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Each and every software product has to be tested for assess its quality, which is 

time-consuming if it is performed manually. Moreover, it is difficult to generate all pos-
sible data for finite testing set. Search based Software Testing (SBST) are used to resolve 
this issue by utilizing metaheuristic algorithms to automate the test data generation. 
Hence, an efficient test data set could be generated with minimum cost. Among many 
metaheuristic algorithms, Genetic Algorithm (GA) is widely used for test data generation. 
This research work implements GA for generating test data to execute all the branches in 
a program. In the literature, existing approaches for test data generation using genetic al-
gorithms are starts with random test data and find the optimum test data for a targeted 
branch. Then the entire GA process will be repeated to find the test data for the next tar-
get branch and it continues for all the target branches. In this a paper, a novel GA ap-
proach with a small buffer space is proposed for automated test data generation for 
branch coverage. When GA is searching test data for a particular target branch heuristi-
cally, it may reach the other target branches, if so happen, then those test data will get 
stored into the buffer space hence it is not necessary to run GA to cover that branch. Thus 
the Buffered Genetic Algorithm (BGA) approach outperforms the other GA based auto-
mated test data generation approaches in terms of number of iterations and search effec-
tiveness. The proposed approach employs control flow graph to traverse and predicate 
the branch coverage. Seven benchmark programs are instrumented to evaluate perfor-
mance of the proposed BGA based approach.    
 
Keywords: software testing, automatic test data generation, genetic algorithm, control 
flow graphs, buffered genetic algorithm 
 
 

1. INTRODUCTION 
 

Identifying test cases to evaluate a software product is an expensive process, which 
typically take half of the cost estimated for software development [12]. With the assist 
from automation tools the software products can be tested efficiently while reducing the 
time taken for writing test cases and also reduces the cost consumed by the manual test 
process. From the last two-decades, there are various approaches has been reported in the 
literature for automated test data generation such as random, path-oriented, goal-oriented 
and search-based approaches. Though these methods were reported with good results, 
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there are some limitations which indicate the further scope of the research in automated 
test data generation for software testing.   
 
 Random generators often unsuccessful as the test data created here doesn’t based on 

any objective function [50, 65, 70, 83, 87]. 
 Path-oriented generators have to identify the feasible path and then started constructing 

the test data set, often the paths are infeasible [23, 44, 67]. 
 Goal-oriented approaches [48, 49, 86] have proved their superiority then the random 

and path oriented generators. However, these methods are application specific rather 
than generic automation process.  

 With the realization that the process of software test data generation can be cast into a 
search problem, recently, Search-Based Software Testing (SBST) approaches are per-
forming better than any other techniques [6, 35, 36, 58].   

 
In general, the SBST approaches starts with a random set of test data, then they are 

tuned or pruned to build an optimum test data set while using the objective function like 
branch, statement and path coverage criterions [96]. This paper focuses on branch cov-
erage criterion. [1, 58] presented a comprehensive study on search based software testing 
techniques using metaheuristic techniques. However, the metaheuristic algorithm based 
test data generation approaches are over-performing the other methods, there some com- 
mon limitations as well: 
 
 One major issue is that the metaheuristic algorithms could be trapped with local mini-

mum.  
 For example, while generating test data for branch coverage using Genetic Algorithm 

(GA), the population may not contain any test data to reach the target node [27, 60]. 
 It has been reported in the literature that the percentage of coverage highly depends on 

nature of the program. 
 Moreover, the performance of the metaheuristic techniques is highly influenced by 

their parameter settings. 
 

Here, the proposed method tries to address most of the common issues reported in 
the literature as summarized above. This paper focuses on the use of Genetic Algorithms 
as a search method for automated branch coverage, in a technique referred to as Evolu-
tionary Structural Testing. In order to find a test data that executes a branch, the goal of 
the search is to find an input vector that takes a path which is driven down the branch of 
interest. The space of candidate solutions in which the search operates is the input do-
main of the function under test. In general, GA based test data generation algorithms for 
branch coverage, executes genetic algorithm independently for every target branch, 
hence it takes ‘n’ cycles to generate test data to cover all the ‘n’ branches. In this paper, a 
novel Genetic Algorithm with additional buffer space is proposed for automated test data 
generation. While searching test data for a branch, the generated data may end up with 
other target branch which is yet to be tested. In case of the proposed Buffered Genetic 
Algorithm (BGA), those test data are buffered and the future targeted branch is marked 
as tested to save the GA time from exploring the branch again. 

The rest of the paper is organized as follows: the following section presents a brief 
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review on search based software testing. Section 3 discusses the backgrounds related to 
automated test data generation using genetic algorithm. Section 4 explains the proposed 
GA for automated test data generation for branch coverage. Section 5 illustrates the ex-
perimental setup, the results are quantified and the performance of the proposed method 
is analyzed in Section 6. Section 7 concludes the paper with the contribution of the pro-
posed system toward search based software testing along with future directions.  

2. RELATED WORKS 

Automating the process of software testing reduces the development cost effectively. 
SBST approaches outperform the other techniques [58, 65]. In general SBST methods 
start with random test data set, and they are evaluated based on fitness function to find 
how close they were to reach the target branch. The test criterions such as branch cover-
age or statement coverage are used as fitness functions. Based on the fitness measure the 
test data will be modified according to the metaheuristic algorithms so that they can 
achieve the coverage. This section summarizes a comprehensive study on search based 
software testing methods.  

One common approach is random testing, where the test data sets are randomly 
generated and tested simultaneously to check the whether the testing criterion is satisfied 
or not. This kind of approaches is suitable for any structured programs and for any type 
of inputs. However, due to the lack of evaluation measure, this approach is expensive in 
terms of time and space, and the probability of finding the coverage is low [50, 70]. [73] 
uses GA to guide the search process. [31, 32] proposed a constraint based approach, 
where all the branching statements are translated into constraints and a logic program-
ming approach is used to find the test data set. [89] developed an evolutionary based 
approach for structural testing and showed that this approach has better performance 
than the existing methods. [60] demonstrated a path-oriented approach to find the cov-
erage for branch criterion programs. [22] proposed a search-based testing method to 
consider pointers and dynamic data structures, which also works for non-pointer input 
variables.  

