
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 525-548 (2023)

DOI: 10.6688/JISE.202305_39(3).0005

525

Outsourced K-means Clustering for High-Dimensional

Data Analysis Based on Homomorphic Encryption*

RAY-I CHANG1, YEN-TING CHANG1 AND CHIA-HUI WANG2,+

1Department of Engineering Science and Ocean Engineering

National Taiwan University

Taipei, 106 Taiwan

E-mail: {rayichang; r09525057}@ntu.edu.tw
2Department of Computer Science and Information Engineering

Ming Chuan University

Taoyuan City, 333 Taiwan

E-mail: wangch@mail.mcu.edu.tw

In the machine learning (ML) era, people are paying more and more attention to the

economic value of data in improving the efficiency of analysis, simulation, calculation,

forecasting, and decision-making. It results the rise of data markets. As ML requires high-

complexity calculations, individuals and companies tend to use cloud computing with data

markets. However, this platform is known to have data security issues in privacy protection.

The most modern method for privacy protection in cloud computing is fully homomorphic

encryption (FHE). However, the high calculation cost makes conventional FHE impracti-

cal for real-world applications. Although many researchers use CKKS FHE to resolve this

problem, our experiments show that the calculation cost of some operators in CKKS FHE

are still very high. In this paper, we propose new security protocols to design a new data

packing method and to reduce the usage of time-consuming calculations. Then, an out-

sourced K-means clustering method based on these new security protocols is proposed for

demonstration and evaluation. Experiments show that our method is faster than SEOKC.

It has shown good performance in high-dimensional data analysis with our new data pack-

ing method.

Keywords: privacy protection, K-means clustering, cloud computing, high-dimensional

data analysis, fully homomorphic encryption

1. INTRODUCTION

In the machine learning (ML) era, people pay more and more attention to the eco-

nomic value of data in improving the efficiency of analysis, simulation, forecasting, and

decision-making. It results the rise of data markets, such as Statista [1], Snowflake [2],

Datarade [3]. ML often requires processing with high computational complexity. ML as a

Service (MLaaS) has become popular because of its cost-benefit advantages. Many cloud

computing companies, e.g., Alibaba [4], AWS [5], Microsoft [6], and Google [7], provide

users with ML platforms to use the high-performance computing resources. However,

there is a challenge of MLaaS to generate ML models on the cloud under the protection of

privacy and confidentiality of user data. The security problem of private data has become

an important research topic to train ML models. In data applications, privacy is defined as

Received January 8, 2022; revised February 28, 2022; accepted April 21, 2022.

Communicated by Po-Wen Chi.
+ Corresponding author.
* This research was partially funded by Ministry of Science and Technology, Taiwan, grant number 110-2410-

H-002-094-MY2 and 110-2221-E-130-001.

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

526

people’s right to control the use of their personal information, exclude others from viewing,

using, or intruding, including the collection, processing, storage, and use of personal in-

formation [8-12]. Data privacy and confidentiality are now considered indispensable.

Companies, organizations, and other institutions must securely handle users’ personal in-

formation. While providing user services, they must also pay attention to confidentiality

and privacy.

To protect data privacy in MLaaS, a modern method is to use Homomorphic Encryp-

tion (HE). HE is a form of encryption which allows specific types of calculations to be

carried out on ciphertexts and generate an encrypted result which, when decrypted, mat-

ches the result of operations performed on the plaintexts [13]. Conventional MLaaS up-

loads the data x to the cloud for calculation f and then send the calculated result f(x) back

(as shown in Fig. 1 (a)). There may have a data privacy problem if the uploaded data is not

properly deleted after the calculation. HE solves data privacy problem by uploading the

homomorphically encrypted data E(x) to the cloud. Perform the homomorphic operation g

(related to f) on this homomorphically encrypted data E(x) in the cloud, then return the

result g(E(x)) to the user. The user uses the secret key (related to E) to decrypt the result

of the homomorphic operation as D(g(E(x))). This decrypted result is exactly the expected

target f(x) (as shown in Fig. 1 (b)). As the data uploaded to the cloud for computing are

encrypted, no one can read the content of the data even if the data is not deleted afterward.

(a) (b)

Fig. 1. (a) Conventional MLaaS operation method; (b) HE MLaaS operation method.

Nowadays, there are three categories of HE algorithms; (1) Partially HE (PHE), which

only allows an unlimited number of limited operations to be performed on the ciphertext;

(2) Somewhat HE (SWHE) supports a limited number of calculations; (3) Fully HE (FHE)

has no restrictions on the number of times and calculation methods, but the efficiency is

poor [14-17]. Due to the theoretical breakthrough in these years, FHE has made great pro-

gress in efficiency [18]. The current mainstream FHE algorithms include BFV (Brakerski/

Fan-Vercauteren) [19, 20]. CKKS (Cheon-Kim-Kim-Song) [21], and TFHE (Fast Fully

Homomorphic Encryption over the Torus) [22-24]. [25] evaluated the suitable application

scenarios of these three HE algorithms and shown that CKKS has the best performance for

the homomorphic operation of floating-point data with approximated precision. However,

our experiments show that the calculation cost of some operators in CKKS FHE (such as

ciphertext multiplication, ciphertext rotation, encryption, and decryption) are still very

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 527

high. In this paper, we propose new security protocols to design a new data packing method

and to reduce the usage of time-consuming calculation. Then, an outsourced K-means clus-

tering method based on these new security protocols is proposed for demonstration and

evaluation.
We adopt two non-colluding servers same as SEOKC (Secure and Efficient Outsourc-

ed K-Means Clustering) [26] to design our security protocols. The data packing method of

SEOKC is based on attributes. It uses some calculations that are more time-consuming in

FHE. Our paper takes the shortcomings of SEOKC as a reference to design a new out-

sourced K-means clustering method through CKKS FHE. Our method uses a new data

packing method based on record, and can reduce the usage of time-consuming calculation

in CKKS FHE. Experiments show that our method is faster than SEOKC. It has shown

good performance in high-dimensional data analysis with our new data packing method.

2. LITERATURE REVIEW

In 2014, [27] used FHE to propose privacy of outsourced K-means clustering. In order

to compare encrypted distances in the process of clustering, the client is required to provide

trapdoor information with huge online costs on the client-side. In 2017, [28] proposed K-

means clustering using HE and updatable distance matrix (UDM). Secure third party stores

encrypted data and associated UDMs. Then, the data owner (DO) can request the clustering

of the data. In order to make the clustering run correctly, UDM needs to be updated in each

iteration of the K-means algorithm. It relieves [27] from requiring the client to provide

trapdoor information with participation cost. Both of the above two papers disclose private

information, such as the distance between the data record and the cluster center, to the

cloud server. They are proved to be unsafe [29].

