
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 1129-1153 (2023)

DOI: 10.6688/JISE.202309_39(5).0008

1129

A Feedback-Directed Approach to Crawl Android Apps

for Increasing Code Coverage*

SHU-LING CHEN1, CHIEN-HUNG LIU2,+ AND WEN-QUAN XIAO2

1Department of Industrial Management and Information

Southern Taiwan University of Science and Technology

Tainan, 700 Taiwan
2Department of Computer Science and Information Engineering

National Taipei University of Technology

Taipei, 106 Taiwan

E-mail: slchen@stust.edu.tw; cliu@ntut.edu.tw+; t108598013@ntut.org.tw

To automate GUI testing for Android apps, a popular technique is to use a GUI craw-

ler to systematically explore the GUIs of the apps while detecting possible app crashes.

However, during GUI exploration, the crawler may get stuck and crawl some GUI states

repeatedly, resulting in no increase in code coverage. This can significantly affect the ef-

ficiency of the GUI crawler and thus the effectiveness of app crash detection. To relieve

this problem, this paper proposes a feedback-directed approach to guide the behavior of

the crawler. Specifically, the approach can assess whether the GUI crawler gets trapped

based on the feedback from the crawling results, and dynamically adjust the priority of

GUI states to visit in order to guide the crawler to improve code coverage. Particularly, to

update the priority of GUI states, two feedback-directed strategies, CoverageDirectedStrat-

egy and StateDirectedStrategy, are presented to lead the crawler to exercise more code or

explore more GUI states, respectively. To evaluate the proposed approach, we have ex-

tended our earlier Android crawler called ACE to support the approach and strategies. The

experimental results show that both feedback-directed strategies can effectively detect

whether ACE is trapped and guide ACE out of the traps, thereby improving code coverage.

Keywords: Android crawler, GUI testing, Android app testing, feedback-directed, code

coverage

1. INTRODUCTION

As Android apps are widely-used by people all over the world for most of their daily

activities, such as work, entertainment, and communication, the quality and reliability of

Android apps become crucial. As such, testing Android apps has drawn much attention in

recent years. One way to test Android apps is to use a GUI crawler to systematically and

automatically explore the apps’ GUIs to detect any possible crashes. Additionally, GUI

crawler can be used to generate GUI state models for the apps under test [1, 2]. From the

state models, test cases can be further derived to validate the behaviors of the apps.

Although GUI crawlers are useful for automatically testing Android apps, and various

Android crawlers [3, 4] have been proposed, how to effectively explore and test Android

apps is still challenging. One critical challenge of crawling Android apps is so-called “state

explosion problem,” where the size of the app’s GUI state space grows exponentially as

Received October 31, 2022; revised December 13, 2022; accepted March 17, 2023.

Communicated by YungYu Zhuang.
+ Corresponding author.
* This research was partially supported by the Ministry of Science and Technology, Taiwan, under contract No.

MOST 111-2221-E-027-078.

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1130

the number of GUI components in the app increases. This can make timely and compre-

hensive GUI exploration of an Android app infeasible. For example, a typical Contacts app

usually has GUI screens that allow users to add a new contact into the contact list. Through

these GUI screens, the user can repeatedly add new contacts, thereby changing the result

of the contact list as well as its GUI state. If the GUI crawler keeps exploring and adding

new contacts, a huge number of GUI states can be generated by running the same blocks

of code over and over. In this case, the crawler may repeatedly explore these GUI states

without increasing its code coverage. To tackle this challenge, a common method is state

abstraction, which merges similar GUI states together to reduce the size of state space

during GUI exploration [5-7].

Although the state abstraction method can be used to reduce the size of GUI states

and improve the code coverage of GUI crawler, designing a proper abstraction for different

Android apps is still challenging [7]. For instance, in our earlier work [8], we presented an

Android Crawler, called ACE, with several state-equivalent strategies that allow the

crawler to determine whether two explored GUI states of an app are equivalent to reduce

the GUI state space. In these strategies, different levels of state abstraction are applied to

a hierarchical GUI component tree that captures the structure and content of an app screen.

The experimental results of ACE indicate that the state-equivalent strategies can indeed

improve the code coverage. However, we also found that the increase of code coverage

can become saturated, even giving ACE a considerable amount of crawling time.

To illustrate this, Fig. 1 shows the code coverage of crawling an open-source app

called Omni-Notes [9] using ACE for 60 minutes. It can be observed that, in this test run,

the code coverage goes from 0% all the way up to 31% and then becomes saturated at

about 35 minutes. The result also suggests that the GUI exploration did not increase any

code coverage for 25 minutes over 60 minutes.

Fig. 1. The code coverage of crawling the Omni-Notes app using ACE for 60 minutes.

In order to avoid wasting crawling time and further improve the code coverage of

ACE, we carefully analyzed the exploration results of different apps, and two cases caught

our attention. The first is that ACE may continuously trigger some GUI events of an activ-

ity, which adds very little or even no code coverage. For example, as shown in Fig. 2, there

are many GUI events in a setting activity of an app. Executing each event of the activity

will pop up a dialog to the user for setting the tip percentage. However, ACE will add no

code coverage if it executes the “Cancel” event of each dialog.

0%

13%
20%20%

26%27%29%31%31%31%31%31%31%

0%

10%

20%

30%

40%

0 5 10 15 20 25 30 35 40 45 50 55 60

S
ta

te
m

en
t

C
o

v
er

ag
e(

%
)

Time in minutes

Code coverage of Omni-Notes

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1131

Fig. 2. An example to execute different events of an activity and add a little or no code coverage.

The second case is that ACE may repeatedly switch among several activities to exe-

cute some particular unexplored GUI events, such as the event for going back to parent

activity. Similarly, switching between activities and executing the unexplored events may

add very little or no code coverage. For instance, as shown in Fig. 3, there is a list of

electronic templates (the parent activity in the center of figure), and the user can click the

button of each electronic template to view the details of the electronic template (the child

activity on the left or right of the figure). The user can click the backarrow in the upper left

corner of the template details to navigate back to the activity’s parent (i.e., electronic tem-

plate). Note that the GUI state of the template details could be different for each electronic

in this app, such as Air Conditioner and Aquarium. Therefore, ACE should explore each

GUI state of the template-details activity and execute the back-to-parent-activity event that

returns to the GUI state of the electronic-template activity. However, switching between

these two activities and executing the back-to-parent-activity event may add a little or no

code coverage.

Fig. 3. An example to switch between several activities and add no code coverage.

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1132

The above two situations can cause the crawler to get stuck while exploring app’s

GUI states within or between activities without increasing code coverage, known as Intra-

Activity Loop and Inter-Activity Loop respectively. To automatically detect and get rid of

such situations, this paper proposes a feedback-directed approach, called Priority First

Search (PFS), to guide the crawler to explore Android apps based on the feedback from

the crawling results and dynamically adjust the priority of GUI states to visit in order to

increase code coverage. Specifically, two feedback-directed strategies, CoverageDirected-

Strategy and StateDirectedStrategy, are presented to guide the crawler to exercise more

code or explore more GUI states, respectively. To evaluate the approach, ACE has been

extended to support PFS and strategies, and several experiments have been conducted. The

experimental results show that both feedback-directed strategies can effectively detect

whether ACE gets trapped in a loop and guide ACE to get out of traps to increase code

coverage.

The rest of the paper is organized as follows. Section 2 briefly reviews related work.

Section 3 presents the proposed feedback-directed approach to detect the intra- and inter-

activity loops and guide the crawler to get out of traps and improve code coverage. Section

4 describes and discusses the experimental results. The conclusion remarks and future

work are given in Section 5.

