
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 245-273 (2019)
DOI: 10.6688/JISE.201903_35(2).0001

245

A Buffered Genetic Algorithm
for Automated Branch Coverage in Software Testing

T. MANIKUMAR1,+ AND A. JOHN SANJEEV KUMAR2

1Department of Computer Applications
RVS College of Engineering

Dindigul, Tamilnadu, 624005 India
E-mail: stmanickumar@gmail.com

2Department of Computer Applications
Thiagarajar College of Engineering
Madurai, Tamilnadu, 625015 India

E-mail: ajscse@tce.edu

Each and every software product has to be tested for assess its quality, which is

time-consuming if it is performed manually. Moreover, it is difficult to generate all pos-
sible data for finite testing set. Search based Software Testing (SBST) are used to resolve
this issue by utilizing metaheuristic algorithms to automate the test data generation.
Hence, an efficient test data set could be generated with minimum cost. Among many
metaheuristic algorithms, Genetic Algorithm (GA) is widely used for test data generation.
This research work implements GA for generating test data to execute all the branches in
a program. In the literature, existing approaches for test data generation using genetic al-
gorithms are starts with random test data and find the optimum test data for a targeted
branch. Then the entire GA process will be repeated to find the test data for the next tar-
get branch and it continues for all the target branches. In this a paper, a novel GA ap-
proach with a small buffer space is proposed for automated test data generation for
branch coverage. When GA is searching test data for a particular target branch heuristi-
cally, it may reach the other target branches, if so happen, then those test data will get
stored into the buffer space hence it is not necessary to run GA to cover that branch. Thus
the Buffered Genetic Algorithm (BGA) approach outperforms the other GA based auto-
mated test data generation approaches in terms of number of iterations and search effec-
tiveness. The proposed approach employs control flow graph to traverse and predicate
the branch coverage. Seven benchmark programs are instrumented to evaluate perfor-
mance of the proposed BGA based approach.

Keywords: software testing, automatic test data generation, genetic algorithm, control
flow graphs, buffered genetic algorithm

1. INTRODUCTION

Identifying test cases to evaluate a software product is an expensive process, which
typically take half of the cost estimated for software development [12]. With the assist
from automation tools the software products can be tested efficiently while reducing the
time taken for writing test cases and also reduces the cost consumed by the manual test
process. From the last two-decades, there are various approaches has been reported in the
literature for automated test data generation such as random, path-oriented, goal-oriented
and search-based approaches. Though these methods were reported with good results,

Received October 7, 2017; revised November 26 & December 18, 2017; accepted August 22, 2018.
Communicated by Shyi-Ming Chen.
+ Corresponding author.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

246

there are some limitations which indicate the further scope of the research in automated
test data generation for software testing.

 Random generators often unsuccessful as the test data created here doesn’t based on

any objective function [50, 65, 70, 83, 87].
 Path-oriented generators have to identify the feasible path and then started constructing

the test data set, often the paths are infeasible [23, 44, 67].
 Goal-oriented approaches [48, 49, 86] have proved their superiority then the random

and path oriented generators. However, these methods are application specific rather
than generic automation process.

 With the realization that the process of software test data generation can be cast into a
search problem, recently, Search-Based Software Testing (SBST) approaches are per-
forming better than any other techniques [6, 35, 36, 58].

In general, the SBST approaches starts with a random set of test data, then they are

tuned or pruned to build an optimum test data set while using the objective function like
branch, statement and path coverage criterions [96]. This paper focuses on branch cov-
erage criterion. [1, 58] presented a comprehensive study on search based software testing
techniques using metaheuristic techniques. However, the metaheuristic algorithm based
test data generation approaches are over-performing the other methods, there some com-
mon limitations as well:

 One major issue is that the metaheuristic algorithms could be trapped with local mini-

mum.
 For example, while generating test data for branch coverage using Genetic Algorithm

(GA), the population may not contain any test data to reach the target node [27, 60].
 It has been reported in the literature that the percentage of coverage highly depends on

nature of the program.
 Moreover, the performance of the metaheuristic techniques is highly influenced by

their parameter settings.

Here, the proposed method tries to address most of the common issues reported in
the literature as summarized above. This paper focuses on the use of Genetic Algorithms
as a search method for automated branch coverage, in a technique referred to as Evolu-
tionary Structural Testing. In order to find a test data that executes a branch, the goal of
the search is to find an input vector that takes a path which is driven down the branch of
interest. The space of candidate solutions in which the search operates is the input do-
main of the function under test. In general, GA based test data generation algorithms for
branch coverage, executes genetic algorithm independently for every target branch,
hence it takes ‘n’ cycles to generate test data to cover all the ‘n’ branches. In this paper, a
novel Genetic Algorithm with additional buffer space is proposed for automated test data
generation. While searching test data for a branch, the generated data may end up with
other target branch which is yet to be tested. In case of the proposed Buffered Genetic
Algorithm (BGA), those test data are buffered and the future targeted branch is marked
as tested to save the GA time from exploring the branch again.