In 2014, [30] used Asymmetric Scalar Product Preservation Encryption (ASPE) [31]

with secure cloud computing to resist sample attacks of outsourcing data mining. In 2016,

[32] proposed a method with linear transformation and random perturbation of the kernel

matrix in K-means clustering to protect the privacy and perform outsourcing. The above

methods also disclose some private information to the cloud server. In addition, neither of

these two tasks can achieve the semantic security of encrypted databases, that is, they can-

not resist chosen plaintext attack (CPA).

In 2015, [33] used the Paillier cryptosystem to propose privacy-preserving and out-

sourced multi-user K-means clustering. They further considered the overhead of multiple

DOs, the participation of DO is not required if outsourcing the encrypted database. In ad-

dition to protecting database security, their method also uses two non-colluding cloud serv-

ers, which together form a joint cloud environment. However, this method introduces high

calculation cost through the use of complex interactive protocols for encrypted data, which

affects its application in large encrypted databases. In 2017, [34] proposed a privacy-pre-

serving K-means clustering under a multi-owner setting in the distributed cloud environ-

ment. The ciphertext under different secret keys is converted to the ciphertext under the

unified secret key. Their experimental results show that their solution requires less calcu-

lation cost than [33] but produces higher communication costs.

Although these two works [33, 34] achieve better privacy requirements such as the

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

528

semantic security of databases and the hiding of data access patterns, they cannot be ap-

plied to large databases due to the high cost of computing and communication. In 2017,

[35] proposed privacy-preserving data clustering in cloud computing based on an FHE

PPC framework, which uses MapReduce to complete distributed computing to perform

data clustering on a large number of virtual machines (VM). They use a fixed-width clus-

tering (FWC) algorithm to implement basic operations in the cloud. However, the cipher-

text comparison operation proposed in this work is not safe, because the semantically safe

ciphertext cannot be compared directly.

In 2017, [36] proposed CKKS FHE whose security depends on the difficulty of the

Ring Learning with Errors (RLWE) problem. As shown in Fig. 2, data m is a vector on

which you want to perform certain calculations. First, encode this vector into a data poly-

nomial p = m(X), and then use public key encryption to encrypt it into c. Through the

calculations in f, the result of the ciphertext operation is expressed as c = f(c), and decryp-

tion with the key will produce p = f(p). Therefore, the decoding results in m = f(m).

Fig. 2. CKKS flow chart [37].

The data appears in the form of a vector, not a polynomial, so the data vector
2
N

z
must be encoded into a data polynomial m(X). N is the degree of polynomial modulus,

a power of 2, and
2

.MN = M(X) = XN + 1 represents the Mth cyclotomic polynomial. The

plaintext space is a polynomial ring [] []

() (1)
.N

M

X X

X X +
= = The ciphertext space is the re-

maining ring []

(1)
.q

q N

X

q X +
= = is a subspace of N that is isomorphic to

2 .
N

 Embed-

ding standard deviation : →()  . Natural projection 2: ,
N

 → which projects

the vector from the subspace of N to
2 .
N

Our proposed method uses the CKKS FHE. Based on the general HE of RLWE, the

plaintext space polynomial quotient ring is
[]

1
,q

N

Z X

X +
and the values involved in general use

can only be represented by a natural number smaller than the prime q. The plaintext space

of CKKS is the complex vector space
2 .
N

 Through the mapping of these two spaces, the

complex vector can be expressed in polynomial terms as the input to the encryption; con-

versely, the result of decryption can be reduced to the complex vector. The calculations

provided by CKKS FHE are as follows [36]:

KeyGeneration(N): Let s(X)q be the key polynomial, and the public key polynomial

p(X) = (−a(X)  s(X) + e(X), a(X)) where a(X)q is a uniformly randomly selected poly-

nomial, and e(X)q is a small random polynomial.

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 529

Encoding(z): In order to encode the data vector
2
N

z into a data polynomial m(X),

first apply  -1(z) to convert the data vector z from

2
N

 expands to . Multiply it by the

scaling factor  and then randomly round to  -1(z) to scale the vector appropriately.

Since rounding may lose precision, scaling is performed to achieve a predefined precision.

In order to obtain the data polynomial, use the canonical embedding  -1 and get m(X) =  -1

( -1(z)).

Decoding(m(X)): In order to decode the data polynomial m(X) into a data vector z
2
N

z , first use canonical embedding  to obtain z =  -1(z). Then divide it by the

scaling factor  to get -1 -1(z) -1(z). To obtain the data vector, use the  projection

vector and get ( -1(z))= 2
N

.

Encryption(m(X), p(X)): In order to obtain the ciphertext polynomial c(X) corresponding

to the data polynomial m(X), apply RLWE encryption and obtain c(X) = (m(X), 0) +

p(X) = (m(X) − a(X)  s(X) + e(X), a(X))(q)2 = (c0(X), c1(X)).

Decryption(c(X), s(X)): In order to obtain the data polynomial corresponding to the ci-

phertext polynomial c(X)q, use the secret key polynomial s(X), apply RLWE to decrypt

and get m(X)  c0(X) + c1(X)  s(X) = m(X) + e(X).

Addition(c(X), c(X)): Two ciphertexts c(X) = (c0, c1) and c(X) = (c0, c1) add the ciphertext

cadd(X) = (c0 + c0, c1 + c1).

Multiplication(c(X), c(X): Two ciphertexts c(X) = (c0, c1) and c(X) = (c0, c1). Multiply to

generate ciphertext cmult(X) = ((c0, c1)  c0, (c0, c1)  c1) = (c0c0, c0c1 + c0c0, c0c1) = (c0(X),

c1(X), c2(X)) then the ciphertext is re-linearized and then the modulus is switched.

Relinearization(cmult(X), r(X)): Re-linearization reduces the size of the ciphertext after

multiplying two ciphertexts. Let cmult(X) = (c0(X), c1(X), c2(X)) be the result ciphertext after

multiplying two ciphertexts. After re-linearization, the ciphertext crelin(X) = (c0(X), c1(X))

+ b-1  c2(X)  r(X) mod(q) is obtained.

3. PROPOSED SCHEMES

In this paper, two schemes are proposed. In the first scheme, we propose LiteSEOKC

to improve the conventional SEOKC method by reducing its time-consuming calculations.

Besides, the original data packing method of SEOKC is based on attributes, which is not

suitable for high-dimensional data. In the second scheme, a new data packing method for

outsourced K-means clustering (called RP-OKC) is proposed to improve the original data

packing method of SEOKC.