2. RELATED WORK

To automate GUI testing of Android apps and improve the code coverage of the app

under test, many Android crawlers have been proposed. This section briefly reviews exist-

ing studies related to this work. Based on the techniques used by the crawlers, these studies

are classified into three categories: random or systematic, model-based, and learning-based

crawling approaches.

• Random or Systematic Crawling

Machiry et al. [3] proposed a tool called Dynodroid to explore and test Android apps.

Specifically, the tool can select and execute an event from the current GUI state according

to some random selection strategies. Additionally, Dynodroid supports both GUI and sys-

tem events, and allows users to manually add events. Thus, it can interleave input events

from machine and human. However, the tool uses the exploration results only for compu-

ting the relevant UI events to be selected. It does not address whether the crawler can get

trapped in the exploration or not.

Song et al. [10] proposed a method and tool called EHBDroid for testing Android

apps. Particularly, instead of generating events from GUI states, the proposed method di-

rectly invokes the callbacks of event handlers to simulate a large number of events for

improving test efficiency. In order to invoke callbacks, the source code of the apps is ana-

lyzed, and corresponding callback functions of event handlers are overridden. The experi-

mental results show that, as compared to state-of-the-art tools, including Monkey [11] and

Dynodroid [3], EHBDroid on average has higher statement coverage and better error de-

tection rate.

Mao et al. [12] proposed a multi-objective search-based approach and a tool called

Sapienz to explore and test Android apps. Particularly, the tool can minimize the length of

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1133

event sequences to explore the apps while maximizing code coverage. It combines differ-

ent techniques, including random fuzzing, search-based testing, string seeding, and multi-

level instrumentation, to generate test inputs. The experimental results indicate that the

proposed tool has better performance than other state-of-the-art tools. Similarly, the tool

does not address the issue whether the crawler can get trapped during the exploration.

• Model-based Crawling

Amalfitano et al. [13], proposed a tool called AndroidRipper that can automatically

explore the GUI of Android apps and detect runtime crashes. This work was extended to

another tool called MobiGUITAR [2], which can dynamically generate a GUI state graph

during the exploration instead of creating a GUI tree. This tool can provide satisfactory

code coverage. However, it does not use the exploration results to guide the behavior of

the crawler.

Cao et al. [14] presented a model-based GUI testing approach for Android apps. A

tool called CrawlDroid is developed to support the approach. Particularly, in the tool a

feedback-based exploration strategy is proposed. This strategy groups equivalent widgets

in a state and assigns a priority value to each supported action of a group. Based on the

crawling result, the priority will be adjusted so that the crawler can have more chances to

select the actions to explore new GUI states. The experimental results show that the pro-

posed approach is effective. However, the evaluation is based on the activity and method

coverage metrics instead of statement and branch coverage.

Yan et al. [15] proposed a Multiple-Entry Testing (MET) approach and a tool called

Fax to explore and test Android apps. Unlike traditional exploration strategies that start the

exploration from a single default entry (i.e., MainActivity), this can lead to uneven cover-

age on activity components and may cause some marginal activities not to be explored. To

solve the problem, the MET approach aims to lunch activities directly under various con-

texts without executing long event sequences. Specifically, in the approach, the activity

launching models are constructed through static analysis and the complete launching con-

texts are generated via dynamic exploration. An adaptive exploration framework is also

provided to reassign events to multiple entries in order to achieve an in-depth exploration.

The experimental results show that Fax can have higher activity and method coverage than

that of Monkey [11] and can also reveal hidden bugs.

Su et al. [16] proposed an approach and a tool called Stoat (STOchastic model App

Tester) for testing Android apps. Particularly, the tool first explores the app under test to

construct a GUI model in the form of stochastic finite state machine. It then mutates the

GUI model by iteratively perturbing the probability values associated with the transitions

of the model. The mutated stochastic model is used to generate the test suites which are

further injected with system events to uncover possible errors of the app. The proposed

tool can effectively detect app crashes caused system events. However, the approach does

not employ the crawling results to further improve the code coverage of the exploration.

Gu et al. [17] proposed an automatic approach and a tool called AimDroid for testing

Android apps. The approach aims to reduce search complexity and app restart time by

avoiding unnecessarily long transitions and minimizing the number of app restart. Specif-

ically, the approach first systematically explores and discovers every unexplored activity

using a BFS algorithm. It then insulates the discovered activity and intensively exploits the

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1134

activity with a fuzzing algorithm guided by reinforcement learning. The experimental re-

sults show that, as compared to other works, AimDroid on average has better performance

in activity, method and instruction coverage.

Dong et al. [18] proposed an approach and a tool called TimeMachine for testing

Android apps. The main idea of the approach is to explore the GUI states of the app under

test while identifying the “interesting states” based on the change of GUI or code coverage.

The identified “interesting” state will be snapshotted and restored later when needed. Dur-

ing the exploration, if the crawler gets stuck (i.e., lack of progress), select and restore the

most progressive state from previously recorded state’s snapshots and then resume the ex-

ploration. The progressive state is determined according to the number of times the state

has been visited and the number of times the state has been identified as an “interesting”

state. The experimental results show that, as compared to state-of-the-art tools, the pro-

posed approach on average has better performance.

• Learning-based Crawling

Adamo et al. [19] presented a reinforcement learning approach for Android GUI Test-

ing. Specifically, the approach systematically selects events from the GUI to execute and

maximizes the cumulative reward based on Q-learning algorithm without requiring a

preexisting GUI model. The reward for executing an event is simply calculated inversely

proportional to how many times the event has been executed before. The experimental

result indicates that the presented approach can have better block coverage on average than

random test generation.

Vuong and Takada [20] presented an approach for Android app testing using Q-learn-

ing algorithm. In the approach, a Q-learning agent is used to select the next event to execute

based on a greedy policy and the current behavioral model of the app. The reward is calcu-

lated based on two aspects: GUI change and event execution frequency. The larger the

GUI changes between two states in terms of the number of events, the higher the reward

the agent receives. However, the reward decreases as the event execution frequency in-

creases. The experimental results suggest that the presented approach can improve code

coverage on average and is able to discover faults as compared to existing random and

model-based test tools.

Koroglu et al. [21] proposed a QLearning-Based Exploration (QBE) approach for

Android GUI testing. Particularly, the approach first obtains the GUI models of the apps

from a training set by exploring the apps automatically with a random exploration strategy.

These models are then used to obtain a transition prioritization matrix (i.e. Q-Matrix) based

on a reinforcement learning technique called QLearning for choosing event actions to ex-

plore the GUI of app under test (AUT) while maximizing the reward of activity coverage

or crash detection. The evaluation results show that QBE performs better than other tools

in terms of the activity coverage as well as the number of distinct detected crashes.

Li et al. [22] proposed a deep learning-based method for Android GUI test input gen-

eration and a tool called Humanoid. Specifically, Humanoid learns the interactions be-

tween human users and Android apps from a dataset, and builds a neural network model

to guide the tool to choose components and actions from the GUI of apps for achieving

higher test coverage. This allows Humanoid to generate test inputs just like a human user

interacts with the GUI components of an Android app. The evaluation results show that

Humanoid is able to achieve higher test coverage than other existing tools.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1135

Pan et al. [23] proposed a Q-learning based approach for testing Android apps and a

tool called Q-testing. In particular, the approach uses Q-table as a lightweight model to

find out the executable actions while exploring unfamiliar states (i.e., curious states) with

a curiosity-driven strategy to improve code coverage and fault revelation. Moreover, to

effectively determinate the reward and guide the exploration, a scenario division module

is proposed to extract and distinguish whether two GUI states in the same functional sce-

nario are similar using a neural network. The experimental results show that Q-testing per-

forms better than other tools in terms of code coverage and fault detection.