Metaheuristic techniques such as simulated annealing [85], Tabu Search [25], ge-
netic algorithms [46, 64, 73], particle swarm optimization [93], quantum particle swarm 
optimization [2], scatter search [16], ant colony optimization [52], memetic algorithms 
[8], clonal selection algorithm [24], parallel cat swarm optimization [76, 77] and immune 
genetic algorithm [53, 82] have been applied to the problem of automated test data gen-
eration and provide evidence of their successful application. Among these, many of the 
article has been published for branch coverage [17, 21, 34, 45, 88, 89]. For a basic me-
taheuristic solution for branch coverage, initially the source code is instrumented to trace 
the program flow and find the distance between the current statements to the target 
statement. The distance is measured by cost functions. The objective of the metaheuristic 
technique is to minimize this cost so that the test data will reach the target statement. So, 
the input values are modified according to the search-based approach to minimize the 
cost. Hence, the test data set is constructed for each target nodes and cumulated to pre-
sent the final test data set. In this way, the metaheuristic based approaches are capable of 
generating test data set for any data type.  
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Among the various metaheuristic approaches, Genetic Algorithm (GA) based ap-
proaches are more widely used for search-based test data generation [94]. [85] has im-
plemented evolutionary search to find the coverage for precondition and postcondition 
statements. GA based test data generation is demonstrated for real-time software for both 
functional and structural criteria [37, 58, 65, 89]. 

[94] introduced the approach of GA based test data generation. At first the test data 
were generated by random generators then GA is used to find the test data for uncovered 
branches. For that the user has to interact with the system to choose a particular path or 
branch to be covered, where the branch distance is estimated as fitness function. [74] ex- 
perimented dynamic and static testing with GA based test data generator and concluded 
that dynamic testing was not effective while static was not practical.  

[4] proposed a test method to explore all possible test data inputs using GA. Similar 
idea was implemented by [45], here the Control Flow Graph (CFG) is constructed to 
trace the data flow, and the graph is traversed for each test data to find the coverage by 
following Breadth First Search (BFS) traversal approach. [64] proposed GADGET (Ge-
netic Algorithm Data Generation Tool), to instrument the program automatically and 
generate the test data set using GA. However, this method can work only for scalar in-
puts. [85] proposed a test criteria based on both functional as well as non-functional pro- 
perties for evolutionary based test data generator approach. Here the exceptions are con-
sidered as testing criterion. The experimental results show that optimization based ap-
proach’s efficiency for test data generation.  

[73] extended the work of [46] by introducing control dependency graph to measure 
the branch distance rather than by using CFG. The result indicates that this approach 
outperforms the approaches proposed by [46, 64]. In addition to that this approach can 
automate the test data for both branch as well as path coverage. [54] further extended this 
work by introducing weighted hamming distance. However, this method performed bet-
ter only for path coverage criterion. [19] proposed a search based test data generator for 
path coverage, where they start with classifying the feasible and infeasible paths and then 
different fitness functions are equipped to generate the test data. [91] developed GA 
based test data generator by using normalized branch distance added with approximation 
level as fitness function. This approach is suitable for finding the coverage for local 
branches, and no description about multiple target coverage [7, 36, 58, 59]. [25] pro-
posed an approach based on Tabu search with the [49] chaining approach. [13] intro-
duced a novel fitness function based on the organisms’ fossil record, and the quantified 
result indicates that this fitness function is unable to produce consistent performance for 
the benchmark program. 

[40] used GA with multiple set of populations for path coverage. The experiments 
show that this approach is able to achieve better path coverage in terms of exploration 
and convergence rage. [84] focused on unit testing while using GA for test data genera-
tion. Here the chromosomes are encoded in such a way to represent the input vectors as 
well as objective functions too. The experiments are carried out with standard Java li-
braries. [13] proposed a technique for long sequence testing. The test cases are divided 
into small intervals and the test data generators are repeatedly executed to find the cov-
erage. This method is more suitable for testing in large volume, however, the results are 
analyzed only for very few programs. [66] shows the efficiency of GA based test genera-
tion using program dependencies. [95] demonstrated that GA based automated test data 
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generation is more suitable for both small and large scale programs. [18] proposed an 
Immune GA as a hybrid evolutionary algorithm, and its performance is analyzed with 
non-standard programs. [21] proposed two fitness function based on hamming distance 
and branch distance and implemented with GA based test generation towards path cov-
erage. The simulation results indicate that this method can converge faster than standard 
GA based test data generation. 

[20] developed a GA based test data generator for path coverage, where the fitness 
function is evaluated as closeness of execution path and target path with overlapping sub 
path. The experimental results show that the proposed fitness function can achieve better 
coverage ratio than fitness function based on single specific path. [63] experimented the 
scalability of test data generators and reported that GA outperforms random generators in 
terms of number of branches and statements, is increased. [39] reported that the parallel 
execution of fitness estimation may enhance test data generation performance as pro-
grams become large with increased number of branches and search space. [41] demon-
strated the issues like composition of fitness function for path coverage and parameter 
tuning for GA based test data generation. [69] proposed a faster GA based approach by 
generating more suitable test cases for path testing, and the performance is compared 
with [21] approach. [59] in his paper also focuses primarily on the design of fitness func-
tions. [71] compared the performance of messy-GA and random search based test data 
generation and reported that messy-GA outperforms with better coverage. [15] discussed 
many nature inspired algorithms towards search based software testing process. [43] 
presents a survey of study on different techniques of test case generation. 

In the overall GA is most widely used in test data generation, however, one com-
mon limitation is that the algorithm has to be repeated for each target branch. In this pa-
per, the GA based test generator is extended to cover at least more than one branch at 
every iteration, hence the run time is half way reduced.  

3. BACKGROUND 

Test data generation in white-box testing (source code-based testing) is a process of 
finding program input on which a selected element (e.g. a not yet covered statement) is 
executed. Finding such input test data manually can be very labor intensive and expen-
sive. Therefore, using metaheuristic algorithms to generate test data is efficient [29, 47, 
50, 61, 66]. In this section, an overview of the search-based test data generation and 
computation of the branch cost functions for the coverage of individual structural targets 
are presented. However, some basic concepts are introduced first. 
 
