It uses some calculations that are more time-consuming in 

FHE. Our paper takes the shortcomings of SEOKC as a reference to design a new out-

sourced K-means clustering method through CKKS FHE. Our method uses a new data 

packing method based on record, and can reduce the usage of time-consuming calculation 

in CKKS FHE. Experiments show that our method is faster than SEOKC. It has shown 

good performance in high-dimensional data analysis with our new data packing method. 

2. LITERATURE REVIEW 

In 2014, [27] used FHE to propose privacy of outsourced K-means clustering. In order 

to compare encrypted distances in the process of clustering, the client is required to provide 

trapdoor information with huge online costs on the client-side. In 2017, [28] proposed K-

means clustering using HE and updatable distance matrix (UDM). Secure third party stores 

encrypted data and associated UDMs. Then, the data owner (DO) can request the clustering 

of the data. In order to make the clustering run correctly, UDM needs to be updated in each 

iteration of the K-means algorithm. It relieves [27] from requiring the client to provide 

trapdoor information with participation cost. Both of the above two papers disclose private 

information, such as the distance between the data record and the cluster center, to the 

cloud server. They are proved to be unsafe [29]. 

In 2014, [30] used Asymmetric Scalar Product Preservation Encryption (ASPE) [31] 

with secure cloud computing to resist sample attacks of outsourcing data mining. In 2016, 

[32] proposed a method with linear transformation and random perturbation of the kernel 

matrix in K-means clustering to protect the privacy and perform outsourcing. The above 

methods also disclose some private information to the cloud server. In addition, neither of 

these two tasks can achieve the semantic security of encrypted databases, that is, they can-

not resist chosen plaintext attack (CPA). 

In 2015, [33] used the Paillier cryptosystem to propose privacy-preserving and out-

sourced multi-user K-means clustering. They further considered the overhead of multiple 

DOs, the participation of DO is not required if outsourcing the encrypted database. In ad-

dition to protecting database security, their method also uses two non-colluding cloud serv-

ers, which together form a joint cloud environment. However, this method introduces high 

calculation cost through the use of complex interactive protocols for encrypted data, which 

affects its application in large encrypted databases. In 2017, [34] proposed a privacy-pre-

serving K-means clustering under a multi-owner setting in the distributed cloud environ-

ment. The ciphertext under different secret keys is converted to the ciphertext under the 

unified secret key. Their experimental results show that their solution requires less calcu-

lation cost than [33] but produces higher communication costs. 

Although these two works [33, 34] achieve better privacy requirements such as the 
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semantic security of databases and the hiding of data access patterns, they cannot be ap-

plied to large databases due to the high cost of computing and communication. In 2017, 

[35] proposed privacy-preserving data clustering in cloud computing based on an FHE 

PPC framework, which uses MapReduce to complete distributed computing to perform 

data clustering on a large number of virtual machines (VM). They use a fixed-width clus-

tering (FWC) algorithm to implement basic operations in the cloud. However, the cipher-

text comparison operation proposed in this work is not safe, because the semantically safe 

ciphertext cannot be compared directly. 

In 2017, [36] proposed CKKS FHE whose security depends on the difficulty of the 

Ring Learning with Errors (RLWE) problem. As shown in Fig. 2, data m is a vector on 

which you want to perform certain calculations. First, encode this vector into a data poly-

nomial p = m(X), and then use public key encryption to encrypt it into c. Through the 

calculations in f, the result of the ciphertext operation is expressed as c = f(c), and decryp-

tion with the key will produce p = f(p). Therefore, the decoding results in m = f(m). 

 
Fig. 2. CKKS flow chart [37]. 

 

The data appears in the form of a vector, not a polynomial, so the data vector  
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Our proposed method uses the CKKS FHE. Based on the general HE of RLWE, the 

plaintext space polynomial quotient ring is
[ ]

1
,q

N

Z X

X +
and the values involved in general use 

can only be represented by a natural number smaller than the prime q. The plaintext space 

of CKKS is the complex vector space 
2 .
N

 Through the mapping of these two spaces, the 

complex vector can be expressed in polynomial terms as the input to the encryption; con-

versely, the result of decryption can be reduced to the complex vector. The calculations 

provided by CKKS FHE are as follows [36]:  

 

KeyGeneration(N): Let s(X)q be the key polynomial, and the public key polynomial 

p(X) = (−a(X)  s(X) + e(X), a(X)) where a(X)q is a uniformly randomly selected poly-

nomial, and e(X)q is a small random polynomial. 
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Encoding(z): In order to encode the data vector  
2
N

z  into a data polynomial m(X), 

first apply  -1(z) to convert the data vector z from 

2
N

 expands to . Multiply it by the 

scaling factor  and then randomly round to  -1(z) to scale the vector appropriately. 

Since rounding may lose precision, scaling is performed to achieve a predefined precision. 

In order to obtain the data polynomial, use the canonical embedding  -1 and get m(X) =  -1 

( -1(z)). 

 

Decoding(m(X)): In order to decode the data polynomial m(X) into a data vector z 
2
N

z , first use canonical embedding  to obtain z =  -1(z). Then divide it by the 

scaling factor  to get -1 -1(z) -1(z). To obtain the data vector, use the  projection 

vector and get ( -1(z))= 2
N

. 

 

Encryption(m(X), p(X)): In order to obtain the ciphertext polynomial c(X) corresponding 

to the data polynomial m(X), apply RLWE encryption and obtain c(X) = (m(X), 0) + 

p(X) = (m(X) − a(X)  s(X) + e(X), a(X))(q)2 = (c0(X), c1(X)). 

 

Decryption(c(X), s(X)): In order to obtain the data polynomial corresponding to the ci-

phertext polynomial c(X)q, use the secret key polynomial s(X), apply RLWE to decrypt 

and get m(X)  c0(X) + c1(X)  s(X) = m(X) + e(X).   

 

Addition(c(X), c(X)): Two ciphertexts c(X) = (c0, c1) and c(X) = (c0, c1) add the ciphertext 

cadd(X) = (c0 + c0, c1 + c1).  