YazdaniBanafsheDaragh and Malek [24] proposed a black box testing tool for An-

droid apps called Monkey++. The proposed tool aims to extend Google Monkey [11]. Alt-

hough Monkey is significantly robust and highly efficient, it does not have any specific

knowledge about which event can be executed in the current GUI screen of an app. Thus,

many events sent by Monkey can be inexecutable (i.e., invalid). Monkey++ uses a deep

learning method to train a neural network that can determine the probability of an event

being executable (i.e., valid) in an app’s GUI screen, so as to guide Google Monkey to

send valid events and improve the performance of Monkey.

As compared to the above related work, the proposed method is a model-based ap-

proach that primarily focuses on detecting and guiding the crawler to get out of loops dur-

ing exploration to increase code coverage. Specifically, the approach selects the events to

execute based on the GUI model and the feedback-directed strategies, which enables the

crawler to exercise more code or explore more GUI states of the app under test, thereby

improving code coverage.

3. THE PROPOSED APPROACH

This section describes the proposed approach, including an overview of the approach,

the PFS algorithm, and the feedback-directed strategies, used to detect whether the clawer

get trapped in the intra- and inter-activity loops and guide the crawler to get out of the

loops.

3.1 The Feedback-Directed Approach

In order to detect and get out of the intra- and inter-activity loops, a feedback-directed

crawling approach is proposed. The main idea of the approach is to detect whether the

crawler gets stuck in an intra- or inter-activity loop without increasing code coverage after

executing each GUI event. If the crawler gets trapped in a loop, then guide the crawler to

select a target GUI state, and continue the app exploration from the target state, so that the

crawler can get out of the loop to improve its crawling efficiency while increasing code

coverage. To determine the target GUI state from which has high probability to increase

code coverage of the subsequent exploration, the proposed approach adopts the concept of

“GUI state weight”. A GUI state with a higher weight indicates that there may be a high

probability that more new GUI states can be discovered from that state, thereby improving

code coverages.

To illustrate the idea of the feedback-directed approach, Fig. 4 shows an example of

GUI state graph generated by the crawler during the app exploration, given that the crawler

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1136

starts from the initial state S0 and executes events e1, e2, e3, e4, e5, e6, e6, e7, etc. Assume

the crawler detects that it gets trapped in a loop at S4 after executing e7 (Fig. 4 (a)). The

crawler then can restart the app, go to the GUI state that has high probability to increase

code coverage from S0, and continue the exploration. Assume that in Fig. 4 (a) S1 is the

GUI state with the highest weight when the crawler restarts. The crawler will go to S1 and

then continue the exploration, which discovers a new GUI state S5 as shown in Fig. 4 (b).

The process will continue until exploration time out or no more unexplored GUI states and

events.

 (a) The crawler gets trapped in a loop. (b) The crawler gets out of the loop after restart.

Fig. 4. An example of GUI state graph to illustrate the idea of feedback-directed crawling.

To implement the feedback-directed approach, an algorithm called PFS (Priority First

Search) is presented, as shown in Fig. 5. Basically, in the algorithm Lines 2 to 7 are the

initialization of the crawler and the configuration of the feedback-directed strategy to be

used, and Lines 8 to 23 are the main body of the crawling algorithm. Specifically, in Lines

9-11, the algorithm will take a candidate unexplored event from the current GUI state to

explore. If such an event exists, the crawler does not get trapped, and the current state is

not equivalent to a previously visited GUI state, then the algorithm will call the procedure

executeEventAndUpdateStateRepository() in Lines 26-33. This procedure first executes

the event, changes current state, and updates the state model (i.e., the GUI state repository)

accordingly. It then updates the weights of the corresponding GUI states in the GUI state

repository and checks if the crawler gets trapped in the changed state based on the feed-

back-directed strategy. Finally, it examines if the changed state is equivalent to any previ-

ously explored GUI state.

Otherwise, the algorithm will restart the app under test and change the current state

to the root state (Lines 13-14). It then finds a target GUI state that has the highest priority

from the set of explored states (i.e., GUI state repository). If such a target state exists, go

to the target state from the root state (Lines 15-17), take a candidate unexplored event from

the target state (Line 18), and call the procedure executeEventAndUpdateStateRepository()

(Line 19) again to execute the event and update the weights of the GUI states accordingly.

The algorithm will stop crawling when timeout is reached or current state remains the root

state (i.e., no more GUI states need to explore).

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1137

Algorithm: Priority_First_Search

Input: Android app, GUIStateRepository stateRepository

Output: log, CodeCoverageReport

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

begin

Initialize the crawling environment

Start app

currentState = stateRepository.getCurrentState() = rootState

feedbackDirectedStrategy ← CoverageDirectedStrategy or StateDirectedStrategy //configured by user

isTrapped ← false

isEquivalent ← false

while(!timeout)

 event = find a candidate GUI event of the currentState

 if event ≠ null && !isTrapped && !isEquivalent then

 executeEventAndUpdateStateRepository(event, stateRepository)

 else

 app.restart()

 currentState = rootState

 targetState = find a target GUI state with the highest priority from stateRepository

 if targetState ≠ null then

 goto the targetState from rootState

 event = find a candidate GUI event of the targetState

 executeEventAndUpdateStateRepository(event, stateRepository)

 end if

 if currentState == rootState then break // all states have been explored and end crawling

 end if

end while

end

procedure executeEventAndUpdateStateRepository(e, stateRepo)

begin

 execute e

 stateRepo.updateCurrentState() // update current GUI state

 feedbackDirectedStrategy.updatePriority(stateRepo) // update the weights of corresponding GUI states

 isTrapped = feedbackDirectedStrategy.isTrapped()

 isEquivalent = stateRepo.isEquivalent()

end

Fig. 5. The algorithm of PFS (Priority First Search).

Note that the PFS algorithm will detect whether the crawler gets trapped in an intra-

/ inter-activity loop or goes to an equivalent GUI state. For both cases, PFS uses the

weights of GUI states to guide the crawler to get out of the loop or to stop further exploring

the equivalent state and restart the exploration from a target GUI state for the purpose of

increasing code coverage. To achieve this objective, two feedback-directed strategies,

CoverageDirectedStrategy and StateDirectedStrategy, are presented to (1) detect whether

the crawler gets trapped in the intra- and inter-activity loops, and (2) define and update the

weights of GUI states during the crawling. Specifically, the CoverageDirectedStrategy

uses code coverage information of AUT to guide the exploration of the crawler. The

StateDirectedStrategy uses GUI state information of AUT instead. Despite the perfor-

mance of both strategies can be affected by the implementation of AUT, the CoverageDi-

rectedStrategy can only be used when the source code of AUT is available. The StateDi-

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1138

rectedStrategy, however, has no such restriction and can be used when the source code or

apk of AUT is available. The details of these two strategies are described in Sections 3.2

and 3.3, respectively.

3.2 The Coverage-Directed Strategy

The CoverageDirectedStrategy is proposed to guide the behavior of crawler in the

PFS algorithm to improve the code coverage by directly using the information of how

much code of the app was executed through the exploration. Particularly, in this strategy,

the code coverage of the app measured after executing a GUI event is used to detect if the

crawler gets into trapped in the intra- or inter-activity loop as well as to update the weights

of GUI states.

• Detecting Intra- and Inter-Activity Loops using Code Coverage Information

The basic idea to detect if the crawler gets trapped in the intra- or inter-activity is to

count the number of times the crawler explores the same activity or switches between dif-

ferent activities and examines the average increase in code coverage. If the increase of

code coverage is less than the expected improvement, the crawler is considered trapped in

an intra- or inter-activity loop. Specifically, Eqs. (1) and (2) are the conditions used to

determine if the crawler gets trapped in the intra- and inter-activity, respectively. In Eq.