3.1 Search Based Software Testing 
 

Search-based optimization methods, such as genetic algorithms, ant colony optimi-
zation and simulated annealing have successfully been applied in solving a wide range of 
software testing problems [3, 28, 36, 38, 55, 58, 79]. [92] combines genetic algorithms’ 
characteristics and evolution strategies, using simulated evolution as the model of a 
search method, employing operations inspired by genetics and natural selection. In es-
sence, the problem of generating test data reduces to the well-understood problem of 
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function minimization. In general, evolutionary algorithms generate a set of candidate 
solutions referred as population and iteratively recombine them to find the optimum can-
didate. At the end of every iteration the candidates are evaluated based on their fitness 
value and passed for the next generation only if they have better fitness value. In case of 
test data generation, the fitness functions are to be minimized to find how closer the can-
didate test data reaches the target node, hence, zero indicates that the algorithm found the 
test data to cover the target node. There are two categories of software testing: stating 
and dynamic testing. In static testing, the programs are analyzed without actually exe-
cuting them, whereas in dynamic testing, the source code is instrumented and executed to 
find the coverage. This paper follows the dynamic testing approach, thus the target 
reachability of the test data could be estimated and updated heuristically to reach the 
target node.   

Functional and structural testing are two major methods in the dynamic testing tech- 
nique. In case of Functional (black-box) testing, it is not necessary to explore the internal 
structure and behavior of the source code. Instead, the test cases are to be identified for 
which the source code doesn’t producing the correct output. In case of structural (white- 
box) testing, the logic, control flow and data dependency of the source code has to be 
tested. This paper proposes an algorithm for structural testing. There are two approaches 
of structural testing: control flow and data flow. Control flow testing is based on the 
control graph of the program and considers how to select the testing path for discovering 
more errors. On the other hand, data flow testing derives test data by considering how 
data are defined and how the data are used in a program. However, path testing is one of 
the white-box testing techniques. Via test cases, one intends to execute all possible paths 
of control flow through the program, then possibly the program can be tested completely 
[80, 81]. 
 
3.2 Control Flow Graph 
 

Fig. 1 demonstrates the proposed framework for automated test data generation for 
branch coverage. At first, the source code is scanned to construct the instrumented code 
and the Control Flow Graph (CFG).  

 

 
Fig. 1. Proposed framework for automated test data generation. 
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A CFG is a directed graph, G = (N, E, s, e), where N is a set of nodes, E is a set of 
edges, with one entry node (s) and an exit node (e) respectively. Each node in the graph 
n  N corresponds to a programming statement. Each edge e  E, represents control flow 
of the program from one statement (node) to another, e = (ni, nj). The nodes can be either 
normal data manipulation or conditional statements. In case conditional or decision 
statements, it will have two paths: one exists when the condition is true, the other path is 
for the false case, both are known as branches. The condition for taking either true or 
false branch is called as branch predicate. For example consider the following code as 
shown in Fig. 2, which receives three sides of the rectangle as input and classify the type 
of the rectangle as it return 1, 2, 3, or 4 stands for scalene, isosceles, equilateral or 
not-a-triangle respectively [65]. Fig. 3 shows the corresponding CFG for the code, where 
Node-1 represents the first branching predicate, for this condition Node-2 will be exe-
cuted for the true predicate and the control will continue with Node-3, for the false pred-
icate the control will skip Node-2 and directly move on to Node-3. In case of Node-10, 
Node-12 and Node-13 are the true and false predicates respectively. Here the target 
nodes are 2, 12, 13, 14, 16 and 19.  

 
Fig. 3. Control flow graph for Michaels’ triangle classification problem. 
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function funMichaelTriangle(i, j, k) 
 
% Michaels’ Triangle Classification Problem 
 
 tri = 0;                % Node 0 
 if ((i <= 0) || (j <= 0) || (k <= 0))        % Node 1  
  tri = 4;               % Node 2  
 end 
 if (i == j)               % Node 3  
  tri = tri + 1;             % Node 4  

end 
if (i == k)             % Node 5 

tri = tri + 2;         % Node 6 
end 
if (j == k)             % Node 7 
 tri = tri + 3;           % Node 8 
end 
 
if (tri == 0)             % Node 9 

if ((i+j<=k) || (j+k<=i) || (i+k<=j))  % Node 10 
  tri = 4;            % Node 12 
 else 
 tri = 1;             % Node 13 
 end 
else 

if (tri > 3)          % Node 11 
  tri = 3;            % Node 14 
 elseif ((tri == 1) && (i+j > k))     % Node 15 
  tri = 2;            % Node 16 
 elseif ((tri == 2) && (i+k > j))     % Node 17  
  tri = 2;            % Node 16 
 elseif ((tri == 3) && (j+k > i))     % Node 18  
  tri = 2;            % Node 16 
 else 
  tri = 4;            % Node 19 
 end 
end 
disp(tri)              % Node 20 

Fig. 2. Michaels’ triangle classification program. 
 

For every sample test data, the program will be executed with the instrumented code 
and the corresponding path in CFG is traced to test whether the test data is able to reach 
the specified target. The path (bp) visited by the test data is saved as sequence of nodes  

 
bp = (n1, n2, … , nm) such that for each i, where 1 ≤ i ≤ m, (ni, ni+1)  E. 
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For every branching condition (branch node) ni, there will be two exists like nj and 
nk, and there are control dependent on ni. From the above figure, Node-12 is control de-
pendent on Node-10, and Node-10 is control dependent on Node-9. Node-12 is not di-
rectly control dependent on Node-9, however, Node-12 is transitively control dependent 
on Node-9. For structured programs, control dependence shows the nesting structure of 
the program. 
 