3.1 LiteSEOKC: Reduce Time-Consuming Calculation in SEOKC

The system architecture of LiteSEOKC is shown in Fig. 3. DO packs the data into D

by attributes, generates index values with random numbers, uses the index values to re-

trieve the corresponding data, encrypts them as initial clustering centers, and then sends

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

530

them to C1 for K-means clustering. Since DO encrypts the data and outsources it to C1 for

k-means clustering, DO does not participate in the iterative process and receives the re-

turned results of clustering indices only after the whole clustering process is completed by

the interactions between C1 and C2, so C1 and C2 do not know the expected clustering

results when they interact. The actual clustering process is calculated by C1 and C2 inter-

actively. At last, C1 sends the clustering result of clustering indices only back to DO. In

our first proposed LiteSEOKC, the detail modifications to reduce the time-consuming pro-

cess for SEOKC’s CAM (Computation of Assignment Matrix), CNEC (Computation of

New Encrypted Centers) and CNES (Computation of New Encryption Sizes) are described

as follows.

Fig. 3. LiteSEOKC system diagram.

SEOKC CAM is a security protocol executed by C2 to find the minimum distance

values to current clustering centers. While C1 send the encrypted data to C2, SEOKC CAM

will initialize a zero matrix (i.e., assignment matrix) at the beginning. The corresponding

position on assignment matrix will be set to 1 when the minimum distance value and its

index are found. The size of each cluster will be calculated by SEOKC CNES using this

CAM assignment matrix, since the cluster sizes can be simply calculated by the sum of 1

on each column.

SEOKC CNEC is a security protocol to find the new cluster centers during the inter-

active K-means clustering process between non-colluding C1 and C2 using the cluster sizes

obtained from SEOKC CNES. In CNES and CNEC of the original SEOKC, C1 will always

send C2 with the public-key-encrypted CAM assignment matrix after randomly transpos-

ing matrix columns, C2 will then use the secret key to decrypt the incoming data. Finally,

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 531

C2 will send the calculated result back to C1 after public-key encryption, C1 will then trans-

pose back the result of public-key-encrypted assignment matrix to original column orders.

In LiteSEOKC, we merge CNES and CNEC of SEOKC into our CNEC to find new

cluster sizes and centers furnished by C1 only without bothering C2 for the iterative secret-

key decryptions and public-key encryptions. Since C1 doesn’t have the secret key to restore

the plaintext from CAM assignment matrix and known encrypted data, LiteSEOKC can

still achieve the privacy protection for DO’s outsourced K-means clustering data. Mean-

while, both of the chances of revealing the plaintext of clustering information to C2 and

the FHE computations of private-key decryption and public-key encryption are cost-effec-

tively decreased.

Fig. 4. RP-OKC system diagram.

3.2 RP-OKC: Record Packing Outsourced K-means Clustering

In the second proposed RP-OKC scheme of this paper, we consider the non-collusion

architecture which is widely used in cloud computing for data protection [33, 34, 38-40].

This RP-OKC system architecture is shown in Fig. 4 where clouds C1 and C2 cannot col-

lude with each other and are semi-honest. Assume that DO hopes to safely perform data

applications (such as K-means clustering) on the cloud server. By following the basic se-

curity protocol of FHE (i.e. CKKS), C2 first generates (pk, sk) as a pair of public key and

secret key. The secret key sk is kept secret by C2. DO obtains the public key from C2. Then,

DO uses the public key to homomorphically encrypt its private data according to the data

record packing, and the encrypted data is outsourced to C1 for homomorphic data applica-

tion. When the termination conditions are met, the final results will return to DO for de-

cryption.

Although CKKS FHE was shown to resolve the problem of data outsourcing privacy

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

532

security, there are some operators (such as encryption/decryption, homomorphic multip-

lication of ciphertext/plaintext, and rotation) still take high calculation cost. In this paper,

we use an outsourced K-means clustering as an example to design new security protocols

to reduce the usage of time-consuming calculation. Then, we propose a record packaging

method, called RP-OKC, to improve the conventional attribute packaging method. The

time sequence diagram of DO’s data encryption and outsourcing is shown in Fig. 5 (a).

(a)

(b)

Fig. 5. (a) Timing diagram of DO encrypting the data and then outsourcing; (b) Timing diagram of

K-means clustering process after receiving encrypted data.

Step 1: DO calls the initial settings of C2 and stores the communication bridge with C2. C2

uses TenSEALContext [41] to encrypt the managed object and generates an object con-

taining encryption keys and parameters. Remove the secret key from the object, and keep

the public key to wait for DO to get it. The purpose is to keep the secret key secret.

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 533

Step 2: DO calls the initial settings of C1, tells C1 and C2 the communication bridge, and

stores the communication bridge with C1.

Step 3: DO obtains the public key through the bridge of communication with C2, C2 will

pass the object with the secret key removed to DO, then DO will receive the object with

only the public key.

Step 4: DO uses objects with only public keys to encrypt data. After the data is encrypted,

DO tells C1 to perform K-means clustering on these encrypted data. As shown in Fig. 5

(b), C1 selects the cluster center through random numbers. Then, it checks the termination

conditions of the clustering through. C2 decrypt the value passed in, do arithmetic to de-

termine whether to terminate, and return True or False.

Step 4 (a): When C1 receives True, it will do clustering to calculate the center of each

cluster. C2 will find the minimum value in the distance array passed from C1, and return

the index value of the minimum value. After C1 receives the return of C2, it will update the

cluster. Then, it checks the termination conditions of the clustering through C2.

Step 4 (b): When C1 receives False, it will stop clustering and return the cluster that of the

point DO.

3.2.1 Data encryption

DO first pre-processes the data and converts the data into tensor data type. The pro-

cessed data is called D. DO first obtains the public key from C2, and uses the public key to

encrypt the data. The encryption method is shown in Algorithm 1. The input is processed

data D. The output is the encrypted data D. Algorithm 1 is performed by DO. z is the

number of data, and m is the attribute of the data. Then, Algorithm 1 saves all the attribute

values in each piece of data as an array assignment to Pack. It assigns Pack to Da using

CKKS FHE. All Da is saved as an array assignment to D. DO sends the encrypted data D

to C1 for K-means clustering.

Algorithm 1: Encrypt_Data (D)→D

Input: database D

Output: Encrypted database D

Performed by: DO

1: D  []

2: for a = 1 to z

3: Pack  []

4: for s = 1 to m

5: Pack.append(ra[s])

6: Da  Encrypt(Pack)

7: D.append(Da)

3.2.2 Find the cluster of the point

C2 performs the calculation of finding the cluster to which the point belongs. In Al-

gorithm 2, C2 first decrypts the received encrypted distance Dis, decrypts to plaintext array

PDis, rounds the values in PDis, runs Min() to find the minimum distance MDecDis, finds

the position IdxDis of MDecDis in PDis, and sends IdxDis back to C1.