The rest of the paper is organized as follows: the following section presents a brief

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 247

review on search based software testing. Section 3 discusses the backgrounds related to
automated test data generation using genetic algorithm. Section 4 explains the proposed
GA for automated test data generation for branch coverage. Section 5 illustrates the ex-
perimental setup, the results are quantified and the performance of the proposed method
is analyzed in Section 6. Section 7 concludes the paper with the contribution of the pro-
posed system toward search based software testing along with future directions.

2. RELATED WORKS

Automating the process of software testing reduces the development cost effectively.
SBST approaches outperform the other techniques [58, 65]. In general SBST methods
start with random test data set, and they are evaluated based on fitness function to find
how close they were to reach the target branch. The test criterions such as branch cover-
age or statement coverage are used as fitness functions. Based on the fitness measure the
test data will be modified according to the metaheuristic algorithms so that they can
achieve the coverage. This section summarizes a comprehensive study on search based
software testing methods.

One common approach is random testing, where the test data sets are randomly
generated and tested simultaneously to check the whether the testing criterion is satisfied
or not. This kind of approaches is suitable for any structured programs and for any type
of inputs. However, due to the lack of evaluation measure, this approach is expensive in
terms of time and space, and the probability of finding the coverage is low [50, 70]. [73]
uses GA to guide the search process. [31, 32] proposed a constraint based approach,
where all the branching statements are translated into constraints and a logic program-
ming approach is used to find the test data set. [89] developed an evolutionary based
approach for structural testing and showed that this approach has better performance
than the existing methods. [60] demonstrated a path-oriented approach to find the cov-
erage for branch criterion programs. [22] proposed a search-based testing method to
consider pointers and dynamic data structures, which also works for non-pointer input
variables.

Metaheuristic techniques such as simulated annealing [85], Tabu Search [25], ge-
netic algorithms [46, 64, 73], particle swarm optimization [93], quantum particle swarm
optimization [2], scatter search [16], ant colony optimization [52], memetic algorithms
[8], clonal selection algorithm [24], parallel cat swarm optimization [76, 77] and immune
genetic algorithm [53, 82] have been applied to the problem of automated test data gen-
eration and provide evidence of their successful application. Among these, many of the
article has been published for branch coverage [17, 21, 34, 45, 88, 89]. For a basic me-
taheuristic solution for branch coverage, initially the source code is instrumented to trace
the program flow and find the distance between the current statements to the target
statement. The distance is measured by cost functions. The objective of the metaheuristic
technique is to minimize this cost so that the test data will reach the target statement. So,
the input values are modified according to the search-based approach to minimize the
cost. Hence, the test data set is constructed for each target nodes and cumulated to pre-
sent the final test data set. In this way, the metaheuristic based approaches are capable of
generating test data set for any data type.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

248

Among the various metaheuristic approaches, Genetic Algorithm (GA) based ap-
proaches are more widely used for search-based test data generation [94]. [85] has im-
plemented evolutionary search to find the coverage for precondition and postcondition
statements. GA based test data generation is demonstrated for real-time software for both
functional and structural criteria [37, 58, 65, 89].

[94] introduced the approach of GA based test data generation. At first the test data
were generated by random generators then GA is used to find the test data for uncovered
branches. For that the user has to interact with the system to choose a particular path or
branch to be covered, where the branch distance is estimated as fitness function. [74] ex-
perimented dynamic and static testing with GA based test data generator and concluded
that dynamic testing was not effective while static was not practical.

[4] proposed a test method to explore all possible test data inputs using GA. Similar
idea was implemented by [45], here the Control Flow Graph (CFG) is constructed to
trace the data flow, and the graph is traversed for each test data to find the coverage by
following Breadth First Search (BFS) traversal approach. [64] proposed GADGET (Ge-
netic Algorithm Data Generation Tool), to instrument the program automatically and
generate the test data set using GA. However, this method can work only for scalar in-
puts. [85] proposed a test criteria based on both functional as well as non-functional pro-
perties for evolutionary based test data generator approach. Here the exceptions are con-
sidered as testing criterion. The experimental results show that optimization based ap-
proach’s efficiency for test data generation.