 

Multiplication(c(X), c(X): Two ciphertexts c(X) = (c0, c1) and c(X) = (c0, c1). Multiply to 

generate ciphertext cmult(X) = ((c0, c1)  c0, (c0, c1)  c1) = (c0c0, c0c1 + c0c0, c0c1) = (c0(X), 

c1(X), c2(X)) then the ciphertext is re-linearized and then the modulus is switched. 

 

Relinearization(cmult(X), r(X)): Re-linearization reduces the size of the ciphertext after 

multiplying two ciphertexts. Let cmult(X) = (c0(X), c1(X), c2(X)) be the result ciphertext after 

multiplying two ciphertexts. After re-linearization, the ciphertext crelin(X) = (c0(X), c1(X)) 

+ b-1  c2(X)  r(X) mod(q) is obtained. 

3. PROPOSED SCHEMES 

In this paper, two schemes are proposed. In the first scheme, we propose LiteSEOKC 

to improve the conventional SEOKC method by reducing its time-consuming calculations. 

Besides, the original data packing method of SEOKC is based on attributes, which is not 

suitable for high-dimensional data. In the second scheme, a new data packing method for 

outsourced K-means clustering (called RP-OKC) is proposed to improve the original data 

packing method of SEOKC. 

3.1 LiteSEOKC: Reduce Time-Consuming Calculation in SEOKC 

The system architecture of LiteSEOKC is shown in Fig. 3. DO packs the data into D 

by attributes, generates index values with random numbers, uses the index values to re-

trieve the corresponding data, encrypts them as initial clustering centers, and then sends 
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them to C1 for K-means clustering. Since DO encrypts the data and outsources it to C1 for 

k-means clustering, DO does not participate in the iterative process and receives the re-

turned results of clustering indices only after the whole clustering process is completed by 

the interactions between C1 and C2, so C1 and C2 do not know the expected clustering 

results when they interact. The actual clustering process is calculated by C1 and C2 inter-

actively. At last, C1 sends the clustering result of clustering indices only back to DO. In 

our first proposed LiteSEOKC, the detail modifications to reduce the time-consuming pro-

cess for SEOKC’s CAM (Computation of Assignment Matrix), CNEC (Computation of 

New Encrypted Centers) and CNES (Computation of New Encryption Sizes) are described 

as follows. 

 
Fig. 3. LiteSEOKC system diagram. 

 

SEOKC CAM is a security protocol executed by C2 to find the minimum distance 

values to current clustering centers. While C1 send the encrypted data to C2, SEOKC CAM 

will initialize a zero matrix (i.e., assignment matrix) at the beginning. The corresponding 

position on assignment matrix will be set to 1 when the minimum distance value and its 

index are found. The size of each cluster will be calculated by SEOKC CNES using this 

CAM assignment matrix, since the cluster sizes can be simply calculated by the sum of 1 

on each column.  

SEOKC CNEC is a security protocol to find the new cluster centers during the inter-

active K-means clustering process between non-colluding C1 and C2 using the cluster sizes 

obtained from SEOKC CNES. In CNES and CNEC of the original SEOKC, C1 will always 

send C2 with the public-key-encrypted CAM assignment matrix after randomly transpos-

ing matrix columns, C2 will then use the secret key to decrypt the incoming data. Finally, 
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C2 will send the calculated result back to C1 after public-key encryption, C1 will then trans-

pose back the result of public-key-encrypted assignment matrix to original column orders. 

In LiteSEOKC, we merge CNES and CNEC of SEOKC into our CNEC to find new 

cluster sizes and centers furnished by C1 only without bothering C2 for the iterative secret-

key decryptions and public-key encryptions. Since C1 doesn’t have the secret key to restore 

the plaintext from CAM assignment matrix and known encrypted data, LiteSEOKC can 

still achieve the privacy protection for DO’s outsourced K-means clustering data. Mean-

while, both of the chances of revealing the plaintext of clustering information to C2 and 

the FHE computations of private-key decryption and public-key encryption are cost-effec-

tively decreased. 

 
Fig. 4. RP-OKC system diagram. 

3.2 RP-OKC: Record Packing Outsourced K-means Clustering 

In the second proposed RP-OKC scheme of this paper, we consider the non-collusion 

architecture which is widely used in cloud computing for data protection [33, 34, 38-40]. 

This RP-OKC system architecture is shown in Fig. 4 where clouds C1 and C2 cannot col-

lude with each other and are semi-honest. Assume that DO hopes to safely perform data 

applications (such as K-means clustering) on the cloud server. By following the basic se-

curity protocol of FHE (i.e. CKKS), C2 first generates (pk, sk) as a pair of public key and 

secret key. The secret key sk is kept secret by C2. DO obtains the public key from C2. Then, 

DO uses the public key to homomorphically encrypt its private data according to the data 

record packing, and the encrypted data is outsourced to C1 for homomorphic data applica-

tion. When the termination conditions are met, the final results will return to DO for de-

cryption. 

Although CKKS FHE was shown to resolve the problem of data outsourcing privacy 
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security, there are some operators (such as encryption/decryption, homomorphic multip-

lication of ciphertext/plaintext, and rotation) still take high calculation cost. In this paper, 

we use an outsourced K-means clustering as an example to design new security protocols 

to reduce the usage of time-consuming calculation. Then, we propose a record packaging 

method, called RP-OKC, to improve the conventional attribute packaging method. The 

time sequence diagram of DO’s data encryption and outsourcing is shown in Fig. 5 (a).  

 
(a) 

 
(b) 

Fig. 5. (a) Timing diagram of DO encrypting the data and then outsourcing; (b) Timing diagram of 

K-means clustering process after receiving encrypted data. 
 

Step 1: DO calls the initial settings of C2 and stores the communication bridge with C2. C2 

uses TenSEALContext [41] to encrypt the managed object and generates an object con-

taining encryption keys and parameters. Remove the secret key from the object, and keep 

the public key to wait for DO to get it. The purpose is to keep the secret key secret. 
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Step 2: DO calls the initial settings of C1, tells C1 and C2 the communication bridge, and 

stores the communication bridge with C1.  