(1), C(s
x
i, t) denotes the code coverage of the app when the crawler visits any GUI state si

of an activity x for the t-th times, Countx is the counter that the crawler repeatedly revisits

the GUI states of the activity x, THintra is the threshold of times that the crawler can repeat-

edly revisit the GUI states within an activity, and CovAvgintra represents the expected av-

erage improvement of code coverage when the crawler revisits a GUI state within an ac-

tivity. Note that Countx will be increased by 1 when the next GUI state visited by the craw-

ler remains in the same activity. Otherwise, it will be reset to 0. In Eq. (1), when the number

of times the crawler repeatedly revisits the GUI states of the same activity exceeds a spec-

ified threshold (i.e., Countx  THintra), the average increase of code coverage is computed

for each revisit from the first time to the last (i.e., (C(S
x
j, Countx) − C(S

x
i, 1)) / Countx). If the

average increase of code coverage is less than the expected improvement, CovAvgintra, then

the crawler is considered to be trapped in the intra-activity loop.

Similarly, in Eq. (2) C(s
y
j, t) denotes the code coverage of the app when the crawler

visits any GUI state sj of the activity y for the t-th times, Counta is the counter that the

craw-ler continuously visits the GUI states between different activities, THinter is the thresh-

old of times that the crawler can continuously visit the GUI states of different activities,

and CovAvginter represents the expected average improvement of code coverage when the

crawler continuously visits the GUI states of different activities. Note that unlike Countx,

Counta will be increased by 1 when the next GUI state visited by the crawler is in a different

activity. Otherwise, it will be reset to 0. In Eq. (2), when the number of times the crawler

continuously visits the GUI states of different activities exceeds the specified threshold

(i.e., Counta  THinter), the average increase of code coverage is computed for each visit

from the first time to the last (i.e., (C(S
y
j, Counta) − C(S

x
i, 1)) / Counta). If the average in-

crease of code coverage is less than the expected improvement, CovAvginter, then the

crawler is considered to be trapped in the inter-activity loop.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1139

Trapintra-loop = true if Countx  THintra & (C(s
x
j, Countx) − C(s

x
i, 1)) / Countx < CovAvgintra

 (1)

Trapinter-loop = true if Counta  THinter & (C(s
y
j, Countx) − C(s

x
i, 1)) / Counta < CovAvginter

 (2)

To illustrate, Figs. 6 (a) and (b) show examples of detecting an intra- and inter-activity

loop with CoverageDirectedStrategy, respectively. Particularly, in Fig. 6 (a) the crawler

starts the exploration form the root state S0, where S0 is a GUI state of the MainActivity.

After executing event e1, the state of the app under test changes to S1, where S1 is a GUI

state of the TwoActivity. Assume that in the subsequent exploration, the crawler repeatedly

explores the states of the TwoActivity. Suppose that after executing event e2, the state

changes to S2 and the code coverage of the app is C(S2, 2). At this moment, the value of

Countx is set to 1, where x is the TwoActivity. Let THintra be 5. Thus, after executing event

e6, the state changes back to S1 and the value of Countx now becomes to 5. Assume the

code coverage of the app is now C(S1, 6). At this moment, the condition Countx  THintra

becomes true and the crawler will be considered to be trapped in an intra-activity if (C(S1,

6) − C(S2, 2))/5 is less than CovAvgintra.

Similarly, in Fig. 6 (b) the crawler starts the exploration form state S0, where S0 is a

GUI state of the MainActivity. After executing event e1, the state of the app changes to S1

of the TwoActivity and the code coverage of the app is C(S1, 1). Since states S0 and S1

belong to different activities, set the value of Counta to 1. Assume that in the subsequent

exploration the crawler executes events e2, e3, e4, e5, and continuously visits the GUI

states of different activities in the app. Let THinter be 5. Therefore, after executing event e5,

the state changes to S1 again, the value of Counta now becomes to 5, and the code coverage

of the app is C(S1, 5). At this moment, the condition Counta  THinter becomes true and the

crawler will be considered to be trapped in an inter-activity if (C(S1, 5) − C(S1, 1))/5 is

less than CovAvginter.

(a) An example of intra-activity loop.

(b) An example of inter-activity loop.

Fig. 6. Examples of detecting an intra- and inter-activity loop with Coverage-Directed Strategy.

• The Weight Design of GUI State for Coverage-Directed Strategy

To enable the crawler to have higher probability to explore the GUI states that may

improve the code coverage of the app under test, a heuristic method is used to design and

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1140

update the weights of GUI states based on the code coverage information of the app. Spe-

cifically, Eq. (3) gives the weight of a GUI state. If the GUI state s is a new state, the initial

weight of s is Init(s) which is further defined in Eq. (4). Particularly, Init(s) = 2 if the code

coverage of the app increases when the new state s is discovered; otherwise, Init(s) = 1.

Such a design aims to encourage the crawler to explore a GUI state that leads to increase

code coverage when the state was visited last time. The assumption behind this design is

that visiting such GUI state again may be more likely to lead to additional unexplored GUI

states which could increase the code coverage of the app. Note that even though a new

state does not increase code coverage when discovered, new state may still contain events

that lead to other unexplored states, thereby increasing the code coverage. As a result, there

is deliberately a small difference between two possible initial weights.

Moreover, in Eq. (3) if the GUI state s is an equivalent state or an old state visited

before, then the weight of s is updated to (1+)W(s), where the parameter  is defined in

Eq. (5) and W(s) is the weight of s before update. Specifically, in Eq. (5) the value of  is

determined according to the type of s and the code coverage result when visiting the state

s again. Note that the weight of s increases when  > 0, and decreases otherwise. Thus,

when s is an equivalent state or has no executable events, or the code coverage remains

unchanged when visiting s, the weight of s is decreased, thereby reducing the probability

that the crawler will visit s again.

() if is a new state
()

(1) () if is an equivalent or existing state

Init s s
W s

W s s


= 

+

 (3)

2 if code coverage increases when is discovered
()

1 otherwise

s
Init s


= 


 (4)

0.2 if is an equivalent state

0.1 if has no executable GUI events

0.5 if code coverage increases when visisting

0.1 otherwise

s

s

s


−

−

= 

−

 (5)

3.3 The State-Directed Strategy

While using code coverage information to detect if the crawler gets trapped in a loop

and update the weights of the GUI states is kind of easy and straightforward, it will require

considerable overheard if the collection and computation of code coverage need to be done

for every execution of GUI event. This overhead can consume a lot of crawling time and

therefore can significantly reduce the actual time a crawler is allowed to explore the app.

As a result, the overall improvement of code coverage may be affected when using the

CoverageDirectedStrategy. To avoid such overhead, the StateDirectedStrategy is proposed.

Instead of using code coverage information after executing each GUI event, this strategy

employs GUI state information to detect if the crawler gets into trapped in the intra- or

inter-activity loop as well as to update the GUI state’s weight.

The assumption behind the StateDirectedStrategy is that the number of GUI states

explored by the crawler in an app can be proportional related to the percentage of app’s

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1141

code executed during the exploration. That is, the more GUI states the crawler discovers,

the greater the chance of executing the app’s code. Notice that although StateDirectedStrat-

egy avoids the overhead of collecting code coverage, its result may be influenced by the

state abstraction method used in the crawler. This is because the state abstraction method

can determine whether a GUI state is a new state or is considered an equivalent state to

reduce the state space of the exploration.

• Detecting Intra- and Inter-Activity Loops using GUI State Information

The basic idea of StateDirectedStrategy to detect if the crawler gets trapped in an

intra- or inter-activity loop is to count the number of new GUI states discovered by the

crawler within a sequence of event executions while exploring the same activity or navi-

gating between different activities. The average increase of the number of GUI states is

then examined. If the average increase is less than the expected improvement, the crawler

is considered to be trapped in an intra- or inter-activity loop. In StateDirectedStrategy, Eqs.