[73] extended the work of [46] by introducing control dependency graph to measure
the branch distance rather than by using CFG. The result indicates that this approach
outperforms the approaches proposed by [46, 64]. In addition to that this approach can
automate the test data for both branch as well as path coverage. [54] further extended this
work by introducing weighted hamming distance. However, this method performed bet-
ter only for path coverage criterion. [19] proposed a search based test data generator for
path coverage, where they start with classifying the feasible and infeasible paths and then
different fitness functions are equipped to generate the test data. [91] developed GA
based test data generator by using normalized branch distance added with approximation
level as fitness function. This approach is suitable for finding the coverage for local
branches, and no description about multiple target coverage [7, 36, 58, 59]. [25] pro-
posed an approach based on Tabu search with the [49] chaining approach. [13] intro-
duced a novel fitness function based on the organisms’ fossil record, and the quantified
result indicates that this fitness function is unable to produce consistent performance for
the benchmark program.

[40] used GA with multiple set of populations for path coverage. The experiments
show that this approach is able to achieve better path coverage in terms of exploration
and convergence rage. [84] focused on unit testing while using GA for test data genera-
tion. Here the chromosomes are encoded in such a way to represent the input vectors as
well as objective functions too. The experiments are carried out with standard Java li-
braries. [13] proposed a technique for long sequence testing. The test cases are divided
into small intervals and the test data generators are repeatedly executed to find the cov-
erage. This method is more suitable for testing in large volume, however, the results are
analyzed only for very few programs. [66] shows the efficiency of GA based test genera-
tion using program dependencies. [95] demonstrated that GA based automated test data

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 249

generation is more suitable for both small and large scale programs. [18] proposed an
Immune GA as a hybrid evolutionary algorithm, and its performance is analyzed with
non-standard programs. [21] proposed two fitness function based on hamming distance
and branch distance and implemented with GA based test generation towards path cov-
erage. The simulation results indicate that this method can converge faster than standard
GA based test data generation.

[20] developed a GA based test data generator for path coverage, where the fitness
function is evaluated as closeness of execution path and target path with overlapping sub
path. The experimental results show that the proposed fitness function can achieve better
coverage ratio than fitness function based on single specific path. [63] experimented the
scalability of test data generators and reported that GA outperforms random generators in
terms of number of branches and statements, is increased. [39] reported that the parallel
execution of fitness estimation may enhance test data generation performance as pro-
grams become large with increased number of branches and search space. [41] demon-
strated the issues like composition of fitness function for path coverage and parameter
tuning for GA based test data generation. [69] proposed a faster GA based approach by
generating more suitable test cases for path testing, and the performance is compared
with [21] approach. [59] in his paper also focuses primarily on the design of fitness func-
tions. [71] compared the performance of messy-GA and random search based test data
generation and reported that messy-GA outperforms with better coverage. [15] discussed
many nature inspired algorithms towards search based software testing process. [43]
presents a survey of study on different techniques of test case generation.

In the overall GA is most widely used in test data generation, however, one com-
mon limitation is that the algorithm has to be repeated for each target branch. In this pa-
per, the GA based test generator is extended to cover at least more than one branch at
every iteration, hence the run time is half way reduced.

3. BACKGROUND

Test data generation in white-box testing (source code-based testing) is a process of
finding program input on which a selected element (e.g. a not yet covered statement) is
executed. Finding such input test data manually can be very labor intensive and expen-
sive. Therefore, using metaheuristic algorithms to generate test data is efficient [29, 47,
50, 61, 66]. In this section, an overview of the search-based test data generation and
computation of the branch cost functions for the coverage of individual structural targets
are presented. However, some basic concepts are introduced first.

3.1 Search Based Software Testing

Search-based optimization methods, such as genetic algorithms, ant colony optimi-
zation and simulated annealing have successfully been applied in solving a wide range of
software testing problems [3, 28, 36, 38, 55, 58, 79]. [92] combines genetic algorithms’
characteristics and evolution strategies, using simulated evolution as the model of a
search method, employing operations inspired by genetics and natural selection. In es-
sence, the problem of generating test data reduces to the well-understood problem of

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

250

function minimization. In general, evolutionary algorithms generate a set of candidate
solutions referred as population and iteratively recombine them to find the optimum can-
didate. At the end of every iteration the candidates are evaluated based on their fitness
value and passed for the next generation only if they have better fitness value. In case of
test data generation, the fitness functions are to be minimized to find how closer the can-
didate test data reaches the target node, hence, zero indicates that the algorithm found the
test data to cover the target node. There are two categories of software testing: stating
and dynamic testing. In static testing, the programs are analyzed without actually exe-
cuting them, whereas in dynamic testing, the source code is instrumented and executed to
find the coverage. This paper follows the dynamic testing approach, thus the target
reachability of the test data could be estimated and updated heuristically to reach the
target node.