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

534

Algorithm 2: Find_Cluster(Dis) → IdxDis

Input: Encrypted distance Dis

Output: Minimum index IdxDis

Performed by: C2

1: PDis  []

2: for j = 1 to k

3: PDis.append(Decrypt(Disaj))

4: PDis  Roung(PDis, decimals = 4)

5: MDecDis  Min(PDis)

6: IdxDis  PDis.index(MDecDis)

3.2.3 Calculate the distance between the point and the center of each cluster

Algorithm 3 is performed by C1, takes the encrypted data D, the cluster center Center,

and the belonging cluster Cluster as input. It outputs the updated cluster Cluster and the

encrypted cluster distance DisCluster. C1 first calculates the Euclid distance (Steps 1-11).

When the length of the calculated distance array Dis is equal to k, it means that the data is

not the cluster center. The calculated distance array Dis is passed to C2, and the index value

IdxDis of the minimum value in the distance array Dis is obtained through C2. C1 obtains

the index value IdxDis, uses the index value to find the encrypted minimum distance

MEncDis, stores it in the encrypted cluster distance DisCluster, and updates the cluster to

which it belongs (Steps 12-16). If the data is the cluster center, store zero in the encrypted

cluster distance DisCluster (Steps 17-18).

Algorithm 3: Square_Distance (D, Center, Cluster)→Cluster, DisCluster

Input: Encrypted database D, cluster centers Center and Belongs to the cluster Cluster

Output: Belongs to the cluster Cluster and Encrypted cluster distance DisCluster

Performed by: C1

1: DisCluster  []

2: for a = 1 to z

3: Dis  []

4: for j = 1 to k

5: if Da  Centerj

6:   []

7: for s = 1 to m

8: s  (Das⊝Centerj[s])2

9: .appned(s)

10: Disaj  Sum()

11: Dis.appned(Disaj)

12: if len(Dis) = k

13: Get the minimum index IdxDis through C2 /* from Algorithm 2 */

14: MEncDis  Dis[IdxDis]

15: DisCluster.append(MEncDis)

16: Cluster[a] = IdxDis + 1

17: else

18: DisCluster.append(0)

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 535

3.2.4 Update cluster center

Algorithm 4 is executed by C1, takes the encrypted data D, the Cluster to which it

belongs, and the encrypted cluster distance DisCluster as input, and outputs the updated

cluster center NewCenter and the sum of squared errors (SSE) within the new clusters

NewClusterSize. The initial value setting (Steps 1-4), the method of updating the cluster

center is to add up all the points of the cluster and divide by the number of the cluster

(Steps 5-18). SSE within the new clusters NewClusterSize is to add the encrypted cluster

distance DisCluster (Steps 19-21).

Algorithm 4: Update_Cluster (D, Cluster, DisCluster) → NewCenter, NewCluster-

Size

Input: Encrypted database D, Belongs to the cluster Cluster and Encrypted cluster

distance DisCluster

Output: Updated cluster center NewCenter and SSE within the new clusters New-

ClusterSize

Performed by: C1

1: TmpNewCenter  []

2: for j = 1 to k

3: TmpNewCenter.update({j: 0})

4: Count  [0]k

5: for a = 1 to z

6: if Cluster[a] in TmpNewCenter

7: Temp  TmpNewCenter.get(Cluster[a])

8: Count[Cluster[a] − 1] = Count[Cluster[a] − 1] + 1

9: for s = 1 to m

10: Temp = Temp  Da

11: TmpNewCenter.update({Cluster[a]: Temp})

12: NewCenter  []

13: for j = 1 to k

14: Temp  TmpNewCenter.get(j)

15: TempCount  1  Count[j − 1]

16: for s = 1 to m

17: Temp  Temp ̃ TempCount

18: NewCenter.append(Temp)

19: NewClusterSize  0

20: for a = 1 to z

21: NewClusterSize NewClusterSizeDisCluster[a]

3.2.5 Check termination conditions

Algorithm 5 is executed by C2, which takes SSE within the new clusters NewCluster-

Size and SSE within the old clusters OldClusterSize as input, and outputs the termination

condition Flag. If the difference between SSE within the new and old clusters is less than

1, set flag to False. Otherwise, set to True.

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

536

Algorithm 5: Termination(NewClusterSize, OldClusterSize)→Flag

Input: SSE within the new clusters NewClusterSize and old cluster size OldClusterSize

Output: Termination condition Flg

Performed by: C2

1: if abs(Decrypt(NewClusterSize) − Decrypt(OldClusterSize))  1

2: Flag  False

3: else

4: Flag  True

3.2.6 The methods applied in RP-OKC

Algorithm 6 for furnishing RP-OKC is executed by C1, taking the encrypted data D

and the number of clusters k needed to be divided as input, and outputs the last clustering

result. First randomly generate k integers CenterIndex and takes out the corresponding data

in the data set as the cluster center Center. Initial value setting (Steps 2-3), update the

cluster according to Center (Steps 4-6), set the initial value of the new cluster SSE and the

old cluster SSE. According to the proposed termination condition in Algorithm 5, check

whether to continue clustering. After confirming to continue clustering, use the calculation

distance and encrypted cluster distance (in Algorithm 3) to obtain the updated cluster Clus-

ter and the encrypted cluster from the distance DisCluster. Through Algorithm 4, the up-

dated cluster center NewCenter and SSE within the new clusters NewClusterSize are ob-

tained. The updated cluster center is set as the cluster center, and check whether to continue

clustering (Algorithm 5). After receiving the stop clustering, the last cluster to belong to is

passed to DO.

Algorithm 6: kMeans(D, k)→Cluster

Input: Encrypted database D and Number of cluster k

Output: Belongs to the cluster Cluster

Performed by: C1

1: Randomly generate k integer numbers CenterIndex and take out the corresponding

data from the dataset as the center of the cluster Center

2: Cluster  [None]  z

3: TempK  0

4: for j = 1 to k

5: Cluster[CenterIndex[j]] = TempK + 1

6: TempK  TempK + 1

7: NewClusterSize  100

8: OldClusterSize  0

9: Flag  Termination(NewClusterSize, OldClusterSize)

10:While Flag

11: OldClusterSize  NewClusterSize

12: Cluster, DisClusterSquare_Distance(D, Center, Cluster)

13:NewCenter, NewClusterSizeUpdate_Cluster(D, Cluster, DisCluster)

14: CenterNewCenter

15: FlagTermination(NewClusterSize, OldClusterSize)

16: if Flag = False

17: Send Cluster to DO

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 537

Since clustering is to group all data into similar groups together, each data can only

belong to one group, and each group is called a cluster. Assume DO has a dataset D = {r1,

r2, …, rz}, with z pieces of data, and each data record ra(a[z]) consists of m attributes

denoted as ra[s] for s[m]. Apply its data to traditional K-means clustering [42], the algo-

rithm divides the dataset D into k clusters {cluster1, cluster2, …, clusterk}, and it is hoped

that the inter-cluster similarity of the clustering results is low and intra-cluster similarity is

high. Using Euclidean distance as a similarity measure, there are four main stages: (1)

Initialization; (2) Find the cluster of the point; (3) Update cluster center; and (4) Termina-

tion.