(6) and (7) define how to decide whether the crawler is trapped in the intra- and inter-

activity, respectively. In particular, N(s
x
i, t) denotes the number of new GUI states discov-

ered when the crawler visits any GUI state si of an activity x for the t-th times, and Num-

Avgintra represents the expected average increase of the number of new GUI states discov-

ered when the crawler revisits a GUI state of an activity. The definitions of Countx and

THintra are similar to those specified in Eq. (1). Therefore, similar to Eq. (1), the crawler is

considered to be trapped in an intra-activity loop if the number of new GUI states (i.e.,

(N(s
x
j, Countx) − N(s

x
i, 1)) / Countx) increases on average is less than the expected improve-

ment (i.e., NumAvgintra).

Likewise, in Eq. (7) N(s
y
j, t), Counta, and THinter are similar to those defined in Eq. (2),

and NumAvginter represents the expected average improvement in the number of new GUI

states discovered when the crawler continuously visits a GUI state of different activity.

Hence, like Eq. (2), the crawler is considered to be trapped in an inter-activity loop if the

average increase in the number of new GUI states (i.e., (N(s
y
j, Counta) − N(s

x
i, 1)) / Counta)

is less than the expected improvement (i.e., NumAvginter).

Trapintra-loop = true if Countx  THintra & (N(s
x
j, Countx) − N(s

x
i, 1)) / Countx < NumAvgintra

 (6)

Trapinter-loop = true if Counta  THinter & (N(s
y
j, Counta) − N(s

x
i, 1)) / Counta < NumAvginter

 (7)

Alternatively, to ease the implementation of detecting if the crawler gets trapped in a

loop using the GUI state information, the number of revisits for the GUI states within a

sequence can be used. If the average number of revisits for each GUI state is greater than

a threshold (i.e., the acceptable minimum number of revisits for a state), the crawler can

be considered to be trapped. The idea is that, in a sequence of GUI states, the more states

the crawler revisits, the fewer new states the crawler can discover. Eq. (8) defines the con-

dition whether the crawler gets trapped in an inter-activity loop, where Len(si, sj) denotes

the number of GUI states in the sequence from si to sj, L is a pre-defined length of state

sequence, kNumOfRevisits((si, sj)) represents the sum of the number of revisits for each

state k within the state sequence (si, sj), and RevisitTH denotes the threshold of revisit.

Trapinter-loop = true if Len(si, sj)  L & kNumOfRevisits((si, sj))/Len(si, sj)  RevisistTH (8)

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1142

For illustration, Fig. 7 (a) shows an example of detecting an intra-activity loop using

Eq. (6). Particularly, in Fig. 7 (a) the crawler starts the exploration form the state S0 of the

MainActivity. After executing events e1 and e2, the state changes to S1 and then to S2.

Both states S1 and S2 are belong to TwoActivity. At this moment, the value of Countx is

set to 1, where x is TwoActivity, and the number of new GUI states is N(S2,2) = 3 (i.e., S0,

S1, and S2). Assume that in the subsequent exploration, the crawler repeatedly explores

the states of TwoActivity by executing events e3, e4, e5, and e6. Therefore, after executing

event e6, the state remains at S2 and the value of Countx now becomes to 5. Assume that

THintra is 5. Now the number of new GUI states discovered is N(S2,6) = 3. At this time,

Countx  THintra becomes true and the crawler is considered to be trapped in an intra-activ-

ity if (N(S2,6) − N(S2,2))/5 is less than NumAvgintra.

Similarly, Fig. 7 (b) shows an example of detecting an inter-activity loop using Eq.

(8). In Fig. 7 (b), the crawler starts the exploration form the state S0 of MainActivity.

Assume that in the subsequent exploration the crawler executes events e1, e2, e3, …, and

continuously visits the GUI states of different activities in the app. Suppose L = 10, so the

state sequence starting from S0 is <S0, S1, S2, S3, S1, S2, S1, S2, S1, S2> after executing

event e9. At this moment, the numbers of revisits for states S0, S1, S2, and S3 in the se-

quence are 0, 3, 3, and 0, respectively. Therefore, the revisits for each state in the sequence

is <0, 3, 3, 0, 3, 3, 3, 3, 3, 3> and kNumOfRevisits((S0, S2)) is 24. Since Len(S0, S2) = L

= 10, the condition Len(S0, S2)  L becomes true and the crawler is considered to be

trapped in an inter-activity if kNumOfRevisits((S0, S2))/ Len(S0, S2) is greater than Re-

visitTH.

(a) An example of intra-activity loop.

(b) An example of inter-activity loop.

Fig. 7. Examples of detecting an intra- and inter-activity loop with State-Directed Strategy.

• The Weight Design of GUI State for State-Directed Strategy

Similar to CoverageDirectedStrategy, a heuristic method is used to design and update

the weights of GUI states. However, instead of using code coverage information, StateDi-

rectedStrategy uses the GUI state information as feedback to initialize and update the

weights of the GUI states dynamically. Eq. (9) defines the weight of a GUI state in the

strategy. Specifically, if the GUI state s is a new state, the initial weight of s is Init(s),

which is further specified in Eq. (10) depending on the type of the GUI state. In the

heuristic method, a GUI state is classified into two types, normal state and popup state.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1143

(a) An example of a normal GUI state.

(b) An example of a popup GUI state.

Fig. 8. Examples of different kinds of GUI state with different initial weight.

As shown in Fig. 8, a normal state represents a regular activity’s view and a popup state

represents a popup view in an Android app. The popup view can be a popup window or

dialog and is usually created using Android UI components library, such as DatePicker,

TimePic-ker, and Alert Dialog. Therefore, visiting a popup view usually may not lead to

significant increase of code coverage. Thus, to encourage the crawler to explore an activ-

ity’s view and not to keep crawling a popup view, such as TimePicker in Fig. 8 (b), the

normal state is designed to have a much higher initial weight than the popup state. Addi-

tionally, in Eq. (10) a normal state of a new activity also has a higher weight than that of a

previously visited activity. Such design is to encourage the crawler to explore newly visited

activity rather than the one visited several times before since the newly visited activity may

have more chances to lead to unexplored states, thereby increasing code coverage.

() if is a new state
()

() () if is an equivalent or existing state, and = toState(,)t t

Init s s
W s

W s w s s s s e


= 

 + 

 (9)

100 if is a normal state of a new activity

() 50 if is a normal state of a visited activity

 25 if is a popup state of a visited activity

s

Init s s

s




= 



 (10)

Moreover, in Eq. (9) if the GUI state s is an equivalent state or an existing state visited

before, then the weight of s is updated to W(s) + w(st), where W(s) is the weight of s

before update, w(st) is the change of the weight and is defined in Eq. (11), and st is the

next state of s after executing an event e. This means that when the crawler executes an

event e and changes the GUI state from s to st, the weight of s is updated accordingly using

w(st) with respect to the weight of st. The idea of such design is that if the state st has a

high weight such as a new state of a new activity, then its previous state s should also have

a high weight (relatively high compared to others) to lead the crawler to visit st. On the

other hand, if the state st has a low weight such as a popup state, then its previous state s

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1144

should have a low weight too, so as to reduce the chance of visiting the state st from s.

In addition, in Eq. (11) the value of w(st) is determined according to the type of st.

Particularly, when the crawler visits st from s, if st is an equivalent state or has no execut-

able events, the value of w(st) is negative (i.e., −1  W(st) or −0.1  W(st)). Consequently,

the weight of s will be decreased, and such update will discourage the crawler to visit st

from s again. Otherwise, the value of w(st) is increased by 2-RC(st)
  W(st), where RC(st)

represents the revisit count of st. Initially, when the state st is discovered the first time,

RC(st) = 0, thereby 2-RC(st) = 1. Therefore, w(st) = W(st) and at this time w(st) has the

largest value. The value of w(st) will gradually become smaller and smaller as the number

of revisit count of st increases. As the result, the increase of the weight of s will become

very small if st is visited frequently through s. Once all the events of st are executed (i.e.,

st has no executable events), then the weight of s will start to decrease. The main concept

of this design is to encourage the crawler to explore a newly discovered state, which may

have a better chance to lead to the improvement of code coverage, while discouraging the

crawler to explore the state being visited many times which may not further increase code

coverage.