Functional and structural testing are two major methods in the dynamic testing tech-
nique. In case of Functional (black-box) testing, it is not necessary to explore the internal
structure and behavior of the source code. Instead, the test cases are to be identified for
which the source code doesn’t producing the correct output. In case of structural (white-
box) testing, the logic, control flow and data dependency of the source code has to be
tested. This paper proposes an algorithm for structural testing. There are two approaches
of structural testing: control flow and data flow. Control flow testing is based on the
control graph of the program and considers how to select the testing path for discovering
more errors. On the other hand, data flow testing derives test data by considering how
data are defined and how the data are used in a program. However, path testing is one of
the white-box testing techniques. Via test cases, one intends to execute all possible paths
of control flow through the program, then possibly the program can be tested completely
[80, 81].

3.2 Control Flow Graph

Fig. 1 demonstrates the proposed framework for automated test data generation for
branch coverage. At first, the source code is scanned to construct the instrumented code
and the Control Flow Graph (CFG).

Fig. 1. Proposed framework for automated test data generation.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 251

A CFG is a directed graph, G = (N, E, s, e), where N is a set of nodes, E is a set of
edges, with one entry node (s) and an exit node (e) respectively. Each node in the graph
n N corresponds to a programming statement. Each edge e E, represents control flow
of the program from one statement (node) to another, e = (ni, nj). The nodes can be either
normal data manipulation or conditional statements. In case conditional or decision
statements, it will have two paths: one exists when the condition is true, the other path is
for the false case, both are known as branches. The condition for taking either true or
false branch is called as branch predicate. For example consider the following code as
shown in Fig. 2, which receives three sides of the rectangle as input and classify the type
of the rectangle as it return 1, 2, 3, or 4 stands for scalene, isosceles, equilateral or
not-a-triangle respectively [65]. Fig. 3 shows the corresponding CFG for the code, where
Node-1 represents the first branching predicate, for this condition Node-2 will be exe-
cuted for the true predicate and the control will continue with Node-3, for the false pred-
icate the control will skip Node-2 and directly move on to Node-3. In case of Node-10,
Node-12 and Node-13 are the true and false predicates respectively. Here the target
nodes are 2, 12, 13, 14, 16 and 19.

Fig. 3. Control flow graph for Michaels’ triangle classification problem.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

252

function funMichaelTriangle(i, j, k)

% Michaels’ Triangle Classification Problem

 tri = 0; % Node 0
 if ((i <= 0) || (j <= 0) || (k <= 0)) % Node 1
 tri = 4; % Node 2
 end
 if (i == j) % Node 3
 tri = tri + 1; % Node 4

end
if (i == k) % Node 5

tri = tri + 2; % Node 6
end
if (j == k) % Node 7
 tri = tri + 3; % Node 8
end

if (tri == 0) % Node 9

if ((i+j<=k) || (j+k<=i) || (i+k<=j)) % Node 10
 tri = 4; % Node 12
 else
 tri = 1; % Node 13
 end
else

if (tri > 3) % Node 11
 tri = 3; % Node 14
 elseif ((tri == 1) && (i+j > k)) % Node 15
 tri = 2; % Node 16
 elseif ((tri == 2) && (i+k > j)) % Node 17
 tri = 2; % Node 16
 elseif ((tri == 3) && (j+k > i)) % Node 18
 tri = 2; % Node 16
 else
 tri = 4; % Node 19
 end
end
disp(tri) % Node 20

Fig. 2. Michaels’ triangle classification program.

For every sample test data, the program will be executed with the instrumented code
and the corresponding path in CFG is traced to test whether the test data is able to reach
the specified target. The path (bp) visited by the test data is saved as sequence of nodes

bp = (n1, n2, … , nm) such that for each i, where 1 ≤ i ≤ m, (ni, ni+1) E.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 253

For every branching condition (branch node) ni, there will be two exists like nj and
nk, and there are control dependent on ni. From the above figure, Node-12 is control de-
pendent on Node-10, and Node-10 is control dependent on Node-9. Node-12 is not di-
rectly control dependent on Node-9, however, Node-12 is transitively control dependent
on Node-9. For structured programs, control dependence shows the nesting structure of
the program.

3.3 Branch Ordering

After the construction of CFG, it is important to choose by which order the nodes in
CFG are going to be visited. There are four types of branch ordering methods are re-
ported in the literature such as: Breadth first strategy (BFS), Depth first strategy (DFS),
Path prefix strategy (PPS), Random strategy (RNS). The BFS starts exploring the nodes
level by level, DFS visits the nodes in depth wise, the random strategy traverse the graph
in random, and the PPS traverse the graph with predefined paths [72]. To achieve branch
coverage, the objective is to find an input vector that satisfies all the condition through
the path and ends at the target node. The test data often fails to reach the target node be-
cause of infeasible paths. To resolve this issue, Prather & Mills [67] suggested the use of
an adaptive strategy in which one new test path, or sub-path is added at a time and pre-
vious paths serve as a guide for selection of subsequent paths using some inductive
strategy, called as Path Prefix Strategy (PPS). This paper follows the PPS as [72] report-
ed that this outperforms other branch ordering strategies. Fig. 4 illustrates PPS based
branch ordering.