Stage (1): in order to initialize k clusters cluster1, cluster2, …, clusterk, DO selects k index

values by random numbers and sets the data corresponding to the index values as cluster

centers 1, 1, k.

Stage (2): The K-means clustering algorithm calculates the Euclidean distances between

each recorda and j for a[z] and j[k], which is given in Eq. (1) as follows

2

1
|| || ([] []) ,

m

a j a js
r r s s 

=
− = − (1)

where j[s] denotes the sth attribute of j. Based on the Euclidean distance, K-means clus-

tering algorithm determines the cluster center closest to ra (such as j) and assigns ra to a

new cluster clusterj, where j[k].

Stage (3): The K-means clustering algorithm calculates the mean values of all data records

in the corresponding cluster clusterj, which is the new cluster center 1, 2, …, k. Let

clusterj = {r1, …, r|clusterj|
} with a cluster size of |clusterj|, then the sth attribute of j can be

expressed as Eq. (2)

1 1 | |[] [] ... []

| |
.j

clusterj

j

s s r sr r

cluster



+ + +


= (2)

Stage (4): The K-means clustering algorithm uses the within-cluster SSE, as in Eq. (3), to

determine SSE within the new and old clusters determine whether to terminate the cluster-

ing process. If the difference between SSE within the new and old clusters is less than 1,

the K-means clustering algorithm stops and returns the final clustering result. Otherwise,

the algorithm uses the new cluster center as input to continue with the next iteration (i.e.

Stage (2)).

2

1 1
()

k n

i jj i
SSE r 

= =
= −  (3)

4. EXPERIMENTAL RESULTS AND ANALYSIS

There are four parts in this section to demonstrate the experimental performance for

proposed methods. In the first part, the calculation cost of SEOKC and LiteSEOKC are

compared. In the second part, analysis for various calculation costs based on record pack-

ing method proposed in this paper is through experiments, to establish a table of calculation

costs and use a proportional method to evaluate computing performance. In the third part,

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

538

the accuracy of RP-OKC was tested. In the last part, the calculation cost of SEOKC,

LiteSEOKC and RP-OKC are all analyzed and compared. Our experiments were per-

formed on a Windows system with an Intel Core i7-7700HQ 2.80 GHz CPU and 24 GB of

RAM. The TenSEAL library [41] was used to implement the proposed methods of this

paper, the degree of the CKKS modulus polynomial was 8192, and four prime numbers

with sizes of 60, 40, 40 and 60 bits were created.

4.1 Comparison of Calculation Cost Between SEOKC and LiteSEOKC

We use a synthetic database containing 1000 records with 5, 10 and 15 attributes, gen-

erated randomly in the floating point domain among [0, 1000]. These data were clustered

into 3 clusters. We compare the calculation cost of SEOKC with LiteSEOKC by compu-

ting one iteration of K-means clustering. The experimental results are shown in the Fig. 6.

Fig. 6. Comparison of calculation cost between SEOKC and LiteSEOKC.

4.2 Analysis of Various Calculation Costs Based on Record Packing

In this paper, we analyze various calculation costs through experiments. By randomly

generating 10 integer random numbers in the range of 0~1000 as attributes, 10,000 records

are generated. Use these 10,000 pieces of data to analyze the calculation cost of encryption,

decryption, additive/subtractive/multiplicative homomorphic on ciphertext, and addi-

tive/multiplicative homomorphic on ciphertext-plaintext, and general addition, subtraction,

multiplication and division, and rotation. Each calculation method is executed 10 times

and then the average value is taken. At the same time, various calculation costs of one

attribute are also calculated. The calculation cost statistics results after execution are shown

in Table 1, time unit for seconds, it can be seen that the calculation cost of 10 attributes

and 1 attribute is almost due to parallel processing. Calculate the proportion of each calcu-

lation cost with 10,000 pieces of data and 1 attribute, set X with the time of general division

as the denominator, do the average calculation cost (ACC), and round the result of the

calculation to the first place of the integer. The calculated result is as follows in Table 1.

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 539

Table 1. Calculate cost statistics (The unit is second).

Calculations
10,000 records

with 10 attributes

10,000 records

with1 attribute

encryption 58.046 56.851

decryption 14.513 14.509

additive homomorphism on ciphertext 1.223 1.221

subtractive homomorphism on ciphertext 1.218 1.215

multiplicative homomorphism on ciphertext 42.659 42.657

additive homomorphism on ciphertext-plaintext 8.756 8.535

multiplicative homomorphism

on ciphertext-plaintext
17.180 17.013

General addition 0.054 0.053

General subtraction 0.050 0.050

General multiplication 0.050 0.047

General division 0.048 0.047

Rotation 14.513 14.509

Table 2. Percentage of calculation cost.

Calculations
10,000 records

with 1 attribute

Proportion (round

off to first digit of

integer)

encryption 56.851 1210X

decryption 14.509 309X

additive homomorphism on ciphertext 1.221 26X

subtractive homomorphism on ciphertext 1.215 26X

multiplicative homomorphism on ciphertext 42.657 908X

additive homomorphism on ciphertext-plaintext 8.535 182X

multiplicative homomorphism

on ciphertext-plaintext
17.013 362X

General addition 0.053 1X

General subtraction 0.050 1X

General multiplication 0.047 1X

General division 0.047 1X

Rotation 14.509 309X

We use the calculation cost in Table 2 to get the percentage of each calculation cost

in RP-OKC as shown in Table 3. The graph is drawn as shown in Fig. 7. It can be seen that

the more time-consuming calculations are encryption, multiplicative homomorphism, ci-

phertext-plaintext multiplicative homomorphism, decryption and rotation.

The calculation cost of RP-OKC was estimated from the experimentally obtained cal-

culation cost ratio table in Section 4.2. First, count all the calculations used in RP-OKC,

as shown in the following Table 4, where z is the number of data items, k is the number of

clusters, m is the number of attributes, c is a constant, and  is repeated execution.

Because the experimental results show that the calculation results of 1 attribute and

10 attributes are similar, it is assumed that 10,000 data are divided into 3 clusters, and each

data has 1 attribute, z = 10000, k = 3, m = 1, c = 1. According to the statistical results in

Table 4.