()

1 () if is an equivalent state

() 0.1 () if has no executable events

2 () otherwiset

t t

t t t

RC s

t

W s s

w s W s s

W s
−

− 


 = − 




 (11)

4. EVALUATION

To evaluate the effectiveness of the proposed approach, we has extended ACE to sup-

port the proposed approach and feedback-directed strategies. Several experiments were

conducted to evaluate the performance of the approach and the strategies. Specifically, the

following three research questions are addressed.

RQ1 What is the performance of ACE when CoverageDirectedStrategy is used to

guide the crawler?

RQ2 What is the performance of ACE when StateDirectedStrategy is used to guide

the crawler?

RQ3 Can the proposed approach of the extended ACE improve the code coverage

as compared to the search-based algorithm of original ACE?

The subject apps used in the evaluation are shown in Table 1, including name, line of

code, number of classes, number of methods, number of activities, and category of the

apps. These subjects are open source and available in F-Droid Market [25]. Table 2 shows

the hardware/software equipment used in the experiments. Moreover, the parameter set-

tings of the experiments are given in Table 3. The parameter values, such as threshold and

expected average improvement, are chosen to enable ACE to quickly detect potential intra-

or inter-activity loops in the subject apps, while the timeout is set to 1 hour for the purpose

of comparing the experimental results with those obtained using original ACE. In addition,

for detecting if ACE gets trapped in the intra- and inter-activity loops in StateDirectedStrat-

egy, Eqs. (6) and (8) are used. Two experiments were conducted to address the above re-

search questions. Each experiment is described in the following subsections.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1145

Table 1. The subject apps of the experiments.

App
Line of code

(LOC)
Number

of classes
Number of

methods
Number of

activities
Category

A2DP Volume 6984 23 847 9 Navigation
AnyMemo 19891 193 4158 28 Education

Bierverkostung 15649 190 3086 14 Note
BudgetWacth 4527 46 471 12 Financial
Caloriescope 2985 23 474 10 Healthy

CarReport 16181 177 2593 9 Financial
Chubbyclick 2361 18 510 2 Music

EpMobile 9564 97 1341 80 Medical Tools
FruitRadar 11010 109 1958 17 Tourism
Omninotes 14841 176 2678 13 Note
ParnenDD 2285 20 337 6 Navigation
Reminder 9058 43 4602 3 Clock
Rentalc 3489 27 291 13 Note
Silectric 3008 17 366 5 Financial

Tippytipper 2275 13 297 6 Financial

Table 2. The experimental equipment.

Hardware/Software Specifications

Desktop CPU Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
Desktop Memory 16GB LPDDR3 2133MHz
Desktop OS Windows 10
Smartphone model Samsung Galaxy A8

Smartphone CPU Samsung Exynos 7885 (8 cores, 2×2.2GHz + 6×1.6GHz)

Smartphone Memory 4 GB
Android version 9.0

Table 3. The parameter settings of the experiments.

Parameter Value Parameter Value
THintra 5 NumAvgintra 1
THinter 5 𝐿 10

CovAvgintra 1% RevisitTH 1
CovAvginter 1% Timeout 1 hour

4.1 Experiment 1

The first experiment addresses RQ1 and RQ2. We use the extended ACE to explore

the behavior of subject apps. To reduce the GUI state space, the state-equivalent strategies

of ACE [8] is used. The results are shown in Table 4, including the number of the crawler

trapped into intra- and inter-activity loops, the total time the crawler trapped in the loops,

and the improvement of statement code coverage. The results indicate that the intra- or

inter-activity loops can exist in many apps and both CoverageDirectedStrategy and State-

DirectedStrategy can successfully detect if ACE gets trapped in the loops. In addition, the

code coverage can be improved in average when ACE is guided to get out of the loops.

Moreover, the results also suggest that it takes more time for CoverageDirectedStrategy to

guide ACE to get out the loops than that of StateDirectedStrategy.

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1146

Table 4. The crawling results of ACE.

App

CoverageDirectedStrategy StateDirectedStrategy

The Num-

ber of

Loops

Total Time

Trapped in

Loops

Stmt. Cov-

erage Im-

provement

The Num-

ber of

Loops

Total Time

Trapped in

Loops

Stmt. Cov-

erage Im-

provement

A2DP Volume 12 08:52 11% 6 02:13 1%

AnyMemo 10 14:03 7% 9 05:26 9%

Bierverkostung 3 04:32 0% 2 01:06 0%

BudgetWacth 6 04:47 13% 1 00:49 1%

Caloriescope 12 09:30 43% 1 00:19 13%

CarReport 5 05:17 1% 2 01:43 1%

Chubbyclick 23 15:01 36% 26 14:01 34%

EpMobile 11 09:01 6% 3 02:02 10%

FruitRadar 1 01:48 0% 4 04:04 1%

Omninotes 9 10:39 6% 3 01:54 2%

ParnenDD 18 12:31 14% 1 00:42 0%

Reminder 12 11:58 9% 2 00:57 13%

Rentalc 2 01:26 0% 4 03:35 3%

Silectric 4 02:08 23% 3 01:54 0%

Tippytipper 9 06:45 30% 5 01:21 17%

Average 9.1 07:52 13.2% 4.8 02:35 6.9%

Note that even though the intra- and inter-activity loops can be detected, a few apps,

including Bierverkostung, FruitRadar, CarReport, and Rentalc, still do not seem to im-

prove code coverage during the experimental runs using CoverageDirectedStrategy or

StateDirectedStrategy (see Fig. 9). One possible reason for such results can be that the

numbers of intra- and inter-activity loops detected in these apps are all small. As a result,

there is no much improvement on code coverage introduced by getting out of loops. An-

other reason is that the crawling behavior is partially affected by the state-equivalent strat-

egy used by ACE. Thus, after ACE gets out of loops, the overall code coverage does not

increase apparently in the experimental runs.

Fig. 9. The code coverage improvement of subject apps.

11%
7%

0%

13%

43%

1%

36%

6%
0%

6%

14%
9%

0%

23%

30%

0%

9%

0% 1%

13%

1%

34%

10%

1% 2% 0%

13%

3%
0%

17%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Coverage Improvement

PFS-CoverageDirectedStrategy PFS-StateDirectedStrategy

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1147

Overall, the answer to RQ1 is “CoverageDirectedStrategy can successfully detect if

the crawler gets trapped in the intra- and inter-activity loops and guide the crawler to get

out of the loops to increase code coverage.” Specifically, the average number of intra- and

inter-activity loops detected by the strategy is 9.1, the average time to guide the crawler to

get out of loops is 7:52 (mm:ss), and the average improvement of statement code coverage

is 13.2%.

Additionally, the answer to RQ2 is “StateDirectedStrategy can successfully detect

whether the crawler gets trapped in the intra- and inter-activity loops and guide the crawler

to get out of the loops to increase code coverage.” Specifically, the average number of

intra- and inter-activity loops detected by the strategy is 4.8, the average time to guide the

crawler to get out of loops is 2:35 (mm:ss), and the average improvement of statement

code coverage is 6.9%.