Fig. 4. Path prefix strategy.

For a path bp1 that is traversed in an execution, a reversible prefix bp2 is defined as
the minimal initial portion of path bp1 to a target node ‘t’, whose branches are not yet
covered, and the branch that is covered by bp1. For example, in Fig. 4, if path traversed
is bp1: (s, …, a, b, … t), branch (a, c) is not covered and (s, …, a) is the minimal initial
portion of bp1 that satisfies the condition above, then (s, …, a, b) is a reversible prefix.
Accordingly, branch (a, c) is a candidate for selection for coverage. If branch (a, c) is
selection for coverage, then the path (s, …, a, c) is said to be the reversal of path (s, …, a,

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

254

b). In the path prefix strategy, at any stage, if (n1, …, nk-1) are the traversed paths, the
idea is to find an input xk to cause the reversal of shortest reversible prefix, with reversal,
amongst all the nodes in the path. In this case prefix bp2 identifies the next branch to be
considered for coverage.

3.4 Genetic Algorithm

Genetic algorithm (GA) [30] is one of the most popular evolutionary-based algo-
rithms. It has been successfully applied to numerous problems both at the level of struc-
tural and parametric optimization [9], and to software testing, for example [10, 58, 90].
GA is a search method utilizing the principles of natural selection and genetics [42].
Concisely, GA operates on a set of candidate solutions, called a population, to a given
problem. The candidate solutions are evaluated based on their ability to solve the prob-
lem. The results of the evaluation are used in a process of forming a new set of solutions.
The choice of individuals that are passed to the next population is performed in a process
called selection. This process is based on ‘goodness’ of candidate solutions. Additionally,
genetic operators, i.e. crossover and mutation, are employed to modify selected candi-
dates. Such sequence of actions is repeated until some final criterion is fulfilled. GA
based test data generation process starts with random population of test set chromosomes.
Each chromosome of test data is evaluated for their branch distance, then the selection
operator is applied to choose most feasible parents from the set, with them the replace-
ment procedure such as crossover and mutation operators are applied to generate new set
of population. The next iteration of GA is started with this newest population, once again
the genetic operator are applied with this newest population to regenerate the next set of
chromosomes. At every iteration the termination condition is checked to stop the GA
procedure. The reachability from every test input to the target branch node is measured
with two metrics called approach level and the normalized branch distance as discussed
in [89]. This distance measure is used as fitness function for the GA procedure to be
minimized [11, 48, 60, 72].The following figure summarizes the classical GA procedure
used to automate the test data generation for branch coverage.

Input: Instrumented source code
Output: Set of test data for the target nodes.
Initialization: GA parameters, TestData (TD) array
for each target node
 Initial population of real values (P) Generate random population of test data
 while (not termination condition) do
 Calculate the fitness value (branch distance) for each test data, f(P)

if (target is reached)
Update TD with the chromosome which reaches the target node
Continue with the next branch

end
 C { } // Initialize children population
 Sort the chromosomes in descending order based on their fitness value
 while |C| < |P| do

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 255

 Select a pair of parents for matting (using any of the selection methods)
 Mate the parents to create children c1 and c2
 Perform crossover and mutation on children
 C C {c1, c2}
 end

end // Next generation
end // Next Target

Fig. 5. Genetic algorithm procedure.

Fig. 6. Computation of branch distance.

Fig. 6 demonstrates an example for computing the fitness function for a test data.
Node-17 (shaded node in the figure) is considered as the target node here, the following
are the possible situations and their corresponding fitness values:

 If the condition ((i<=0)||(j<=0)||(k<=0)) satisfies at Node-1, the target node is 5 level

away from it, hence the approach level is 5,
 If the condition (i==j) at Node-3 fails, then the approach level is 4,
 Suppose, if the condition (i==k) at Node-5 is failed then the AL is 3,

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

256

 If the condition (j==k) at Node-7 is failed then the AL is 2,
 If the condition at (tri==0) at Node-9 is failed then the AL is 1,
 And, if the condition (tri>3) at Node-11 is failed then the AL is 0, i.e. the target will

never be reached.

For all the above situations, the branch distances are calculated as discussed in [72].
The fitness function will result 0 when all the aforementioned conditions are satisfied,
that is the termination condition for GA.

Generating the test data inputs with minimum time is always an open problem in
software testing towards cost reduction. Though GA-based SBST approach with path-
prefix strategy significantly improves the performance of automated the test data genera-
tion [72], still it traps into local minima. [57] proposed an Incremental Genetic Algo-
rithm (IGA) to further improve the GA’s test data generation performance. The IGA
based test-data generation has two-phases and works as follows:

 In the first phase, a classical GA starts with a random set of test data and finds the fea-

sible data for each branch node of CFG independently.
 In the second phase, a classical GA starts by making use of the feasible parents from

the previous phase as initial population and then proceed to automate the test data gen-
eration process to cover all the targets.