3.3 Branch Ordering  
 

After the construction of CFG, it is important to choose by which order the nodes in 
CFG are going to be visited. There are four types of branch ordering methods are re-
ported in the literature such as: Breadth first strategy (BFS), Depth first strategy (DFS), 
Path prefix strategy (PPS), Random strategy (RNS). The BFS starts exploring the nodes 
level by level, DFS visits the nodes in depth wise, the random strategy traverse the graph 
in random, and the PPS traverse the graph with predefined paths [72]. To achieve branch 
coverage, the objective is to find an input vector that satisfies all the condition through 
the path and ends at the target node. The test data often fails to reach the target node be-
cause of infeasible paths. To resolve this issue, Prather & Mills [67] suggested the use of 
an adaptive strategy in which one new test path, or sub-path is added at a time and pre-
vious paths serve as a guide for selection of subsequent paths using some inductive 
strategy, called as Path Prefix Strategy (PPS). This paper follows the PPS as [72] report-
ed that this outperforms other branch ordering strategies. Fig. 4 illustrates PPS based 
branch ordering. 

 

 
Fig. 4. Path prefix strategy. 

 

For a path bp1 that is traversed in an execution, a reversible prefix bp2 is defined as 
the minimal initial portion of path bp1 to a target node ‘t’, whose branches are not yet 
covered, and the branch that is covered by bp1. For example, in Fig. 4, if path traversed 
is bp1: (s, …, a, b, … t), branch (a, c) is not covered and (s, …, a) is the minimal initial 
portion of bp1 that satisfies the condition above, then (s, …, a, b) is a reversible prefix. 
Accordingly, branch (a, c) is a candidate for selection for coverage. If branch (a, c) is 
selection for coverage, then the path (s, …, a, c) is said to be the reversal of path (s, …, a, 
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b). In the path prefix strategy, at any stage, if (n1, …, nk-1) are the traversed paths, the 
idea is to find an input xk to cause the reversal of shortest reversible prefix, with reversal, 
amongst all the nodes in the path. In this case prefix bp2 identifies the next branch to be 
considered for coverage.  
 
3.4 Genetic Algorithm 
 

Genetic algorithm (GA) [30] is one of the most popular evolutionary-based algo-
rithms. It has been successfully applied to numerous problems both at the level of struc-
tural and parametric optimization [9], and to software testing, for example [10, 58, 90]. 
GA is a search method utilizing the principles of natural selection and genetics [42]. 
Concisely, GA operates on a set of candidate solutions, called a population, to a given 
problem. The candidate solutions are evaluated based on their ability to solve the prob-
lem. The results of the evaluation are used in a process of forming a new set of solutions. 
The choice of individuals that are passed to the next population is performed in a process 
called selection. This process is based on ‘goodness’ of candidate solutions. Additionally, 
genetic operators, i.e. crossover and mutation, are employed to modify selected candi-
dates. Such sequence of actions is repeated until some final criterion is fulfilled. GA 
based test data generation process starts with random population of test set chromosomes. 
Each chromosome of test data is evaluated for their branch distance, then the selection 
operator is applied to choose most feasible parents from the set, with them the replace-
ment procedure such as crossover and mutation operators are applied to generate new set 
of population. The next iteration of GA is started with this newest population, once again 
the genetic operator are applied with this newest population to regenerate the next set of 
chromosomes. At every iteration the termination condition is checked to stop the GA 
procedure. The reachability from every test input to the target branch node is measured 
with two metrics called approach level and the normalized branch distance as discussed 
in [89]. This distance measure is used as fitness function for the GA procedure to be 
minimized [11, 48, 60, 72].The following figure summarizes the classical GA procedure 
used to automate the test data generation for branch coverage.   
 

Input: Instrumented source code 
Output: Set of test data for the target nodes. 
Initialization: GA parameters, TestData (TD) array 
for each target node 
 Initial population of real values (P)  Generate random population of test data 
 while (not termination condition) do   
  Calculate the fitness value (branch distance) for each test data, f(P)   

if (target is reached) 
Update TD with the chromosome which reaches the target node 
Continue with the next branch 

end 
  C  { }  // Initialize children population  
  Sort the chromosomes in descending order based on their fitness value 
  while |C| < |P| do 



BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 255

   Select a pair of parents for matting (using any of the selection methods) 
   Mate the parents to create children c1 and c2 
   Perform crossover and mutation on children 
   C  C  {c1, c2}  
  end 

end    // Next generation 
end    // Next Target 

Fig. 5. Genetic algorithm procedure. 
 

 
Fig. 6. Computation of branch distance. 

 

Fig. 6 demonstrates an example for computing the fitness function for a test data. 
Node-17 (shaded node in the figure) is considered as the target node here, the following 
are the possible situations and their corresponding fitness values: 
 
 If the condition ((i<=0)||(j<=0)||(k<=0)) satisfies at Node-1, the target node is 5 level 

away from it, hence the approach level is 5,  
 If the condition (i==j) at Node-3 fails, then the approach level is 4, 
 Suppose, if the condition (i==k) at Node-5 is failed then the AL is 3,  
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 If the condition (j==k) at Node-7 is failed then the AL is 2, 
 If the condition at (tri==0) at Node-9 is failed then the AL is 1, 
 And, if the condition (tri>3) at Node-11 is failed then the AL is 0, i.e. the target will 

never be reached. 
 

For all the above situations, the branch distances are calculated as discussed in [72]. 
The fitness function will result 0 when all the aforementioned conditions are satisfied, 
that is the termination condition for GA. 

Generating the test data inputs with minimum time is always an open problem in 
software testing towards cost reduction. Though GA-based SBST approach with path- 
prefix strategy significantly improves the performance of automated the test data genera-
tion [72], still it traps into local minima. [57] proposed an Incremental Genetic Algo-
rithm (IGA) to further improve the GA’s test data generation performance. The IGA 
based test-data generation has two-phases and works as follows:  
 
 In the first phase, a classical GA starts with a random set of test data and finds the fea-

sible data for each branch node of CFG independently.  
 In the second phase, a classical GA starts by making use of the feasible parents from 

the previous phase as initial population and then proceed to automate the test data gen-
eration process to cover all the targets.  

 
This incremental version of GA is followed in this research along with a novel mo- 

dification to extend its performance.  