4.2 Experiment 2

The second experiment addresses RQ3. For the comparison of the proposed approach,

the NFS (Nearest unvisited event First Search) algorithm [8] of original ACE is used. The

NFS is a search-based algorithm where the nearest unvisited event of the current GUI state

will be selected and executed to minimize the number of app restarts to improve the crawl-

ing efficiency. The experimental results indicated that on average NFS has better code

coverage than that of Depth-first search (DFS) algorithm [8]. Table 5 shows the experi-

mental results of NFS and PFS with CoverageDirectedStrategy, including the statement

coverage (SC), the branch coverage (BC), the number of app restarts, the improvement of

statement coverage (∆SC), and the improvement of branch coverage (∆BC). The results

indicate that, as compared to NFS, the CoverageDirectedStrategy of PFS has better or sim-

ilar code coverage in 9 apps (over 15 apps). The percentage of coverage improvement is

ranged from 1% to 11% depending on the implementation of individual apps under test.

However, for some particular apps, such as AnyMemo, CoverageDirectedStrategy

seems to perform poorly as compared to NFS. By examining the crawling details of this

app, we found that it took much of the crawling time (35 over 60 minutes) to create code

coverage report (i.e., overhead) for this large app (with 19,891 LOC) during the exploration

(see Fig. 10). Thus, the actual time spent to execute GUI events for exploring the app is

only 25 minutes. This may be the reason that CoverageDirectedStrategy has less code cov-

erage than NFS within 60 minutes time limit.

Fig. 10. The crawling time statistics of AnyMemo app using CoverageDirectedStrategy.

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1148

Table 5. The crawling results of NFS and PFS (CoverageDirectedStrategy).

App Algorithm

Statement

Coverage
(SC)

Branch

Coverage
(BC)

of

Restart
∆SC ∆BC

A2DPVolume
NFS 44% 25% 47

−6% −5%
PFS-CoverageDirectedStrategy 38% 20% 45

AnyMemo
NFS 49% 31% 25

−14% −7%
PFS-CoverageDirectedStrategy 35% 24% 21

Bierverkostung
NFS 47% 24% 41

−4% −3%
PFS-CoverageDirectedStrategy 43% 21% 29

BudgetWacth
NFS 43% 21% 51

11% 11%
PFS-CoverageDirectedStrategy 54% 32% 44

Caloriescope
NFS 66% 46% 49

−6% −8%
PFS-CoverageDirectedStrategy 60% 38% 41

CarReport
NFS 33% 24% 8

1% 0%
PFS-CoverageDirectedStrategy 34% 24% 42

Chubbyclick
NFS 77% 53% 31

0% 0%
PFS-CoverageDirectedStrategy 77% 53% 59

EpMobile
NFS 37% 16% 38

−5% 3%
PFS-CoverageDirectedStrategy 32% 19% 59

FruitRadar
NFS 44% 26% 19

8% 5%
PFS-CoverageDirectedStrategy 52% 31% 27

Omninotes
NFS 27% 21% 34

4% 2%
PFS-CoverageDirectedStrategy 31% 23% 25

ParnenDD
NFS 65% 49% 29

2% 2%
PFS-CoverageDirectedStrategy 67% 51% 52

Reminder
NFS 48% 35% 40

4% 1%
PFS-CoverageDirectedStrategy 52% 36% 50

Rentalc
NFS 64% 34% 55

10% 12%
PFS-CoverageDirectedStrategy 74% 46% 29

Silectric
NFS 91% 69% 75

2% 2%
PFS-CoverageDirectedStrategy 93% 71% 84

Tippytipper
NFS 80% 44% 105

−5% −3%
PFS-CoverageDirectedStrategy 75% 41% 91

 Average 0.13% 0.8%

Table 6 shows the experimental results of NFS and PFS with StateDirectedStrategy,

including the statement coverage, branch coverage, the number of app restarts, the im-

provement of statement coverage (∆SC), and the improvement of branch coverage (∆BC).

The results indicate that, as compared to NFS, StateDirectedStrategy of PFS has better

code coverage in 9 apps (over 15 apps). The percentage of coverage improvement is ranged

from 1% to 18% depending on the implementation of individual apps under test. Moreover,

it can be observed that for some apps CoverageDirectedStrategy performs better than

StateDirectedStrategy, while others do not.

Similar to CoverageDirectedStrategy, StateDirectedStrategy seems to perform poorly

for some apps as compared to NFS. For example, in Chubbyclick app, StateDirectedStrat-

egy seems to perform worse than NFS. By examining the crawling details of the app, we

found that this app can generate a lot of GUI states during the exploration, and a particular

event that can lead to increase code coverage in NFS was not executed within 60 minutes

time limit by the crawler of StateDirectedStrategy. As a result, StateDirectedStrategy has

less code coverage than NFS. Specifically, as shown in Fig. 11 (a), when the crawler trig-

gers the “+” or “−” button of the Chubbyclick app to turn up or down the volume on the

beats, the value of beat volume on the upper-left corner will be changed accordingly.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1149

Table 6. The crawling results of NFS and PFS (StateDirectedStrategy).

App Algorithm

Statement

Coverage
(SC)

Branch

Coverage
(BC)

of

Restart
∆SC ∆BC

A2DPVol-

ume

NFS 44% 25% 47
−1% −3%

PFS-StateDirectedStrategy 43% 22% 61

AnyMemo
NFS 49% 31% 25

−3% −1%
PFS-StateDirectedStrategy 46% 30% 51

Bierverkost

ung

NFS 47% 24% 41
−5% −4%

PFS-StateDirectedStrategy 42% 20% 60

Budg-

etWacth

NFS 43% 21% 51
10% 10%

PFS-StateDirectedStrategy 53% 31% 52

Calo-

riescope

NFS 66% 46% 49
−7% −7%

PFS-StateDirectedStrategy 59% 39% 59

CarReport
NFS 33% 24% 8

2% −2%
PFS-StateDirectedStrategy 35% 22% 53

Chubby-
click

NFS 77% 53% 31
−17% −16%

PFS-StateDirectedStrategy 60% 37% 58

EpMobile
NFS 37% 16% 38

18% 12%
PFS-StateDirectedStrategy 55% 28% 64

FruitRadar
NFS 44% 26% 19

2% 2%
PFS-StateDirectedStrategy 46% 28% 42

Omninotes
NFS 27% 21% 34

6% 4%
PFS-StateDirectedStrategy 33% 25% 37

ParnenDD
NFS 65% 49% 29

5% 8%
PFS-StateDirectedStrategy 67% 57% 48

Reminder
NFS 48% 35% 40

5% 4%
PFS-StateDirectedStrategy 53% 39% 46

Rentalc
NFS 64% 34% 55

8% 9%
PFS-StateDirectedStrategy 72% 43% 37

Silectric
NFS 91% 69% 75

−5% −5%
PFS-StateDirectedStrategy 86% 64% 111

Tippytipper
NFS 80% 44% 105

1% 1%
PFS-StateDirectedStrategy 81% 45% 96

Average 1.1% 0.8%

(a) The state that has many similar states.

(b) The unexploded state in StateDirectedStrategy.

Fig. 11. The GUI states of the Chubbyclick app being analyzed.

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1150

Therefore, a lot of GUI states with different values in beat volume can be generated. Un-

fortunately, StateDirectedStrategy seemed to be influenced in this special case, and before

the timeout expiration it did not have chances to trigger the “Setlist” button in the bottom-

right corner of Fig. 11 (a) that can lead to increase code coverage by executing a new

activity to allow the user to add a new song as shown in Fig. 11 (b).

Overall, the proposed approach on average has slightly better code coverage than that

of NFS in both feedback-directed strategies. Therefore, the answer to RQ3 is “yes, both

the CoverageDirectedStrategy and StateDirectedStrategy of PFS can have better code cov-

erage for most of the apps under test as compared to NFS.” The improvement of statement

coverage and branch coverage on average are 0.13% and 0.8% for CoverageDirectedStrat-

egy and are 1.1% and 0.8% for StateDirectedStrategy, respectively.