This incremental version of GA is followed in this research along with a novel mo-

dification to extend its performance.

4. BUFFERED GENETIC ALGORITHM (BGA)

From the previous work [57], it is shown that IGA outperforms GA for automated
test data for branch coverage. [65] makes use of coverage table to trace the conditions to
be satisfied to reach a target branch. In common GA has to be executed for each target
branch for finding the test data. For each target, at every iteration of GA, the coverage
table is updated to guide the search. The authors reported that sometime the test data
might satisfy a condition which is not required to be true for the current target branch, in
such case, those data are stored as they can be used in future. This approach influence to
propose the Buffered Genetic Algorithm (BGA). Here, while GA searches for a particu-
lar target branch, the test data (chromosome) might end up with another target which is
to be explored further. In general, GA based software test data generation would take
more iterations as if the chromosomes (test data) are unable to reach the target branch
means they are ending with other target branches. In such situation, it is proposed to add
a buffer space to GA, so that, those non-specific target data could be saved in that space,
in order to indicate GA not to generate test for that branch again. Moreover, this ap-
proach could be adapted to any search-based software testing approaches. Hence, while
searching test data for a target branch may result in minimum of 2 to 3 branches, which
in turn, reduces the computation time.

The proposed Buffered Genetic Algorithm (BGA) is implemented in Phase 2, i.e.
while executing the Incremental Genetic Algorithm (IGA). IGA starts with the initial

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 257

population which is derived from the first phase. The proposed enhancement adds an
extra buffer space to IGA, where a coverage array Bt is used to trace the coverage of
each target ‘t’ and an array of TestData (TD) to store the collection of test data for all the
branches. The number of cells in that coverage array are equal to the number of targets in
the program. Initially, all the cells are assigned with the value 0 to represent that no test
data has been generated for any of the target branch, whenever a test data is found for a
branch (might be a target or non-target) ‘i’ its corresponding coverage flag is set to 1.

Bt = 0, for t = 1, …, n

And for the array of the test data set, it is initialized with a null set, and whenever a

test data is found for a branch the array is updated with the test data along with the target
branch (node) number at the first column of the array.

TD = []

Then, the IGA starts with the first target branch. While GA searches the test data for

the first target branch, the current population may contain a chromosome to reach anoth-
er target branch. In such case, the chromosome of test data will be stored in a buffer
space, and the corresponding target branch flag is set in coverage array. For example,
while searching the test for the 1st target branch, if the population contains a test data to
reach 4th target branch, then the test data store into a buffer area, and the corresponding
cell in the coverage table is set to 1.

B4 = 1, and TD = {4, chromosome of test data}

Once the target branch is reached, then the next iteration of GA starts by choosing

the next uncovered target from the coverage array, among the uncovered list of branches,
the next target will be chosen based on branch metrics as discussed in section 3.3. The
GA process will be continued till it finds the test data for all the target branches. Fig. 7
summarizes the proposed BGA algorithm for automated test data generation for branch
criterion.

Input: Instrumented source code
Output: Set of test data for the target nodes.
Initialization: GA parameters, TestData (TD) array, Coverage Array (B)
for each target node
 Initial population of real values (P) Feasible Parents List from Phase-1
 while (not termination condition) do
 Calculate the fitness value (branch distance) for each test data, f(P)

if (target is reached)
Update TD array with the chromosome which reaches the target node
Update the coverage array B
Continue with the next branch (based on branch metrics)

end
 Sort the chromosomes in descending order based on their fitness value

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

258

 C { } // Initialize children population
 while |C| < |P| do
 Select a pair of parents for matting (using any of the selection methods)
 Mate the parents to create children c1 and c2
 Perform crossover and mutation on children
 C C {c1, c2}
 end

end // Next generation
end // Next Target

Fig. 7. The proposed BGA for automated test data generation.

Buffered GA – based test data generation could cover more than one target branch
at a time. Table 1 shows a sample number of generations taken for a triangle classifier
problem, the boldfaced and underlined labels are the primary targets for the correspond-
ing run. At first, classical GA is executed to find the optimum test data for each branch
nodes. Here we have 10 branch nodes (Node-1, 3, 5, 7, 9, 10, 11, 15, 17, and 18), hence
GA will result in 10 optimal set of chromosomes. Then they are used as initial popula-
tion for IGA and it is executed for every target node. As shown in Fig. 3, here we have
five target nodes: Node-13 for Scalene (SCA), Node-14 for Equilateral (EQU), and
Node-16 for Isosceles triangle (there are three possible reach for isosceles, which are
from the nodes-15, 17, and 18, they are labelled as IS1, IS2, and IS3. as a result it took
160 fitness evaluation i.e., 16 populations to generate the test data for all the target
branches. It is noticed that the first run of IGA towards the Target-1 (EQU), unexpect-
edly reaches the targets IS1 and IS3, however those samples are avoided as the current
run is focused only on EQU target. This is where the proposed BGA approach makes the
difference. In BGA approach,

 Trial-1 completes by single run, where the primary target is EQU, but while trying the

reach that target, the other chromosomes in the population produces the test data for the
other target nodes too. So the execution stops at first run itself, which in turn takes 80
fitness evaluation, i.e., 8 populations, which is 0.5 times faster than the IGA execution.