4. BUFFERED GENETIC ALGORITHM (BGA) 

From the previous work [57], it is shown that IGA outperforms GA for automated 
test data for branch coverage. [65] makes use of coverage table to trace the conditions to 
be satisfied to reach a target branch. In common GA has to be executed for each target 
branch for finding the test data. For each target, at every iteration of GA, the coverage 
table is updated to guide the search. The authors reported that sometime the test data 
might satisfy a condition which is not required to be true for the current target branch, in 
such case, those data are stored as they can be used in future. This approach influence to 
propose the Buffered Genetic Algorithm (BGA). Here, while GA searches for a particu-
lar target branch, the test data (chromosome) might end up with another target which is 
to be explored further. In general, GA based software test data generation would take 
more iterations as if the chromosomes (test data) are unable to reach the target branch 
means they are ending with other target branches. In such situation, it is proposed to add 
a buffer space to GA, so that, those non-specific target data could be saved in that space, 
in order to indicate GA not to generate test for that branch again. Moreover, this ap-
proach could be adapted to any search-based software testing approaches. Hence, while 
searching test data for a target branch may result in minimum of 2 to 3 branches, which 
in turn, reduces the computation time.   

The proposed Buffered Genetic Algorithm (BGA) is implemented in Phase 2, i.e. 
while executing the Incremental Genetic Algorithm (IGA). IGA starts with the initial 
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population which is derived from the first phase. The proposed enhancement adds an 
extra buffer space to IGA, where a coverage array Bt is used to trace the coverage of 
each target ‘t’ and an array of TestData (TD) to store the collection of test data for all the 
branches. The number of cells in that coverage array are equal to the number of targets in 
the program. Initially, all the cells are assigned with the value 0 to represent that no test 
data has been generated for any of the target branch, whenever a test data is found for a 
branch (might be a target or non-target) ‘i’ its corresponding coverage flag is set to 1. 

 
Bt = 0, for t = 1, …, n 
 
And for the array of the test data set, it is initialized with a null set, and whenever a 

test data is found for a branch the array is updated with the test data along with the target 
branch (node) number at the first column of the array. 

 
TD = [ ] 
 
Then, the IGA starts with the first target branch. While GA searches the test data for 

the first target branch, the current population may contain a chromosome to reach anoth-
er target branch. In such case, the chromosome of test data will be stored in a buffer 
space, and the corresponding target branch flag is set in coverage array. For example, 
while searching the test for the 1st target branch, if the population contains a test data to 
reach 4th target branch, then the test data store into a buffer area, and the corresponding 
cell in the coverage table is set to 1. 

 
B4 = 1, and TD = {4, chromosome of test data} 
 
Once the target branch is reached, then the next iteration of GA starts by choosing 

the next uncovered target from the coverage array, among the uncovered list of branches, 
the next target will be chosen based on branch metrics as discussed in section 3.3. The 
GA process will be continued till it finds the test data for all the target branches. Fig. 7 
summarizes the proposed BGA algorithm for automated test data generation for branch 
criterion.  
 
Input: Instrumented source code 
Output: Set of test data for the target nodes. 
Initialization: GA parameters, TestData (TD) array, Coverage Array (B) 
for each target node  
 Initial population of real values (P)  Feasible Parents List from Phase-1  
 while (not termination condition) do   
  Calculate the fitness value (branch distance) for each test data, f(P)  

if (target is reached) 
Update TD array with the chromosome which reaches the target node 
Update the coverage array B 
Continue with the next branch (based on branch metrics) 

end 
  Sort the chromosomes in descending order based on their fitness value 
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  C  { }  // Initialize children population  
  while |C| < |P| do 
   Select a pair of parents for matting (using any of the selection methods) 
   Mate the parents to create children c1 and c2  
   Perform crossover and mutation on children  
   C  C  {c1, c2}  
  end 

end    // Next generation 
end    // Next Target 

Fig. 7. The proposed BGA for automated test data generation. 
 

Buffered GA – based test data generation could cover more than one target branch 
at a time. Table 1 shows a sample number of generations taken for a triangle classifier 
problem, the boldfaced and underlined labels are the primary targets for the correspond-
ing run. At first, classical GA is executed to find the optimum test data for each branch 
nodes. Here we have 10 branch nodes (Node-1, 3, 5, 7, 9, 10, 11, 15, 17, and 18), hence 
GA will result in 10 optimal set of chromosomes. Then they are used as initial popula-
tion for IGA and it is executed for every target node. As shown in Fig. 3, here we have 
five target nodes: Node-13 for Scalene (SCA), Node-14 for Equilateral (EQU), and 
Node-16 for Isosceles triangle (there are three possible reach for isosceles, which are 
from the nodes-15, 17, and 18, they are labelled as IS1, IS2, and IS3. as a result it took 
160 fitness evaluation i.e., 16 populations to generate the test data for all the target 
branches. It is noticed that the first run of IGA towards the Target-1 (EQU), unexpect-
edly reaches the targets IS1 and IS3, however those samples are avoided as the current 
run is focused only on EQU target. This is where the proposed BGA approach makes the 
difference. In BGA approach,  

 
 Trial-1 completes by single run, where the primary target is EQU, but while trying the 

reach that target, the other chromosomes in the population produces the test data for the 
other target nodes too. So the execution stops at first run itself, which in turn takes 80 
fitness evaluation, i.e., 8 populations, which is 0.5 times faster than the IGA execution. 

 In Trial-2 of BGA, first run takes 1-population to reach the primary target EQU, which 
also generated data for IS3. As there are remaining targets to be covered, the second 
run continues, which reaches the next target IS1 with 3-populations. Then the third run 
started for target IS2 and reaches by 6-populations which also generated the data for 
the final target SCA. In total, this trail of BGA took 10-populations to find the test data 
for all five targets it is 0.37 times faster than IGA. 

 Trial-3, first run reaches the EQU target node with 2-populations, also covers the tar-
gets IS1, IS2 and I3, the second run covers the one remaining target SCA in 2-popula- 
tions. Totally, in this trail, BGA covers all the branch targets within 4-populaitons, 
which is 0.75 times faster than IGA.  

 
These sample results encouraged apply the proposed BGA approach to other bench- 

mark programs and the results are quantified in the following section. 
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Table 1. Sample test data generation outputs from IGA and BGA. 