Step 3: DO obtains the public key through the bridge of communication with C2, C2 will 

pass the object with the secret key removed to DO, then DO will receive the object with 

only the public key. 

Step 4: DO uses objects with only public keys to encrypt data. After the data is encrypted, 

DO tells C1 to perform K-means clustering on these encrypted data. As shown in Fig. 5 

(b), C1 selects the cluster center through random numbers. Then, it checks the termination 

conditions of the clustering through. C2 decrypt the value passed in, do arithmetic to de-

termine whether to terminate, and return True or False. 

Step 4 (a): When C1 receives True, it will do clustering to calculate the center of each 

cluster. C2 will find the minimum value in the distance array passed from C1, and return 

the index value of the minimum value. After C1 receives the return of C2, it will update the 

cluster. Then, it checks the termination conditions of the clustering through C2. 

Step 4 (b): When C1 receives False, it will stop clustering and return the cluster that of the 

point DO. 

3.2.1 Data encryption 

DO first pre-processes the data and converts the data into tensor data type. The pro-

cessed data is called D. DO first obtains the public key from C2, and uses the public key to 

encrypt the data. The encryption method is shown in Algorithm 1. The input is processed 

data D. The output is the encrypted data D. Algorithm 1 is performed by DO. z is the 

number of data, and m is the attribute of the data. Then, Algorithm 1 saves all the attribute 

values in each piece of data as an array assignment to Pack. It assigns Pack to Da using 

CKKS FHE. All Da is saved as an array assignment to D. DO sends the encrypted data D 

to C1 for K-means clustering. 

 

Algorithm 1: Encrypt_Data (D)→D 

Input: database D 

Output: Encrypted database D  

Performed by: DO 

1: D  [  ]  

2: for a = 1 to z  

3:     Pack  [  ]   

4:     for s = 1 to m 

5:         Pack.append(ra[s]) 

6:     Da  Encrypt(Pack)  

7:     D.append(Da) 

3.2.2 Find the cluster of the point 

C2 performs the calculation of finding the cluster to which the point belongs. In Al-

gorithm 2, C2 first decrypts the received encrypted distance Dis, decrypts to plaintext array 

PDis, rounds the values in PDis, runs Min() to find the minimum distance MDecDis, finds 

the position IdxDis of MDecDis in PDis, and sends IdxDis back to C1.  
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Algorithm 2: Find_Cluster(Dis) → IdxDis   

Input: Encrypted distance Dis  

Output: Minimum index IdxDis  

Performed by: C2  

1: PDis  [  ] 

2: for j = 1 to k  

3:     PDis.append(Decrypt(Disaj))  

4: PDis  Roung(PDis, decimals = 4) 

5: MDecDis  Min(PDis) 

6: IdxDis  PDis.index(MDecDis)    

3.2.3 Calculate the distance between the point and the center of each cluster 

Algorithm 3 is performed by C1, takes the encrypted data D, the cluster center Center, 

and the belonging cluster Cluster as input. It outputs the updated cluster Cluster and the 

encrypted cluster distance DisCluster. C1 first calculates the Euclid distance (Steps 1-11). 

When the length of the calculated distance array Dis is equal to k, it means that the data is 

not the cluster center. The calculated distance array Dis is passed to C2, and the index value 

IdxDis of the minimum value in the distance array Dis is obtained through C2. C1 obtains 

the index value IdxDis, uses the index value to find the encrypted minimum distance 

MEncDis, stores it in the encrypted cluster distance DisCluster, and updates the cluster to 

which it belongs (Steps 12-16). If the data is the cluster center, store zero in the encrypted 

cluster distance DisCluster (Steps 17-18). 

 

Algorithm 3: Square_Distance (D, Center, Cluster)→Cluster, DisCluster    

Input: Encrypted database D, cluster centers Center and Belongs to the cluster Cluster  

Output: Belongs to the cluster Cluster and Encrypted cluster distance DisCluster 

Performed by: C1   

1: DisCluster  [  ]  

2: for a = 1 to z 

3:     Dis  [  ] 

4:     for j = 1 to k  

5:         if Da  Centerj  

6:               [  ] 

7:             for s = 1 to m   

8:                  s  (Das⊝Centerj[s])2  

9:             .appned(s)    

10:            Disaj  Sum()   

11:            Dis.appned(Disaj)  

12:     if len(Dis) = k 

13:        Get the minimum index IdxDis through C2 /* from Algorithm 2 */ 

14:        MEncDis  Dis[IdxDis]  

15:        DisCluster.append(MEncDis) 

16:        Cluster[a] = IdxDis + 1 

17:    else 

18:      DisCluster.append(0) 
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3.2.4 Update cluster center 

Algorithm 4 is executed by C1, takes the encrypted data D, the Cluster to which it 

belongs, and the encrypted cluster distance DisCluster as input, and outputs the updated 

cluster center NewCenter and the sum of squared errors (SSE) within the new clusters 

NewClusterSize. The initial value setting (Steps 1-4), the method of updating the cluster 

center is to add up all the points of the cluster and divide by the number of the cluster 

(Steps 5-18). SSE within the new clusters NewClusterSize is to add the encrypted cluster 

distance DisCluster (Steps 19-21). 

 

Algorithm 4: Update_Cluster (D, Cluster, DisCluster) → NewCenter, NewCluster-

Size 

Input: Encrypted database D, Belongs to the cluster Cluster and Encrypted cluster 

distance DisCluster  

Output: Updated cluster center NewCenter and SSE within the new clusters New-

ClusterSize 

Performed by: C1 

1: TmpNewCenter  [  ] 

2: for j = 1 to k   

3:     TmpNewCenter.update({j: 0})   

4: Count  [0]k 

5: for a = 1 to z   

6:     if Cluster[a] in TmpNewCenter 

7:         Temp  TmpNewCenter.get(Cluster[a])  

8:          Count[Cluster[a] − 1] = Count[Cluster[a] − 1] + 1  

9:         for s = 1 to m   

10:             Temp = Temp  Da   

11:         TmpNewCenter.update({Cluster[a]: Temp}) 

12: NewCenter  [  ] 

13: for j = 1 to k 

14:    Temp  TmpNewCenter.get(j)   