5. CONCLUSIONS AND FUTURE WORK

This paper proposed a feedback-directed approach to guide the GUI crawler to ex-

plore Android apps automatically to increase code coverage. In particular, the paper pre-

sents two situations where the crawler may continuously execute GUI events of an activity

or switch between different activities while adding very little or even no code coverage.

These two situations are called intra- and inter-activity loops, respectively. To detect if the

crawler gets trapped in such loops and guide the crawler to get out of the loops for improv-

ing code coverage, a PFS algorithm and two feedback-directed strategies, CoverageDi-

rectedStrategy and StateDirectedStrategy, are proposed to guide the behavior of the

crawler to exercise more code or explore more GUI states, respectively. The experimental

results show that the proposed approach and both feedback-directed strategies indeed can

detect intra- and inter-activity loops and guide the crawler to get out of loops to increase

code coverage.

The proposed feedback-directed strategies can have different improvements on code

coverage for different apps. Moreover, the experimental results can also be sensitive to

parameter settings. Therefore, in the future, we plan to conduct more experiments on dif-

ferent kinds of apps with different parameter settings to study how to select the feedback-

directed strategy with parameter settings for the types of apps under test to achieve better

code coverage. We also plan to study if the code coverage can be further improved through

combining two strategies. Further, the outcomes of the proposed approach can be influ-

enced by the state-equivalent strategy used by the crawler. Therefore, we plan to study

how the state abstraction method can affect the feedback-directed strategies and how to

leverage different state-equivalent strategies for the proposed approach to guide the craw-

ler to further improve code coverage.

REFERENCES

1. W. Yang, M. R. Prasad, and T. Xie, “A Grey-box approach for automated GUI-model

generation of mobile applications,” in Proceedings of the 16th International Confer

ence on Fundamental Approaches to Software Engineering, 2013, pp. 250-265.

2. D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon, “Mobi-

GUITAR – Automated model-based testing of mobile apps,” IEEE Software, Vol. 32,

2015, pp. 53-59.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1151

3. A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input generation system for

Android apps,” in Proceedings of Joint Meeting on Foundations of Software Engi-

neering, 2013, pp. 224-234.

4. W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps with minimal

restart and approximate learning,” in Proceedings of ACM SIGPLAN International

Conference on Object Oriented Programming Systems Languages and Applications,

2013, pp. 623-640.

5. Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI testing using

multi-level GUI comparison criteria,” in Proceedings of the 31st IEEE/ACM Interna-

tional Conference on Automated Software Engineering, 2016, pp. 238-249.

6. B. Jiang, Y. Zhang, W. K. Chan, and Z. Zhang, “Which factor impacts GUI traversal-

based test case generation technique most? A controlled experiment on Android ap-

plications,” in Proceedings of IEEE International Conference on Software Quality,

Reliability and Security, 2017, pp. 21-31.

7. T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y.-Y. Yang, Q. Zhang, J. Lu, and Z. Su, “Prac-

tical GUI testing of Android applications via model abstraction and refinement,” in

Proceedings of IEEE/ACM 41st International Conference on Software Engineering,

2019, pp. 269-280.

8. C.-H. Liu, W.-K. Chen, and S.-H. Ho, “NFS: An algorithm for avoiding restarts to

improve the efficiency of crawling Android applications,” in Proceedings of the 42nd

IEEE International Conference on Computers, Software, and Applications, 2018, pp.

69-74.

9. Omni-Notes, https://omninotes.app/, 2022.

10. W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI testing for Android appli-

cations,” in Proceedings of the 32nd IEEE/ACM International Conference on Auto-

mated Software Engineering, 2017, pp. 27-37.

11. Android UI/Application Exerciser Monkey, http://developer.android.com/tools/help/

monkey.html, 2022.

12. K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated testing for An-

droid applications,” in Proceedings of the 25th International Symposium on Software

Testing and Analysis, 2016, pp. 94-105.

13. D. Amalfitano, A. R. Fasolino, P. Tramontana, S. de Carmine, and A. M. Memon,

“Using GUI ripping for automated testing of Android applications,” in Proceedings of

the 27th IEEE/ACM International Conference on Automated Software Engineering,

2012, pp. 258-261.

14. Y. Cao, G. Wu, W. Chen, and J. Wei, “CrawlDroid: Effective model-based GUI test-

ing of Android apps,” in Proceedings of the 10th Asia-Pacific Symposium on Inter-

netware, 2018, Article 19, pp. 1-6.

15. J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-entry testing of An-

droid applications by constructing activity launching contexts,” in Proceedings of IEEE

/ACM 42nd International Conference on Software Engineering, 2020, pp. 457-468.

16. T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su, “Guided,

stochastic model-based GUI testing of Android apps,” in Proceedings of the 11th Joint

Meeting on Foundations of Software Engineering, 2017, pp. 245-256.

17. T. Gu et al., “AimDroid: Activity-insulated multi-level automated testing for Android

SHU-LING CHEN, CHIEN-HUNG LIU, WEN-QUAN XIAO

1152

applications,” in Proceedings of IEEE International Conference on Software Mainte-

nance and Evolution, 2017, pp. 103-114.

18. Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel testing of An-

droid apps,” in Proceedings of IEEE/ACM 42nd International Conference on Software

Engineering, 2020, pp. 481-492.

19. D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement learning for An-

droid GUI testing,” in Proceedings of the 9th ACM SIGSOFT International Workshop

on Automating TEST Case Design, Selection, and Evaluation, 2018, pp. 2-8.

20. T. A. T. Vuong and S. Takada, “A reinforcement learning based approach to automat-

ed testing of Android applications,” in Proceedings of the 9th ACM SIGSOFT Inter-

national Workshop on Automating TEST Case Design, Selection, and Evaluation,

2018, pp. 31-37.

21. Y. Koroglu et al., “QBE: QLearning-based exploration of Android applications,” in

Proceedings of IEEE 11th International Conference on Software Testing, Verification

and Validation, 2018, pp. 105-115.

22. Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based approach to

automated black-box Android app testing,” in Proceedings of the 34th IEEE/ACM In-

ternational Conference on Automated Software Engineering, 2019, pp. 1070-1073.

23. M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement learning based cu-

riosity-driven testing of Android applications,” in Proceedings of the 29th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, 2020, pp. 153-164.

24. F. YazdaniBanafsheDaragh and S. Malek, “Deep GUI: Black-box GUI input genera-

tion with deep learning,” in Proceedings of the 36th IEEE/ACM International Confer-

ence on Automated Software Engineering, 2021, pp. 905-916.

25. F-Droid, https://www.f-droid.org/, 2022.

Shu-Ling Chen (陳淑玲) received her Ph.D. degree in Indus-

trial and Manufacturing Systems Engineering from the University

of Texas at Arlington in 2002. She is currently an Assistant Profes-

sor of the Industrial Management and Information Department at

Southern Taiwan University of Science and Technology. Her re-

search interests include information management systems, software

testing, data mining, and big data analytics.

Chien-Hung Liu (劉建宏) received his Ph.D. degree in Com-

puter Science and Engineering from the University of Texas at Ar-

lington in 2002. He is currently a Professor of Computer Science

and Information Engineering Department at National Taipei Univer-

sity of Technology, Taiwan. His research interests include software

testing, software engineering, deep learning applications, and vocal

detection.

A FEEDBACK-DIRECTED APPROACH TO CRAWL ANDROID APPS 1153

 Wen-Quan Xiao (蕭文全) received his BS and MS degrees in

Computer Science and Information Engineering Department from

National Formosa University and National Taipei University of

Technology at Taiwan in 2019 and 2021, respectively. He is cur-

rently a Software Engineer of Titansoft Pte Ltd. His research inter-

ests include software engineering and software testing.