 In Trial-2 of BGA, first run takes 1-population to reach the primary target EQU, which
also generated data for IS3. As there are remaining targets to be covered, the second
run continues, which reaches the next target IS1 with 3-populations. Then the third run
started for target IS2 and reaches by 6-populations which also generated the data for
the final target SCA. In total, this trail of BGA took 10-populations to find the test data
for all five targets it is 0.37 times faster than IGA.

 Trial-3, first run reaches the EQU target node with 2-populations, also covers the tar-
gets IS1, IS2 and I3, the second run covers the one remaining target SCA in 2-popula-
tions. Totally, in this trail, BGA covers all the branch targets within 4-populaitons,
which is 0.75 times faster than IGA.

These sample results encouraged apply the proposed BGA approach to other bench-

mark programs and the results are quantified in the following section.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 259

Table 1. Sample test data generation outputs from IGA and BGA.

Approach Runs Output of Test data
#Test
Data

IGA Target-1 NoT, NoT, NoT, IS3, IS1, IS3, NoT, NoT, NoT, NoT, NoT,
IS1, EQU, NoT, NoT, NoT, IS3, EQU, NoT, IS3

20

Target-2 NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3, EQU, IS3 10
Target-3 NoT, NoT, NoT, NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3,

EQU, NoT, IS3, IS1, EQU, EQU, IS3, IS3, NoT, NoT, NoT,
NoT, NoT, NoT, NoT, IS3, IS3, IS1, EQU, EQU, IS3, IS3, IS3,
IS3, IS3, IS3, IS3, EQU, NoT, IS3, IS3, IS1, EQU, EQU, EQU,
IS3, IS3, IS3, IS3, IS3, IS3, NoT, IS1, EQU, EQU, IS1, EQU,
IS1, IS1, EQU, IS1, SCA, IS3, IS1, IS1, IS1, EQU, EQU, EQU,
IS1, EQU, IS1, IS1, EQU, IS1, IS1, IS1, IS2, IS1

80

Target-4 NoT, NoT, NoT, NoT, NoT, IS1, IS1, EQU, EQU, IS1, EQU,
NoT, NoT, NoT, IS3, EQU, NoT, IS3, EQU, EQU

20

Target-5 NoT, NoT, NoT, NoT, NoT, IS1, EQU, NoT, NoT, NoT, IS3,
EQU, NoT, IS3, IS3, IS3, IS1, EQU, EQU, NoT, NoT, NoT,
NoT, EQU, NoT, EQU, IS3, IS3, SCA, SCA

30

 Number of Test data Sets 160
BGA

Trial-1

Run-1 NoT, NoT, NoT, NoT, NoT, IS1, IS1, IS3, IS2, IS3, NoT, IS3,
IS1, IS1, IS2, IS3, IS3, IS3, IS3, NoT, SCA, IS2, SCA, IS1,
IS1, IS1, IS2, IS2, IS1, IS3, NoT, NoT, NoT, IS3, IS1, IS2, IS1,
IS1, IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1, SCA, SCA, IS1,
IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1, IS2, IS1, IS1, IS1,
IS1, IS1, IS1, IS1, IS1, IS1, IS1, IS2, IS2, IS1, IS1, IS1, IS1,
IS2, IS2, EQU, SCA

80

 Number of Test data Sets 80
BGA
Trail-2

Run-1 NoT, NoT, NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU 10
Run-2 NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU, EQU, NoT, NoT,

EQU, IS3, IS3, NoT, NoT, NoT, IS3, IS3, EQU, EQU, EQU,
EQU, IS3, IS3, IS3, IS1, EQU, EQU, IS1

30

Run-3 NoT, NoT, NoT, NoT, NoT, NoT, EQU, IS3, NoT, IS3, EQU,
EQU, EQU, IS3, IS3, NoT, NoT, NoT, IS3, IS3, IS1, EQU,
EQU, EQU, IS1, EQU, IS3, IS3, IS3, EQU, IS1, EQU, EQU,
EQU, EQU, IS1, EQU, EQU, IS1, EQU, EQU, IS1, EQU,
EQU, EQU, EQU, IS1, EQU, EQU, IS1, EQU, EQU, EQU,
IS1, EQU, EQU, IS1, IS1, IS1, EQU, EQU, IS1, EQU, EQU,
IS1, EQU, EQU, SCA, SCA, IS2