15:    TempCount  1  Count[j − 1]   

16:   for s = 1 to m  

17:        Temp  Temp ̃ TempCount      

18:   NewCenter.append(Temp) 

19: NewClusterSize  0 

20: for a = 1 to z  

21:    NewClusterSize NewClusterSizeDisCluster[a] 

3.2.5 Check termination conditions 

Algorithm 5 is executed by C2, which takes SSE within the new clusters NewCluster-

Size and SSE within the old clusters OldClusterSize as input, and outputs the termination 

condition Flag. If the difference between SSE within the new and old clusters is less than 

1, set flag to False. Otherwise, set to True. 
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Algorithm 5: Termination(NewClusterSize, OldClusterSize)→Flag 

Input: SSE within the new clusters NewClusterSize and old cluster size OldClusterSize  

Output: Termination condition Flg  

Performed by: C2  

1: if abs(Decrypt(NewClusterSize) − Decrypt(OldClusterSize))  1     

2:     Flag  False   

3: else 

4:     Flag  True   

3.2.6 The methods applied in RP-OKC 

Algorithm 6 for furnishing RP-OKC is executed by C1, taking the encrypted data D 

and the number of clusters k needed to be divided as input, and outputs the last clustering 

result. First randomly generate k integers CenterIndex and takes out the corresponding data 

in the data set as the cluster center Center. Initial value setting (Steps 2-3), update the 

cluster according to Center (Steps 4-6), set the initial value of the new cluster SSE and the 

old cluster SSE. According to the proposed termination condition in Algorithm 5, check 

whether to continue clustering. After confirming to continue clustering, use the calculation 

distance and encrypted cluster distance (in Algorithm 3) to obtain the updated cluster Clus-

ter and the encrypted cluster from the distance DisCluster. Through Algorithm 4, the up-

dated cluster center NewCenter and SSE within the new clusters NewClusterSize are ob-

tained. The updated cluster center is set as the cluster center, and check whether to continue 

clustering (Algorithm 5). After receiving the stop clustering, the last cluster to belong to is 

passed to DO.  

 

Algorithm 6: kMeans(D, k)→Cluster 

Input: Encrypted database D and Number of cluster k  

Output: Belongs to the cluster Cluster 

Performed by: C1 

1: Randomly generate k integer numbers CenterIndex and take out the corresponding 

data from the dataset as the center of the cluster Center  

2: Cluster  [None]  z 

3: TempK  0    

4: for j = 1 to k  

5:     Cluster[CenterIndex[j]] = TempK + 1 

6:     TempK  TempK + 1 

7: NewClusterSize  100   

8: OldClusterSize  0   

9: Flag  Termination(NewClusterSize, OldClusterSize) 

10:While Flag  

11:    OldClusterSize  NewClusterSize 

12:    Cluster, DisClusterSquare_Distance(D, Center, Cluster) 

13:NewCenter, NewClusterSizeUpdate_Cluster(D, Cluster, DisCluster) 

14:    CenterNewCenter  

15:    FlagTermination(NewClusterSize, OldClusterSize) 

16:    if Flag = False  

17:        Send Cluster to DO 



OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 537 

 

Since clustering is to group all data into similar groups together, each data can only 

belong to one group, and each group is called a cluster. Assume DO has a dataset D = {r1, 

r2, …, rz}, with z pieces of data, and each data record ra(a[z]) consists of m attributes 

denoted as ra[s] for s[m]. Apply its data to traditional K-means clustering [42], the algo-

rithm divides the dataset D into k clusters {cluster1, cluster2, …, clusterk}, and it is hoped 

that the inter-cluster similarity of the clustering results is low and intra-cluster similarity is 

high. Using Euclidean distance as a similarity measure, there are four main stages: (1) 

Initialization; (2) Find the cluster of the point; (3) Update cluster center; and (4) Termina-

tion. 

Stage (1): in order to initialize k clusters cluster1, cluster2, …, clusterk, DO selects k index 

values by random numbers and sets the data corresponding to the index values as cluster 

centers 1, 1, k.  

Stage (2): The K-means clustering algorithm calculates the Euclidean distances between 

each recorda and j for a[z] and j[k], which is given in Eq. (1) as follows 

2
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where j[s] denotes the sth attribute of j. Based on the Euclidean distance, K-means clus-

tering algorithm determines the cluster center closest to ra (such as j) and assigns ra to a 

new cluster clusterj, where j[k].  

Stage (3): The K-means clustering algorithm calculates the mean values of all data records 

in the corresponding cluster clusterj, which is the new cluster center 1, 2, …, k. Let 

clusterj = {r1, …, r|clusterj|
} with a cluster size of |clusterj|, then the sth attribute of j can be 

expressed as Eq. (2) 
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Stage (4): The K-means clustering algorithm uses the within-cluster SSE, as in Eq. (3), to 

determine SSE within the new and old clusters determine whether to terminate the cluster-

ing process. If the difference between SSE within the new and old clusters is less than 1, 

the K-means clustering algorithm stops and returns the final clustering result. Otherwise, 

the algorithm uses the new cluster center as input to continue with the next iteration (i.e. 

Stage (2)). 

2
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

There are four parts in this section to demonstrate the experimental performance for 

proposed methods. In the first part, the calculation cost of SEOKC and LiteSEOKC are 

compared. In the second part, analysis for various calculation costs based on record pack-

ing method proposed in this paper is through experiments, to establish a table of calculation 

costs and use a proportional method to evaluate computing performance. In the third part, 
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the accuracy of RP-OKC was tested. In the last part, the calculation cost of SEOKC, 

LiteSEOKC and RP-OKC are all analyzed and compared. Our experiments were per-

formed on a Windows system with an Intel Core i7-7700HQ 2.80 GHz CPU and 24 GB of 

RAM. The TenSEAL library [41] was used to implement the proposed methods of this 

paper, the degree of the CKKS modulus polynomial was 8192, and four prime numbers 

with sizes of 60, 40, 40 and 60 bits were created. 