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

540

Table 3. Percentage of each calculation cost.

Calculations
Proportion (round off to the

first digit of the integer)

encryption 0.1210

decryption 0.0309

additive homomorphism on ciphertext 0.0026

subtractive homomorphism on ciphertext 0.0026

multiplicative homomorphism on ciphertext 0.0908

additive homomorphism on ciphertext-plaintext 0.0182

multiplicative homomorphism on ciphertext-plaintext 0.0362

General addition 0.0001

General subtraction 0.0001

General multiplication 0.0001

General division 0.0001

Rotation 0.0309

Fig. 7. Scale diagram of each calculation cost.

Table 4. Count all the calculations used in RP-OKC.

Calculations Applied parameters Ratio

Encryption zm 1210.0000

Decryption zk + c* 927.0309

Additive homomorphism zkm + zm + km + z 130.0078

Subtractive homomorphism zkm 78.0000

Multiplicative homomorphism 3zkm 8172.0000

Ciphertext-plaintext additive homomorphism 0 0.0000

Ciphertext-plaintext multiplicative homomorphism km 0.1086

General addition 2z + k 2.0003

General subtraction c* 0.0001

General division k 0.0003

Rotation 0 0.0000

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 541

4.3 RP-OKC Security Analysis and Accuracy Test

Based on the security analysis of SEOKC [26], security analysis to verify the security

of our proposed RP-OKC is briefly illustrated as follows:

Security of Algorithm 1 Encrypt_Data:

This security can be directly achieved from the applied efficient CKKS encryption.

Since CKKS-encrypted data records are only submitted to C1 without colluding with C2,

private data are protected from these two clouds in semantic security.

Security of Algorithm 2 Find_Cluster:

Theorem 1. The proposed protocol of “Find the cluster of the point” is secure against the

semi-honest C2 as long as the CKKS encryption is semantically secure and the non-collu-

sion assumption between C1 and C2 is satisfied.

Proof: To prove the security of “Find the cluster of the point protocol” under the semi-

honest model, we need to demonstrate that the simulated image of Algorithm 2 Find_

Cluster is computationally indistinguishable from its actual execution image. An execu-

tion image generally contains the exchanged messages and the results computed from these

messages. According to Algorithm 2 Find_Cluster, we have the execution image of C2

denoted as C2(Find_Cluster) = {Disaj, IdxDisaj} for a, j[z], [k], where Disaj are CKKS

ciphertexts. Let the simulated image of C2 be C
S

2(Find_Cluster) = {a
1
j, a

1
j}, where a

1
j(a,

j[z], [k]) are randomly generated from the ciphertext space of CKKS cryptosystem. Since

the CKKS encryption is semantically secure, it implies that Disaj are computationally in-

distinguishable from a
1
j. Since we randomly initialize the cluster centers in our RP-OKC

method, the real assignment values IdxDisaj are randomly distributed, which are computa-

tionally indistinguishable from a
1
j(a, j[z], [k]). However, the information leaked to C2 by

the plaintext distance PDisj for j[k] in Algorithm 2 Find_Cluster. Since PDisj is the result

of the calculation of two raw data records containing noise. Although C2 can know the

ratios of difference between plaintext distance PDis𝑗. But these ratios contain privacy in-

formation and are not sufficient for inferring data records. Therefore, the leakage of infor-

mation has little impact on the security of the Find the cluster of the point protocol. Based

on these analyses, C2(Find_Cluster) is computationally indistinguishable from C
S

2(Find_

Cluster) based on Theorem 1, which implies that C2 cannot learn any private information

during the execution of Find the cluster of the point.

Security of Algorithm 3 Square_Distance:

Theorem 2: The proposed Algorithm 3 for protocol of “Calculating the distance between

the point and the center of each cluster” is secure against the semi-honest C1 as long as the

CKKS encryption is semantically secure and the non-collusion assumption between C1 and

C2 is satisfied.

Proof: To prove the security of “Calculate the distance between the point and the center

of each cluster” under the semi-honest model, we need to demonstrate that the simulated

image of Algorithm 3 Square_Distance is computationally indistinguishable from its ac-

tual execution image. According to Algorithm 3, we have the execution image of C1 de-

noted as C1(Square_Distance) = {Disaj} for a, j[z], [k], where Disaj are CKKS cipher-

texts. Let the simulated image of C1 be C
S

1(Square_Distance) = {a
2
j}, where a

2
j (a, j[z],

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

542

[k]) are randomly generated from the ciphertext space of CKKS cryptosystem. Since the

CKKS encryption is semantically secure, it implies that Disaj are computationally indistin-

guishable from a
2
j. Therefore, C1(Square_Distance) is computationally indistinguishable

from C
S

1(Square_Distance) based on Theorem 2. DisClustera for a[z] are semantically

secure CKKS ciphertexts. Therefore, by using the same analysis method in Theorem 2.

Since Dis is an array of semantically safe encrypted distances, C1 cannot compute the cor-

respondence between data records and clusters Cluster. This means that C1 cannot learn

any private information during the execution of Calculate the distance between the point

and the center of each cluster.

Security of Algorithm 4 Update_Cluster:

To prove the security of “Update cluster center” under the semi-honest model, we

need to demonstrate that the simulated image of Algorithm 4 Update_Cluster is compu-

tationally indistinguishable from its actual execution image. According to Algorithm 4

Update_Cluster, we have the execution image of C1 denoted as C1(Update_Cluster) =

{NewCenterj[s], NewClusterSize} for j, s[k], [m], where NewCenterj[s], NewClusterSize

are CKKS ciphertexts. Therefore, by using the same analysis method in Theorem 2. This

means that C1 cannot learn any private information during the execution of Update cluster

center.

Security of Algorithm 5 Termination:

According to Algorithm 5 of “Check termination conditions”, we have the execution

image of C2 denoted as 2(Termination) = {NewClusterSize, OldClusterSize}. Except that

NewClusterSize, OldClusterSize are set to the initial value of plaintext at the beginning, in

other cases, NewClusterSize, OldClusterSize are CKKS ciphertexts. Therefore, by using

the same analysis method in Theorem 1. This means that C2 cannot learn any private in-

formation during the execution of Check of termination conditions.

Security of Algorithm 6 kMeans:

As shown in Algorithm kMeans, the furnished RP-OKC method is a combination of

the proposed 5 security protocols mentioned above, we have already proved the security

for all these algorithms. Since the two clouds cannot collude with each other, C1 and C2

cannot figure out the assignments between data records and clusters. Therefore, data access

patterns are hidden from both of them. Although the minimum distance between each point

and k clusters is revealed to C2 in the Find the cluster of the point protocol, the data cannot

be understood from it because C2 does not know the number of attributes of the data and

the value of k clusters.