Approach Runs Output of Test data 
#Test 
Data 

IGA Target-1 NoT, NoT, NoT, IS3, IS1, IS3, NoT, NoT, NoT, NoT, NoT, 
IS1, EQU, NoT, NoT, NoT, IS3, EQU, NoT, IS3 

20 

Target-2 NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3, EQU, IS3 10 
Target-3 NoT, NoT, NoT, NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3, 

EQU, NoT, IS3, IS1, EQU, EQU, IS3, IS3, NoT, NoT, NoT, 
NoT, NoT, NoT, NoT, IS3, IS3, IS1, EQU, EQU, IS3, IS3, IS3, 
IS3, IS3, IS3, IS3, EQU, NoT, IS3, IS3, IS1, EQU, EQU, EQU, 
IS3, IS3, IS3, IS3, IS3, IS3, NoT, IS1, EQU, EQU, IS1, EQU, 
IS1, IS1, EQU, IS1, SCA, IS3, IS1, IS1, IS1, EQU, EQU, EQU, 
IS1, EQU, IS1, IS1, EQU, IS1, IS1, IS1, IS2, IS1 

80 

Target-4 NoT, NoT, NoT, NoT, NoT, IS1, IS1, EQU, EQU, IS1, EQU, 
NoT, NoT, NoT, IS3, EQU, NoT, IS3, EQU, EQU 

20 

Target-5 NoT, NoT, NoT, NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3, 
EQU, NoT, IS3, IS3, IS3, IS1, EQU, EQU, NoT, NoT, NoT, 
NoT, EQU, NoT, EQU, IS3, IS3, SCA, SCA 

30 

  Number of Test data Sets 160 
BGA 

Trial-1 
 

Run-1 NoT, NoT, NoT, NoT, NoT, IS1, IS1, IS3, IS2, IS3, NoT, IS3, 
IS1, IS1, IS2, IS3, IS3, IS3, IS3, NoT, SCA, IS2, SCA, IS1, 
IS1, IS1, IS2, IS2, IS1, IS3, NoT, NoT, NoT, IS3, IS1, IS2, IS1, 
IS1, IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1, SCA, SCA, IS1, 
IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1, IS2, IS1, IS1, IS1, 
IS1, IS1, IS1, IS1, IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1, 
IS2, IS2, EQU, SCA 

80 

  Number of Test data Sets 80 
BGA 
Trail-2 
 

Run-1 NoT, NoT, NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU 10 
Run-2 NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU, EQU, NoT, NoT, 

EQU, IS3, IS3, NoT, NoT, NoT, IS3, IS3, EQU, EQU, EQU, 
EQU, IS3, IS3, IS3, IS1, EQU, EQU, IS1 

30 

Run-3 NoT, NoT, NoT, NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU, 
EQU, EQU, IS3, IS3, NoT, NoT, NoT, IS3, IS3, IS1, EQU, 
EQU, EQU, IS1, EQU, IS3, IS3, IS3, EQU, IS1, EQU, EQU, 
EQU, EQU, IS1, EQU, EQU, IS1, EQU, EQU, IS1, EQU, 
EQU, EQU, EQU, IS1, EQU, EQU, IS1, EQU, EQU, EQU, 
IS1, EQU, EQU, IS1, IS1, IS1, EQU, EQU, IS1, EQU, EQU, 
IS1, EQU, EQU, SCA, SCA, IS2 

60 

  Number of Test data Sets 100 
BGA 
Trail-3 

Run-1 NoT, NoT, NoT, NoT, IS1, IS3, IS3, IS1, NoT, NoT, NoT, IS2, 
IS3, IS3, IS1, IS2, IS3, NoT, EQU, EQU 

20 

Run-2 NoT, NoT, NoT, IS1, IS3, EQU, IS3, IS2, IS3, IS3, IS3, IS3, 
IS3, IS3, IS1, EQU, IS1, IS3, IS3, SCA 

20 

  Number of Test data Sets 40 

5. EXPERIMENTAL SETUP 

The proposed automated test data generation using Incremental Genetic Algorithm 
(IGA) is experimented and the results are observed in this section. The performance is 
analyzed with eight benchmark programs found in the literature and compared with the 
recently proposed algorithms in the same domain. The benchmark programs are: Line in 
Rectangle [26], Number of Days [26], CalDay [5], Complex Branch [89], and four trian-



T. MANIKUMAR AND A. JOHN SANJEEV KUMAR 

 

260

 

gle classification programs [65, 68, 78, 89]. The following table summarizes the param-
eters and their values used for the evaluation of proposed GA based automated test data 
generation. 

Each program is tested with 10 different population sizes, and the Tournament Se-
lection, arithmetic crossover and uniform mutation are the type of genetic operators used. 
The crossover and mutation operations are performed with 0.8 and 0.01 probability re-
spectively. And a maximum limit of 104 iterations are set for each GA procedure. The 
proposed framework is compared with the Incremental-GA [57] and another GA based 
approach [72].  

6. RESULTS & DISCUSSIONS 

Complex Branch  The average performance on number of generations and percentage 
coverage for the Complex Branch benchmark program is depicted in Figs. 8 and 9 re-
spectively. For this program the proposed BGA algorithm is able to construct the test 
data set with the minimum of 12 generations when the population size is 100 and achieves 
99.78% of coverage which is a one step ahead performance than IGA based approach. 
Table 2 justifies the superior performance of BGA algorithm in terms of better F scores.  
 

  
Fig. 8. Performance analysis BGA, IGA& GA for com- 

plex branch program with mean generations. 
Fig. 9. Performance analysis BGA, IGA & GA for com- 

plex branch program with mean coverage. 
 

Table 2. ANOVA test evaluation of BGA, IGA & GA for complex branch program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 

Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 19.04 8.94 5.55 4.37 4.14 3.57 4.73 3.17 2.48 2.29 
 P Value 0.0 0.0 0.0 0.0 0.0 0.0003 0.0007 0.0007 0.0021 0.0016 

CB 
IGA 

F Value 27.09 11.94 6.85 5.08 4.74 3.89 5.62 3.29 2.25 2.42 
P Value 0.0 0.0 0.0 0.0 0.0 0.0005 0.0014 0.0014 0.0041 0.0032 

GA 
F Value 62.21 28.54 17.24 13.31 12.56 10.67 14.51 9.32 7.02 7.39 
P Value 0.0 0.0 0.0 0.0 0.0 0.0010 0.0030 0.0030 0.0090 0.0070 
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Calendar Day – The performance comparison is illustrated in Figs. 10 and 11 for the 
CalDay (CD) program. For the greater population size the performance of BGA and IGA 
are similar in terms of mean number of generations and the mean percentage of coverage, 
but BGA wins as it stays ahead in for all the population sizes. Here the BGA takes less 
than 3 generations to complete the test data generation process which is predominantly 
higher, then the IGA and GA too. The F-scores also reflect the same in Table 3. 
 