4.1 Comparison of Calculation Cost Between SEOKC and LiteSEOKC 

We use a synthetic database containing 1000 records with 5, 10 and 15 attributes, gen-

erated randomly in the floating point domain among [0, 1000]. These data were clustered 

into 3 clusters. We compare the calculation cost of SEOKC with LiteSEOKC by compu-

ting one iteration of K-means clustering. The experimental results are shown in the Fig. 6. 

 
Fig. 6. Comparison of calculation cost between SEOKC and LiteSEOKC. 

4.2 Analysis of Various Calculation Costs Based on Record Packing 

In this paper, we analyze various calculation costs through experiments. By randomly 

generating 10 integer random numbers in the range of 0~1000 as attributes, 10,000 records 

are generated. Use these 10,000 pieces of data to analyze the calculation cost of encryption, 

decryption, additive/subtractive/multiplicative homomorphic on ciphertext, and addi-

tive/multiplicative homomorphic on ciphertext-plaintext, and general addition, subtraction, 

multiplication and division, and rotation. Each calculation method is executed 10 times 

and then the average value is taken. At the same time, various calculation costs of one 

attribute are also calculated. The calculation cost statistics results after execution are shown 

in Table 1, time unit for seconds, it can be seen that the calculation cost of 10 attributes 

and 1 attribute is almost due to parallel processing. Calculate the proportion of each calcu-

lation cost with 10,000 pieces of data and 1 attribute, set X with the time of general division 

as the denominator, do the average calculation cost (ACC), and round the result of the 

calculation to the first place of the integer. The calculated result is as follows in Table 1. 
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Table 1. Calculate cost statistics (The unit is second). 

Calculations 
10,000 records  

with 10 attributes 

10,000 records  

with1 attribute 

encryption 58.046 56.851 

decryption 14.513 14.509 

additive homomorphism on ciphertext 1.223 1.221 

subtractive homomorphism on ciphertext 1.218 1.215 

multiplicative homomorphism on ciphertext 42.659 42.657 

additive homomorphism on ciphertext-plaintext 8.756 8.535 

multiplicative homomorphism  

on ciphertext-plaintext 
17.180 17.013 

General addition 0.054 0.053 

General subtraction 0.050 0.050 

General multiplication 0.050 0.047 

General division 0.048 0.047 

Rotation 14.513 14.509 

 

Table 2. Percentage of calculation cost. 

Calculations 
10,000 records  

with 1 attribute 

Proportion (round 

off to first digit of 

integer) 

encryption 56.851 1210X 

decryption 14.509 309X 

additive homomorphism on ciphertext 1.221 26X 

subtractive homomorphism on ciphertext 1.215 26X 

multiplicative homomorphism on ciphertext 42.657 908X 

additive homomorphism on ciphertext-plaintext 8.535 182X 

multiplicative homomorphism  

on ciphertext-plaintext 
17.013 362X 

General addition 0.053 1X 

General subtraction 0.050 1X 

General multiplication 0.047 1X 

General division 0.047 1X 

Rotation 14.509 309X 

 

We use the calculation cost in Table 2 to get the percentage of each calculation cost 

in RP-OKC as shown in Table 3. The graph is drawn as shown in Fig. 7. It can be seen that 

the more time-consuming calculations are encryption, multiplicative homomorphism, ci-

phertext-plaintext multiplicative homomorphism, decryption and rotation. 

The calculation cost of RP-OKC was estimated from the experimentally obtained cal-

culation cost ratio table in Section 4.2. First, count all the calculations used in RP-OKC, 

as shown in the following Table 4, where z is the number of data items, k is the number of 

clusters, m is the number of attributes, c is a constant, and  is repeated execution. 

Because the experimental results show that the calculation results of 1 attribute and 

10 attributes are similar, it is assumed that 10,000 data are divided into 3 clusters, and each 

data has 1 attribute, z = 10000, k = 3, m = 1, c = 1. According to the statistical results in 

Table 4. 
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Table 3. Percentage of each calculation cost. 

Calculations 
Proportion (round off to the 

first digit of the integer) 

encryption 0.1210 

decryption 0.0309 

additive homomorphism on ciphertext 0.0026 

subtractive homomorphism on ciphertext 0.0026 

multiplicative homomorphism on ciphertext 0.0908 

additive homomorphism on ciphertext-plaintext 0.0182 

multiplicative homomorphism on ciphertext-plaintext 0.0362 

General addition 0.0001 

General subtraction 0.0001 

General multiplication 0.0001 

General division 0.0001 

Rotation 0.0309 

 
Fig. 7. Scale diagram of each calculation cost. 

 

Table 4. Count all the calculations used in RP-OKC. 

Calculations Applied parameters Ratio 

Encryption zm 1210.0000 

Decryption zk + c* 927.0309 

Additive homomorphism zkm + zm + km + z 130.0078 

Subtractive homomorphism zkm 78.0000 

Multiplicative homomorphism 3zkm 8172.0000 

Ciphertext-plaintext additive homomorphism 0 0.0000 

Ciphertext-plaintext multiplicative homomorphism km 0.1086 

General addition 2z + k 2.0003 

General subtraction c* 0.0001 

General division k 0.0003 

Rotation 0 0.0000 

 



OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 541 

4.3 RP-OKC Security Analysis and Accuracy Test 

Based on the security analysis of SEOKC [26], security analysis to verify the security 

of our proposed RP-OKC is briefly illustrated as follows: 

 

Security of Algorithm 1 Encrypt_Data: 

This security can be directly achieved from the applied efficient CKKS encryption. 

Since CKKS-encrypted data records are only submitted to C1 without colluding with C2, 

private data are protected from these two clouds in semantic security. 

 

Security of Algorithm 2 Find_Cluster: 

Theorem 1. The proposed protocol of “Find the cluster of the point” is secure against the 

semi-honest C2 as long as the CKKS encryption is semantically secure and the non-collu-

sion assumption between C1 and C2 is satisfied. 