Furthermore, our experiments conducted to compare the results of one iteration of

general K-means clustering with proposed RP-OKC. The approach is to use customer data

on Kaggle [43]. The attributes Annual_Income_(k$) and Spending_Score are selected and

all duplicates in them are packaged according to the data records, and the packaged data

are encrypted and passed to C1. C1 receives these data and generates a fixed random num-

ber with a random seed. This random number seed is executed 1000 times from 0 to 999.

If the decryption result is rounded to the first to eighth decimal place in Algorithm 2

Find_Cluster. For these eight test cases, the result of one iteration in these 1000 execu-

tions will be the same as the general K-means clustering.

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 543

4.4 Analysis and Comparison of Calculation Cost Between SEOKC, LiteSEOKC and

RP-OKC

Encryption is the encoding of data to protect the privacy of the data so that it cannot

be accessed by unauthorized parties. Unencrypted means that the data itself, without any

protection, can be easily viewed and accessed. The difference between encrypted and un-

encrypted data is shown in Table 5 below:

Table 5. Difference between clustering encrypted/unencrypted data.
 Encrypted Unencrypted

Definition Encode data Original data

Called Ciphertext Plaintext

Security Secure Insecure

Data Access Only authorized party can access data Anyone can access data

Experiments are conducted to compare and evaluate the performance of clustering

between encrypted and unencrypted data. This experimental method is to fix the number

of data records to 500 and the number of attributes as 100, 200, 500 and 1000, and to check

the calculation cost of the three methods respectively. It can be seen that the calculation

cost of this RP-OKC is lower than that of LiteSEOKC after the number of attributes is 200.

The results are shown in Fig. 8, then the RP-OKC method is suitable for use in high-di-

mensional data.

Fig. 8. Comparison of calculation cost between SEOKC, LiteSEOKC, RP-OKC and general K-

means (k = 3, n = 500).

In Fig. 8, the RP-OKC method is suitable for attribute number in greater than 200.

The following experimental method is to fix the data record. In this experiment, we fix the

attribute number to 500, the number of recorded data is 100 to 500, with interval 100. To

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

544

observe the calculation costs of the three methods respectively, the result is shown in Fig.

9. In the method with encryption, it can be seen that the calculation cost of RP-OKC is

lower than SEOKC and LiteSEOKC.

The computational cost of clustering unencrypted data is the lowest because both en-

crypting and computing encrypted data are more computationally expensive, but clustering

encrypted data is a way to protect data security. The above two experiments show that RP-

OKC is suitable for high-dimensional data among the methods of clustering encrypted data.

Fig. 9. Comparison of calculation cost between SEOKC, LiteSEOKC, RP-OKC and general K-

means (k = 3, n = 500).

5. CONCLUSIONS AND FUTURE WORK

After finding the CKKS FHE operations of encryption, multiplicative homomorphism,

ciphertext-plaintext multiplicative homomorphism, decryption and rotation operations are

time-consuming calculation, we first propose LiteSEOKC to improve the SEOKC effi-

ciency by slimming CKKS FHE operations. In order to meet more needs of diversified-

attribute data for users in secure and efficient outsourced K-means clustering, we further

propose a new security protocol called RP-OKC with a new diversified-attribute data-rec-

ord packing method for more secure and efficient outsourced K-means clustering. There

are 5 security protocols in the proposed RP-OKC scheme, including data encryption, find

the cluster of the point, calculate the distance between the point and the center of each

cluster, update cluster center, and check termination conditions. It also uses these 5 security

protocols to achieve privacy for outsourcing encryption database in MLaaS. The calcula-

tion cost of SEOKC and LiteSEOKC for large number of data records were conducted in

our experiments. The performance results show that LiteSEOKC is more efficient than

original SEOKC and more suitable for applications using large database. The further per-

formance results of computational costs of SEOKC, LiteSEOKC and RP-OKC with high-

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 545

dimensional data demonstrate that the RP-OKC method is more applicable to high-dimen-

sional database than both LiteSEOKC and original SEOKC. In this paper, more effective

privacy protection is proposed for outsourcing encryption database in MLaaS using K-

means clustering as an example.

In the near future, we hope to meet the needs of more users and various applications,

such as using different ML and deep learning for calculations. In addition, the HE technol-

ogy built on the cloud platform is used for calculations. This results in users not knowing

the accuracy of the calculation results. We hope to provide verifiable methods for evaluat-

ing the accuracy of the calculation results for their services in the future.

REFERENCES

1. “Statista,” https://www.statista.com/, 2021.

2. “Snowflake,” https://www.snowflake.com/data-marketplace/, 2021.

3. “Datarade,” https://datarade.ai/, 2021.

4. “Alibaba cloud machine learning platform for AI,” https://www.alibabacloud.com/tc

/product/machine-learning, 2021.

5. “AWS machine learning,” https://aws.amazon.com/tw/machine-learning/, 2021.

6. “Microsoft Azure AI,” https://azure.microsoft.com/zh-tw/overview/ai-platform/, 2021.

7. “Google cloud AI,” https://cloud.google.com/products/ai, 2021.

8. L. Brandeis and S. Warren, “The right to privacy,” Harvard Law Review, Vol. 4, 1890,

pp. 193-220.

9. R. H. Coase, “The problem of social cost,” Classic Papers in Natural Resource Eco-

nomics, Springer, 1960, pp. 87-137.

10. A. F. Westin, “Privacy and freedom,” Washington and Lee Law Review, Vol. 25, 1968,

p. 166.

11. R. Gavison, “Privacy and the limits of law,” The Yale Law Journal, Vol. 89, 1980, pp.

421-471.

12. E. van den Haag, “On privacy,” Privacy & Personality, Routledge, 2017, pp. 149-168.

13. X. Yi, R. Paulet, and E. Bertino, “Homomorphic encryption,” Homomorphic Encryp-

tion and Applications, Springer, 2014, pp. 27-46.

14. Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-LWE

and security for key dependent messages,” in Proceedings of Annual Cryptology Con-

ference, 2011, pp. 505-524.

15. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic en-

cryption without bootstrapping,” ACM Transactions on Computation Theory, Vol. 6,

2014, pp. 1-36.

16. A. Acar et al., “A survey on homomorphic encryption schemes: Theory and imple-

mentation,” ACM Computing Surveys, Vol. 51, 2018, pp. 1-35.

17. J. Kim, S. Kim, and J. H. Seo, “A new scale-invariant homomorphic encryption

scheme,” Information Sciences, Vol. 422, 2018, pp. 177-187.

18. K. C. Laudon, Dossier Society: Value Choices in the Design of National Information

Systems, Columbia University Press, 1986.