  
Fig. 10. Performance analysis BGA, IGA & GA for 

CalDay program with mean generations. 
Fig. 11. Performance analysis BGA, IGA & GA for 

CalDay program with mean coverage. 
 

Table 3. ANOVA test evaluation of BGA, IGA & GA for CalDay program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 3.49 2.77 1.89 0.10 0.11 0.00 0.00 0.00 0.00 0.00 
 P Value 0.0 0.0 0.0005 0.0143 0.0138 0.0762 0.0379 0.1393 0.1289 0.1273 

CD 
IGA 

F Value 3.77 2.68 1.37 0.20 0.21 0.00 0.00 0.00 0.00 0.00 
P Value 0.0 0.0 0.0009 0.0284 0.0275 0.1523 0.0757 0.2784 0.2578 0.2546 

GA 
F Value 10.40 7.98 5.06 2.47 2.49 1.14 1.71 0.61 0.69 0.70 
P Value 0.0 0.0 0.0020 0.0620 0.0600 0.3320 0.1650 0.6070 0.5620 0.5550 

 

Line in Rectangle (LR) – Figs. 12 & 13 depicts the performance comparison of BGA 
algorithm with IGA and GA based test data generation algorithms. Compare to previous  

 

   
Fig. 12. Performance analysis BGA, IGA & GA for line 

in rectangle program with mean generations. 
Fig. 13. Performance analysis BGA, IGA & GA for 

line in rectangle program with mean coverage.
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two programs here the BGA is well consistent than the IGA approach, and the minimum 
of 150 generations to find the test data with 99.98% of coverage, which is almost close 
to 100% of coverage accuracy. Table 4 manifests the same with greater F scores.  
 

Table 4. ANOVA test evaluation of BGA, IGA & GA for line in rectangle program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 1.88 1.74 2.01 2.05 2.11 0.00 1.92 0.24 3.22 0.00 
 P Value 0.0005 0.0010 0.0003 0.0003 0.0003 0.0289 0.0005 0.0062 0.0000 0.1271 

LR 
IGA 

F Value 1.36 1.15 1.54 1.61 1.70 0.00 1.41 0.48 3.36 0.00 
P Value 0.0009 0.0018 0.0005 0.0005 0.0005 0.0578 0.0009 0.0124 0.0 0.2541 

GA 
F Value 5.03 4.57 5.45 5.60 5.79 1.92 5.15 3.08 9.48 0.70 
P Value 0.0020 0.0040 0.0010 0.0010 0.0010 0.1260 0.0020 0.0270 0.0 0.5540 

 
Meyer’s Triangle Classifier (MT) – The automated test data generation performance 
with MT program has been illustrated in Figs. 14 and 15. Here, once again the BGA ap-
proach overtakes the IGA and GA approaches with the record of 711 minimum number 
of generations to construct the test data set and promisingly reaches 99.9% of coverage 
with stable performance. The ANOVA results in Table 5 report the significant perfor-
mance improve of BGA approach.  
 

  
Fig. 14. Performance analysis BGA, IGA & GA for Me- 

yer’s triangle program with mean generations. 
Fig. 15. Performance analysis BGA, IGA & GA for Me- 

yer’s triangle program with mean coverage. 
  

Table 5. ANOVA test evaluation of BGA, IGA & GA for Meyer’s triangle program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 1.82 1.52 4.31 3.49 3.55 2.22 1.07 0.29 0.00 0.00 
 P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0007 0.0046 0.0604 0.0645 

MT 
IGA 

F Value 2.02 1.86 5.00 3.77 3.86 2.77 1.19 0.58 0.00 0.00 
P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0014 0.0092 0.1206 0.1289 

GA 
F Value 6.50 6.14 13.12 10.39 10.60 8.17 4.66 3.30 1.34 1.28 
P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0030 0.0200 0.2630 0.2810 
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Michael’s Triangle Classifier (TM) – Figs. 16 and 17 demonstrates the greater perfor-
mance of BGA approach as it takes a minimum number of 211 generations and results 
99.82% of coverage for the TM program. Whereas the IGA takes 5 times greater number 
of generations to find the test data set. Table 6 report the same with superior F scores 
than the other two approaches.    

 

 
Fig. 16. Performance Analysis BGA, IGA & GA 

for Michael’s Triangle Program with 
Mean Generations. 

Fig. 17. Performance Analysis BGA, IGA & GA for 
Michael’s Triangle Program with Mean Co- 
verage. 

 

Table 6. ANOVA test evaluation of BGA, IGA & GA for Michael’s triangle program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 

Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 43.42 14.93 6.15 2.33 0.00 0.09 0.04 0.26 1.71 0.08 

 P Value 0.0 0.0 0.0 0.0 0.0319 0.0156 0.0202 0.0055 0.0010 0.0166 

TM 

IGA 
F Value 63.67 20.92 7.76 2.03 0.00 0.17 0.08 0.52 1.10 0.15 

P Value 0.0 0.0 0.0 0.0 0.0638 0.0312 0.0404 0.0110 0.0018 0.0330 

GA 
F Value 143.50 48.51 19.25 6.53 1.84 2.40 2.20 3.18 4.46 2.35 

P Value 0.0 0.0 0.0 0.0 0.1390 0.0680 0.0880 0.0240 0.0040 0.0720 

 
Number of Days between two Dates (ND) – The test data generation performance on 
ND program is illustrated in Figs. 18 and 19. Here the performance of BGA and IGA are 
same when there is an increase in population size, however the collective results shown 
that BGA takes 8 iterations to complete the automated test data generation process which 
is faster than IGA and GA approaches. And BGA achieves 99.65% of mean percentage 
coverage, which is closer to IGA, however the F-score from Table 7 shown that BGA 
has consistent performance than IGA.  
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Fig. 18. Performance analysis BGA, IGA & GA for number 

of days program with mean generations. 
Fig. 19. Performance analysis BGA, IGA & GA for 

number of days program with mean coverage. 
 