Proof: To prove the security of “Find the cluster of the point protocol” under the semi-

honest model, we need to demonstrate that the simulated image of Algorithm 2 Find_ 

Cluster is computationally indistinguishable from its actual execution image. An execu-

tion image generally contains the exchanged messages and the results computed from these 

messages. According to Algorithm 2 Find_Cluster, we have the execution image of C2 

denoted as C2(Find_Cluster) = {Disaj, IdxDisaj} for a, j[z], [k], where Disaj are CKKS 

ciphertexts. Let the simulated image of C2 be C
S

2(Find_Cluster) = {a
1
j, a

1
j}, where a

1
j(a, 

j[z], [k]) are randomly generated from the ciphertext space of CKKS cryptosystem. Since 

the CKKS encryption is semantically secure, it implies that Disaj are computationally in-

distinguishable from a
1
j. Since we randomly initialize the cluster centers in our RP-OKC 

method, the real assignment values IdxDisaj are randomly distributed, which are computa-

tionally indistinguishable from a
1
j(a, j[z], [k]). However, the information leaked to C2 by 

the plaintext distance PDisj for j[k] in Algorithm 2 Find_Cluster. Since PDisj is the result 

of the calculation of two raw data records containing noise. Although C2 can know the 

ratios of difference between plaintext distance PDis𝑗. But these ratios contain privacy in-

formation and are not sufficient for inferring data records. Therefore, the leakage of infor-

mation has little impact on the security of the Find the cluster of the point protocol. Based 

on these analyses, C2(Find_Cluster) is computationally indistinguishable from C
S

2(Find_ 

Cluster) based on Theorem 1, which implies that C2 cannot learn any private information 

during the execution of Find the cluster of the point. 

 

Security of Algorithm 3 Square_Distance:  

Theorem 2: The proposed Algorithm 3 for protocol of “Calculating the distance between 

the point and the center of each cluster” is secure against the semi-honest C1 as long as the 

CKKS encryption is semantically secure and the non-collusion assumption between C1 and 

C2 is satisfied. 

Proof: To prove the security of “Calculate the distance between the point and the center 

of each cluster” under the semi-honest model, we need to demonstrate that the simulated 

image of Algorithm 3 Square_Distance is computationally indistinguishable from its ac-

tual execution image. According to Algorithm 3, we have the execution image of C1 de-

noted as C1(Square_Distance) = {Disaj} for a, j[z], [k], where Disaj are CKKS cipher-

texts. Let the simulated image of C1 be C
S

1(Square_Distance) = {a
2
j}, where a

2
j (a, j[z], 
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[k]) are randomly generated from the ciphertext space of CKKS cryptosystem. Since the 

CKKS encryption is semantically secure, it implies that Disaj are computationally indistin-

guishable from a
2
j. Therefore, C1(Square_Distance) is computationally indistinguishable 

from C
S

1(Square_Distance) based on Theorem 2. DisClustera for a[z] are semantically 

secure CKKS ciphertexts. Therefore, by using the same analysis method in Theorem 2. 

Since Dis is an array of semantically safe encrypted distances, C1 cannot compute the cor-

respondence between data records and clusters Cluster. This means that C1 cannot learn 

any private information during the execution of Calculate the distance between the point 

and the center of each cluster. 

 

Security of Algorithm 4 Update_Cluster:  

To prove the security of “Update cluster center” under the semi-honest model, we 

need to demonstrate that the simulated image of Algorithm 4 Update_Cluster is compu-

tationally indistinguishable from its actual execution image. According to Algorithm 4 

Update_Cluster, we have the execution image of C1 denoted as C1(Update_Cluster) = 

{NewCenterj[s], NewClusterSize} for j, s[k], [m], where NewCenterj[s], NewClusterSize 

are CKKS ciphertexts. Therefore, by using the same analysis method in Theorem 2. This 

means that C1 cannot learn any private information during the execution of Update cluster 

center. 

 

Security of Algorithm 5 Termination: 

According to Algorithm 5 of “Check termination conditions”, we have the execution 

image of C2 denoted as 2(Termination) = {NewClusterSize, OldClusterSize}. Except that 

NewClusterSize, OldClusterSize are set to the initial value of plaintext at the beginning, in 

other cases, NewClusterSize, OldClusterSize are CKKS ciphertexts. Therefore, by using 

the same analysis method in Theorem 1. This means that C2 cannot learn any private in-

formation during the execution of Check of termination conditions. 

 

Security of Algorithm 6 kMeans:  

As shown in Algorithm kMeans, the furnished RP-OKC method is a combination of 

the proposed 5 security protocols mentioned above, we have already proved the security 

for all these algorithms. Since the two clouds cannot collude with each other, C1 and C2 

cannot figure out the assignments between data records and clusters. Therefore, data access 

patterns are hidden from both of them. Although the minimum distance between each point 

and k clusters is revealed to C2 in the Find the cluster of the point protocol, the data cannot 

be understood from it because C2 does not know the number of attributes of the data and 

the value of k clusters.  

Furthermore, our experiments conducted to compare the results of one iteration of 

general K-means clustering with proposed RP-OKC. The approach is to use customer data 

on Kaggle [43]. The attributes Annual_Income_(k$) and Spending_Score are selected and 

all duplicates in them are packaged according to the data records, and the packaged data 

are encrypted and passed to C1. C1 receives these data and generates a fixed random num-

ber with a random seed. This random number seed is executed 1000 times from 0 to 999. 

If the decryption result is rounded to the first to eighth decimal place in Algorithm 2 

Find_Cluster. For these eight test cases, the result of one iteration in these 1000 execu-

tions will be the same as the general K-means clustering. 
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4.4 Analysis and Comparison of Calculation Cost Between SEOKC, LiteSEOKC and 

RP-OKC 

Encryption is the encoding of data to protect the privacy of the data so that it cannot 

be accessed by unauthorized parties. Unencrypted means that the data itself, without any 

protection, can be easily viewed and accessed. The difference between encrypted and un-

encrypted data is shown in Table 5 below: 

 

Table 5. Difference between clustering encrypted/unencrypted data. 
 Encrypted Unencrypted 

Definition Encode data Original data 

Called Ciphertext Plaintext 

Security Secure Insecure 

Data Access Only authorized party can access data Anyone can access data 

 

Experiments are conducted to compare and evaluate the performance of clustering 

between encrypted and unencrypted data. This experimental method is to fix the number 

of data records to 500 and the number of attributes as 100, 200, 500 and 1000, and to check 

the calculation cost of the three methods respectively. It can be seen that the calculation 

cost of this RP-OKC is lower than that of LiteSEOKC after the number of attributes is 200. 