19. Z. Brakerski, “Fully homomorphic encryption without modulus switching from clas-

sical GapSVP,” in Proceedings of Annual Cryptology Conference, 2012, pp. 868-886.

https://www.alibabacloud.com/tc%20/product/machine-learning
https://www.alibabacloud.com/tc%20/product/machine-learning

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

546

20. J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”

IACR Cryptology ePrint Archive, Vol. 2012, 2012, p. 144.

21. J. H. Cheon et al., “Homomorphic encryption for arithmetic of approximate numbers,”

in Proceedings of International Conference on the Theory and Application of Cryp-

tology and Information Security, 2017, pp. 409-437.

22. I. Chillotti et al., “Faster fully homomorphic encryption: Bootstrapping in less than

0.1 seconds,” in Proceedings of International Conference on Theory and Application

of Cryptology and Information Security, 2016, pp. 3-33.

23. I. Chillotti et al., “Faster packed homomorphic operations and efficient circuit boot-

strapping for TFHE,” in Proceedings of International Conference on the Theory and

Application of Cryptology and Information Security, 2017, pp. 377-408.

24. I. Chillotti et al., “TFHE: fast fully homomorphic encryption over the torus,” Journal

of Cryptology, Vol. 33, 2020, pp. 34-91.

25. P.-E. Clet, O. Stan, and M. Zuber, “BFV, CKKS, TFHE: Which one is the best for a

secure neural network evaluation in the cloud?” in Proceedings of International Con-

ference on Applied Cryptography and Network Security, 2021, pp. 279-300.

26. W. Wu et al., “Secure and efficient outsourced K-means clustering using fully homo-

morphic encryption with ciphertext packing technique,” IEEE Transactions on Know-

ledge and Data Engineering, Vol. --, 2020, pp. --.

27. D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced K-means clustering,” in Pro-

ceedings of the 9th ACM Symposium on Information, Computer and Communications

Security, 2014, pp. 123-134.

28. N. Almutairi, F. Coenen, and K. Dures, “K-means clustering using homomorphic en-

cryption and an updatable distance matrix: secure third party data clustering with lim-

ited data owner interaction,” in Proceedings of International Conference on Big Data

Analytics and Knowledge Discovery, 2017, pp. 274-285.

29. Y. Wang, “Notes on two fully homomorphic encryption schemes without bootstrap-

ping,” IACR Cryptology ePrint Archive, Vol. 2015, 2015, p. 519.

30. Y. Huang, Q. Lu, and Y. Xiong, “Collaborative outsourced data mining for secure

cloud computing,” Journal of Networks, Vol. 9, 2014, pp. 2655.

31. W. K. Wong et al., “Secure kNN computation on encrypted databases,” in Proceed-

ings of ACM SIGMOD International Conference on Management of Data, 2009, pp.

139-152.

32. K.-P. Lin, “Privacy-preserving kernel K-means clustering outsourcing with random

transformation,” Knowledge and Information Systems, Vol. 49, 2016, pp. 885-908.

33. F.-Y. Rao et al., “Privacy-preserving and outsourced multi-user K-means clustering,”

in Proceedings of IEEE Conference on Collaboration and Internet Computing, 2015,

pp. 80-89.

34. H. Rong et al., “Privacy-preserving-means clustering under multiowner setting in dis-

tributed cloud environments,” Security and Communication Networks, Vol. 2017,

2017, , Article ID 3910126.

35. A. Alabdulatif et al., “Privacy-preserving data clustering in cloud computing based on

fully homomorphic encryption,” in Proceedings of the 21st Pacific Asia Conference

on Information Systems, 2017, No. 301373083.

36. S. Panda, “Principal component analysis using CKKS homomorphic scheme,” in Pro-

ceedings of the 5th International Symposium on Cyber Security Cryptography and

OKC FOR HIGH-DIMENSIONAL DATA ANALYSIS BASED ON HE 547

Machine Learning, 2021, pp. 52-70.

37. J. Liu et al., “Secure KNN classification scheme based on homomorphic encryption

for cyberspace,” Security and Communication Networks, Vol. 2021, 2021, Article ID

8759922.

38. B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “K-nearest neighbor classification

over semantically secure encrypted relational data,” IEEE Transactions on Knowledge

and Data Engineering, Vol. 27, 2014, pp. 1261-1273.

39. H. Rong et al., “Privacy-preserving k-nearest neighbor computation in multiple cloud

environments,” IEEE Access, Vol. 4, 2016, pp. 9589-9603.

40. W. Wu et al., “Efficient k-nearest neighbor classification over semantically secure hy-

brid encrypted cloud database,” IEEE Access: Practical Innovations, Open Solutions,

Vol. 6, 2018, pp. 41771-41784.

41. “TenSEAL,” https://github.com/OpenMined/TenSEAL.

42. S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information

Theory, Vol. 28, 1982, pp. 129-137.

43. “Kaggle customer data,” https://www.kaggle.com/shrutimechlearn/customer-data/ver-

sion/1.

Ray-I Chang received his Ph.D. degree in Electrical Engineer-

ing and Computer Science from National Chiao Tung University in

1996, where he was a member of Operating Systems Laboratory.

Then, he joined Computer Systems and Communications Labora-

tory in Institute of Information Science, Academia Sinica, to de-

velop video-on-demand servers and digital library systems. In 2002,

he joined the Department of Information Management, National

Central University. Now, he is a Professor in the Department of En-

gineering Science and Ocean Engineering, National Taiwan Univer-

sity. Dr. Chang has published over 300 papers, including papers published in IEEE Trans-

actions on Multimedia, IEEE Transactions on Broadcasting, and IEEE Transactions Neural

Networks. His current research interests include multimedia networking and data mining.

Dr. Chang is a member of IEEE, CERP and IICM.

Yen-Ting Chang received B.S. degree in Computer Science

and Information Engineering from Ming Chuan University in 2020.

Now, she is a master student at the department of Engineering Sci-

ence and Ocean Engineering, National Taiwan University. Her main

research interests include privacy protection and machine learning.

https://github.com/OpenMined/TenSEAL

RAY-I CHANG, YEN-TING CHANG, CHIA-HUI WANG

548

Chia-Hui Wang received BS degree in Computer Science

from Tamkang University in 1986 and received MS degree in Com-

puter Science from New Jersey Institute of Technology, USA, in

1991. Then, he received Ph.D. degree in Computer Science and In-

formation Engineering from National Taiwan University in 2002.

His industry experience included four years as a software developer

in high-tech industry. Now, he is an Associate Professor of Depart-

ment of Computer Science and Information Engineering, Ming

Chuan University. His research interests include multimedia com-

munications, multimedia security and embedded systems. He is a member of IEEE and

ACM.