Table 7. ANOVA test evaluation of BGA, IGA & GA for number of days program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 

Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 7.99 6.40 4.88 2.07 6.68 8.52 7.07 7.78 5.92 4.22 
 P Value 0.0 0.0 0.0 0.0010 0.0 0.0 0.0 0.0 0.0 0.0 

ND 
IGA 

F Value 10.52 8.13 5.85 1.64 8.56 11.31 9.13 10.20 7.41 4.87 
P Value 0.0 0.0 0.0 0.0018 0.0 0.0 0.0 0.0 0.0 0.0 

GA 
F Value 25.39 20.08 15.01 5.65 21.03 27.16 22.31 24.69 18.48 12.83 
P Value 0.0 0.0 0.0 0.0040 0.0 0.0 0.0 0.0 0.0 0.0 

 

Sthamer’s Triangle Classifier (ST) – based on the performance comparisons as shown 
in Figs. 20 and 21, the BGA wins the race once again by reaching the solution with the 
minimum of 202 generations and achieves 99.97% of coverage. Here the IGA based ap-
proach is 6 times costlier than BGA method, and the F-score has been reduces 60% by 
BGA when compare to IGA as shown in Table 8. 

 

 
Fig. 20. Performance analysis BGA, IGA & GA for Stham- 

er’s triangle program with mean generations. 
Fig. 21. Performance analysis BGA, IGA & GA for Stha- 

mer’s triangle program with mean coverage. 
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Table 8. ANOVA test evaluation of BGA, IGA & GA for Sthamer’s triangle program. 

P
ro

gr
am

 

T
ec

hn
iq

ue
 

A
N

O
V

A
 

Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 6.60 4.24 2.70 5.10 0.10 0.43 0.37 0.00 0.23 0.00 

 P Value 0.0 0.0 0.0 0.0 0.0140 0.0021 0.0030 0.0647 0.0069 0.0585 

ST 

IGA 
F Value 8.43 4.89 2.58 6.18 0.21 0.85 0.74 0.00 0.45 0.00 

P Value 0.0 0.0 0.0 0.0 0.0280 0.0041 0.0060 0.1294 0.0138 0.1170 

GA 
F Value 20.74 12.88 7.75 15.75 2.48 3.91 3.66 1.27 3.02 1.36 

P Value 0.0 0.0 0.0 0.0 0.0610 0.0090 0.0130 0.2820 0.0300 0.2550 

 

Wegener’s Triangle Classifier (WT) – the investigation study with WT program once 
again justifies that the BGA approach outperforms IGA and GA based methods. As 
shown in Figs. 22 and 23 the BGA based approach achieves the feasible test data with 
the minimum of 71 generations and also reached the coverage of 99.85%, which is simi-
lar to IGA. But the robustness of BGA is proved in Table 9 through decent reduce in 
F-score comparatively.  
 

.  
Fig. 22. Performance analysis BGA, IGA & GA for Wegen- 

er’s triangle program with mean generations. 
Fig. 23. Performance analysis BGA, IGA & GA for We-

gener’s triangle program with mean coverage. 
 

Table 9. ANOVA test evaluation of BGA, IGA & GA for Wegener’s triangle program. 

P
ro

gr
am
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iq

ue
 

A
N

O
V

A
 

Population Size 

10 20 30 40 50 60 70 80 90 100 

 
BGA 

F Value 13.39 3.31 3.86 1.95 0.40 0.00 0.00 0.25 0.00 0.00 

 P Value 0.0 0.0005 0.0003 0.0053 0.0120 0.0629 0.1058 0.0182 0.0028 0.0014 

WT 

IGA 
F Value 18.62 3.50 4.33 1.45 0.81 0.00 0.00 0.50 0.00 0.00 

P Value 0.0 0.0009 0.0005 0.0105 0.0239 0.1257 0.2115 0.0362 0.0055 0.0028 

GA 
F Value 43.39 9.80 11.64 5.24 3.82 1.20 0.55 3.12 1.05 1.00 

P Value 0.0 0.0020 0.0010 0.0230 0.0520 0.2740 0.4610 0.0790 0.0120 0.0060 
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In the overall, the BGA outperforms the other GA based approaches. The study on 
experimental results clearly indicates that an extra Buffer spaced Genetic Algorithm 
(BGA) has significant effect on GA’s performance upgrade, especially for the applica-
tion of automated test data generation. Fig. 24 summarizes the overall performance com- 
parison between BGA and IGA based test data generation on benchmark programs.  

 

 
Fig. 24. Performance comparison between BGA and IGA. 

7. CONCLUSIONS 

A novel Genetic Algorithm (GA) based test data generator for branch coverage cri-
terion is proposed in this paper. An extra buffer space is provided for GA for maintain-
ing the list of covered target branches and to store the test data. When GA searches test 
data set for a specific target, the current population may contain successful test data for 
other target branch which is to be covered in future. In such situation, those test data are 
store in the buffer space and the corresponding branch is marked as covered. Hence the 
test data for non-specific target al.so get stored, this reduces reasonable amount of popu-
lation generation and thus saves the software testing time. The proposed Buffered Ge-
netic Algorithm (BGA) based automated test data generation is evaluated with eight 
benchmark programs and the performance is compared with the existing GA based ap-
proaches. The quantified results indicate the superior performance of the proposed BGA 
based test data generation approach.    

8. FUTURE ENHANCEMENTS 

In future, we plan to use BGA for test case generation for other data types, and also 
we can use granular computing techniques to develop new methods for automated 
branch coverage in software testing [51, 56, 75] A. Skowron, 2016; D. Dubois, 2016; Y. 
Yao, 2016; D. Ciucci, 2016; H. Liu, 2016; S. S. S. Ahmad, 2017; G. Wang, 2017; H. Liu, 
2017. 
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