The results are shown in Fig. 8, then the RP-OKC method is suitable for use in high-di-

mensional data. 

 
Fig. 8. Comparison of calculation cost between SEOKC, LiteSEOKC, RP-OKC and general K-

means (k = 3, n = 500). 

 

 

In Fig. 8, the RP-OKC method is suitable for attribute number in greater than 200. 

The following experimental method is to fix the data record. In this experiment, we fix the 

attribute number to 500, the number of recorded data is 100 to 500, with interval 100. To 
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observe the calculation costs of the three methods respectively, the result is shown in Fig. 

9. In the method with encryption, it can be seen that the calculation cost of RP-OKC is 

lower than SEOKC and LiteSEOKC. 

The computational cost of clustering unencrypted data is the lowest because both en-

crypting and computing encrypted data are more computationally expensive, but clustering 

encrypted data is a way to protect data security. The above two experiments show that RP-

OKC is suitable for high-dimensional data among the methods of clustering encrypted data. 

 

 
Fig. 9. Comparison of calculation cost between SEOKC, LiteSEOKC, RP-OKC and general K-

means (k = 3, n = 500). 

5. CONCLUSIONS AND FUTURE WORK 

After finding the CKKS FHE operations of encryption, multiplicative homomorphism, 

ciphertext-plaintext multiplicative homomorphism, decryption and rotation operations are 

time-consuming calculation, we first propose LiteSEOKC to improve the SEOKC effi-

ciency by slimming CKKS FHE operations. In order to meet more needs of diversified-

attribute data for users in secure and efficient outsourced K-means clustering, we further 

propose a new security protocol called RP-OKC with a new diversified-attribute data-rec-

ord packing method for more secure and efficient outsourced K-means clustering. There 

are 5 security protocols in the proposed RP-OKC scheme, including data encryption, find 

the cluster of the point, calculate the distance between the point and the center of each 

cluster, update cluster center, and check termination conditions. It also uses these 5 security 

protocols to achieve privacy for outsourcing encryption database in MLaaS. The calcula-

tion cost of SEOKC and LiteSEOKC for large number of data records were conducted in 

our experiments. The performance results show that LiteSEOKC is more efficient than 

original SEOKC and more suitable for applications using large database. The further per-

formance results of computational costs of SEOKC, LiteSEOKC and RP-OKC with high-



OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 545 

dimensional data demonstrate that the RP-OKC method is more applicable to high-dimen-

sional database than both LiteSEOKC and original SEOKC. In this paper, more effective 

privacy protection is proposed for outsourcing encryption database in MLaaS using K-

means clustering as an example. 

In the near future, we hope to meet the needs of more users and various applications, 

such as using different ML and deep learning for calculations. In addition, the HE technol-

ogy built on the cloud platform is used for calculations. This results in users not knowing 

the accuracy of the calculation results. We hope to provide verifiable methods for evaluat-

ing the accuracy of the calculation results for their services in the future. 

REFERENCES 

1. “Statista,” https://www.statista.com/, 2021.  

2. “Snowflake,” https://www.snowflake.com/data-marketplace/, 2021.   

3. “Datarade,” https://datarade.ai/, 2021.   

4. “Alibaba cloud machine learning platform for AI,” https://www.alibabacloud.com/tc 

/product/machine-learning, 2021.  

5. “AWS machine learning,” https://aws.amazon.com/tw/machine-learning/, 2021. 

6. “Microsoft Azure AI,” https://azure.microsoft.com/zh-tw/overview/ai-platform/, 2021.  

7. “Google cloud AI,” https://cloud.google.com/products/ai, 2021.   

8. L. Brandeis and S. Warren, “The right to privacy,” Harvard Law Review, Vol. 4, 1890, 

pp. 193-220.   

9. R. H. Coase, “The problem of social cost,” Classic Papers in Natural Resource Eco-

nomics, Springer, 1960, pp. 87-137.   

10. A. F. Westin, “Privacy and freedom,” Washington and Lee Law Review, Vol. 25, 1968, 

p. 166.  

11. R. Gavison, “Privacy and the limits of law,” The Yale Law Journal, Vol. 89, 1980, pp. 

421-471.    

12. E. van den Haag, “On privacy,” Privacy & Personality, Routledge, 2017, pp. 149-168.    

13. X. Yi, R. Paulet, and E. Bertino, “Homomorphic encryption,” Homomorphic Encryp-

tion and Applications, Springer, 2014, pp. 27-46.  

14. Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-LWE 

and security for key dependent messages,” in Proceedings of Annual Cryptology Con-

ference, 2011, pp. 505-524.  

15. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic en-

cryption without bootstrapping,” ACM Transactions on Computation Theory, Vol. 6, 

2014, pp. 1-36.   

16. A. Acar et al., “A survey on homomorphic encryption schemes: Theory and imple-

mentation,” ACM Computing Surveys, Vol. 51, 2018, pp. 1-35.    

17. J. Kim, S. Kim, and J. H. Seo, “A new scale-invariant homomorphic encryption 

scheme,” Information Sciences, Vol. 422, 2018, pp. 177-187.    

18. K. C. Laudon, Dossier Society: Value Choices in the Design of National Information 

Systems, Columbia University Press, 1986.   

19. Z. Brakerski, “Fully homomorphic encryption without modulus switching from clas-

sical GapSVP,” in Proceedings of Annual Cryptology Conference, 2012, pp. 868-886.   

https://www.alibabacloud.com/tc%20/product/machine-learning
https://www.alibabacloud.com/tc%20/product/machine-learning


RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG 

 

546 

 

20. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” 

IACR Cryptology ePrint Archive, Vol. 2012, 2012, p. 144.  

21. J. H. Cheon et al., “Homomorphic encryption for arithmetic of approximate numbers,” 

in Proceedings of International Conference on the Theory and Application of Cryp-

tology and Information Security, 2017, pp. 409-437.   

22. I. Chillotti et al., “Faster fully homomorphic encryption: Bootstrapping in less than 

0.1 seconds,” in Proceedings of International Conference on Theory and Application 

of Cryptology and Information Security, 2016, pp. 3-33.    

23. I. Chillotti et al., “Faster packed homomorphic operations and efficient circuit boot-

strapping for TFHE,” in Proceedings of International Conference on the Theory and 

Application of Cryptology and Information Security, 2017, pp. 377-408.    

24. I. Chillotti et al., “TFHE: fast fully homomorphic encryption over the torus,” Journal 

of Cryptology, Vol. 33, 2020, pp. 34-91.    

25. P.-E. Clet, O. Stan, and M. Zuber, “BFV, CKKS, TFHE: Which one is the best for a 

secure neural network evaluation in the cloud?” in Proceedings of International Con-

ference on Applied Cryptography and Network Security, 2021, pp. 279-300.    

26. W. Wu et al., “Secure and efficient outsourced K-means clustering using fully homo-

morphic encryption with ciphertext packing technique,” IEEE Transactions on Know-

ledge and Data Engineering, Vol. --, 2020, pp. --.   

27. D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced K-means clustering,” in Pro-

ceedings of the 9th ACM Symposium on Information, Computer and Communications 

Security, 2014, pp. 123-134.   

28. N. Almutairi, F. Coenen, and K. Dures, “K-means clustering using homomorphic en-

cryption and an updatable distance matrix: secure third party data clustering with lim-

ited data owner interaction,” in Proceedings of International Conference on Big Data 

Analytics and Knowledge Discovery, 2017, pp. 274-285.   

29. Y. Wang, “Notes on two fully homomorphic encryption schemes without bootstrap-

ping,” IACR Cryptology ePrint Archive, Vol. 2015, 2015, p. 519.  

30. Y. Huang, Q. Lu, and Y. Xiong, “Collaborative outsourced data mining for secure 

cloud computing,” Journal of Networks, Vol. 9, 2014, pp. 2655.   

31. W. K. Wong et al., “Secure kNN computation on encrypted databases,” in Proceed-

ings of ACM SIGMOD International Conference on Management of Data, 2009, pp. 

139-152. 

32. K.-P. Lin, “Privacy-preserving kernel K-means clustering outsourcing with random 

transformation,” Knowledge and Information Systems, Vol. 49, 2016, pp. 885-908.   

33. F.-Y. Rao et al., “Privacy-preserving and outsourced multi-user K-means clustering,” 

in Proceedings of IEEE Conference on Collaboration and Internet Computing, 2015, 

pp. 80-89.  

34. H. Rong et al., “Privacy-preserving-means clustering under multiowner setting in dis-

tributed cloud environments,” Security and Communication Networks, Vol. 2017, 

2017, , Article ID 3910126. 

35. A. Alabdulatif et al., “Privacy-preserving data clustering in cloud computing based on 

fully homomorphic encryption,” in Proceedings of the 21st Pacific Asia Conference 

on Information Systems, 2017, No. 301373083. 

36. S. Panda, “Principal component analysis using CKKS homomorphic scheme,” in Pro-

ceedings of the 5th International Symposium on Cyber Security Cryptography and 



OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 547 

Machine Learning, 2021, pp. 52-70.  

37. J. Liu et al., “Secure KNN classification scheme based on homomorphic encryption 

for cyberspace,” Security and Communication Networks, Vol. 2021, 2021, Article ID 

8759922. 

38. B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “K-nearest neighbor classification 

over semantically secure encrypted relational data,” IEEE Transactions on Knowledge 

and Data Engineering, Vol. 27, 2014, pp. 1261-1273.   

39. H. Rong et al., “Privacy-preserving k-nearest neighbor computation in multiple cloud 

environments,” IEEE Access, Vol. 4, 2016, pp. 9589-9603.   

40. W. Wu et al., “Efficient k-nearest neighbor classification over semantically secure hy-

brid encrypted cloud database,” IEEE Access: Practical Innovations, Open Solutions, 

Vol. 6, 2018, pp. 41771-41784. 

41. “TenSEAL,” https://github.com/OpenMined/TenSEAL. 

42. S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information 

Theory, Vol. 28, 1982, pp. 129-137.   

43. “Kaggle customer data,” https://www.kaggle.com/shrutimechlearn/customer-data/ver-

sion/1.  

 

 
Ray-I Chang received his Ph.D. degree in Electrical Engineer-

ing and Computer Science from National Chiao Tung University in 

1996, where he was a member of Operating Systems Laboratory. 

Then, he joined Computer Systems and Communications Labora-

tory in Institute of Information Science, Academia Sinica, to de-

velop video-on-demand servers and digital library systems. In 2002, 

he joined the Department of Information Management, National 

Central University. Now, he is a Professor in the Department of En-

gineering Science and Ocean Engineering, National Taiwan Univer-

sity. Dr. Chang has published over 300 papers, including papers published in IEEE Trans-

actions on Multimedia, IEEE Transactions on Broadcasting, and IEEE Transactions Neural 

Networks. His current research interests include multimedia networking and data mining. 

Dr. Chang is a member of IEEE, CERP and IICM. 

 

 

Yen-Ting Chang received B.S. degree in Computer Science 

and Information Engineering from Ming Chuan University in 2020. 

Now, she is a master student at the department of Engineering Sci-

ence and Ocean Engineering, National Taiwan University. Her main 

research interests include privacy protection and machine learning. 

 

 

 

 

https://github.com/OpenMined/TenSEAL


RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG 

 

548 

 

Chia-Hui Wang received BS degree in Computer Science 

from Tamkang University in 1986 and received MS degree in Com-

puter Science from New Jersey Institute of Technology, USA, in 

1991. Then, he received Ph.D. degree in Computer Science and In-

formation Engineering from National Taiwan University in 2002. 

His industry experience included four years as a software developer 

in high-tech industry. Now, he is an Associate Professor of Depart-

ment of Computer Science and Information Engineering, Ming 

Chuan University. His research interests include multimedia com-

munications, multimedia security and embedded systems. He is a member of IEEE and 

ACM. 

 

 