60

 Number of Test data Sets 100
BGA
Trail-3

Run-1 NoT, NoT, NoT, NoT, IS1, IS3, IS3, IS1, NoT, NoT, NoT, IS2,
IS3, IS3, IS1, IS2, IS3, NoT, EQU, EQU

20

Run-2 NoT, NoT, NoT, IS1, IS3, EQU, IS3, IS2, IS3, IS3, IS3, IS3,
IS3, IS3, IS1, EQU, IS1, IS3, IS3, SCA

20

 Number of Test data Sets 40

5. EXPERIMENTAL SETUP

The proposed automated test data generation using Incremental Genetic Algorithm
(IGA) is experimented and the results are observed in this section. The performance is
analyzed with eight benchmark programs found in the literature and compared with the
recently proposed algorithms in the same domain. The benchmark programs are: Line in
Rectangle [26], Number of Days [26], CalDay [5], Complex Branch [89], and four trian-

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

260

gle classification programs [65, 68, 78, 89]. The following table summarizes the param-
eters and their values used for the evaluation of proposed GA based automated test data
generation.

Each program is tested with 10 different population sizes, and the Tournament Se-
lection, arithmetic crossover and uniform mutation are the type of genetic operators used.
The crossover and mutation operations are performed with 0.8 and 0.01 probability re-
spectively. And a maximum limit of 104 iterations are set for each GA procedure. The
proposed framework is compared with the Incremental-GA [57] and another GA based
approach [72].

6. RESULTS & DISCUSSIONS

Complex Branch The average performance on number of generations and percentage
coverage for the Complex Branch benchmark program is depicted in Figs. 8 and 9 re-
spectively. For this program the proposed BGA algorithm is able to construct the test
data set with the minimum of 12 generations when the population size is 100 and achieves
99.78% of coverage which is a one step ahead performance than IGA based approach.
Table 2 justifies the superior performance of BGA algorithm in terms of better F scores.

Fig. 8. Performance analysis BGA, IGA& GA for com-

plex branch program with mean generations.
Fig. 9. Performance analysis BGA, IGA & GA for com-

plex branch program with mean coverage.

Table 2. ANOVA test evaluation of BGA, IGA & GA for complex branch program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A

Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 19.04 8.94 5.55 4.37 4.14 3.57 4.73 3.17 2.48 2.29
 P Value 0.0 0.0 0.0 0.0 0.0 0.0003 0.0007 0.0007 0.0021 0.0016

CB
IGA

F Value 27.09 11.94 6.85 5.08 4.74 3.89 5.62 3.29 2.25 2.42
P Value 0.0 0.0 0.0 0.0 0.0 0.0005 0.0014 0.0014 0.0041 0.0032

GA
F Value 62.21 28.54 17.24 13.31 12.56 10.67 14.51 9.32 7.02 7.39
P Value 0.0 0.0 0.0 0.0 0.0 0.0010 0.0030 0.0030 0.0090 0.0070

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 261

Calendar Day – The performance comparison is illustrated in Figs. 10 and 11 for the
CalDay (CD) program. For the greater population size the performance of BGA and IGA
are similar in terms of mean number of generations and the mean percentage of coverage,
but BGA wins as it stays ahead in for all the population sizes. Here the BGA takes less
than 3 generations to complete the test data generation process which is predominantly
higher, then the IGA and GA too. The F-scores also reflect the same in Table 3.

Fig. 10. Performance analysis BGA, IGA & GA for

CalDay program with mean generations.
Fig. 11. Performance analysis BGA, IGA & GA for

CalDay program with mean coverage.

Table 3. ANOVA test evaluation of BGA, IGA & GA for CalDay program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A
 Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 3.49 2.77 1.89 0.10 0.11 0.00 0.00 0.00 0.00 0.00
 P Value 0.0 0.0 0.0005 0.0143 0.0138 0.0762 0.0379 0.1393 0.1289 0.1273

CD
IGA

F Value 3.77 2.68 1.37 0.20 0.21 0.00 0.00 0.00 0.00 0.00
P Value 0.0 0.0 0.0009 0.0284 0.0275 0.1523 0.0757 0.2784 0.2578 0.2546

GA
F Value 10.40 7.98 5.06 2.47 2.49 1.14 1.71 0.61 0.69 0.70
P Value 0.0 0.0 0.0020 0.0620 0.0600 0.3320 0.1650 0.6070 0.5620 0.5550

Line in Rectangle (LR) – Figs. 12 & 13 depicts the performance comparison of BGA
algorithm with IGA and GA based test data generation algorithms. Compare to previous

Fig. 12. Performance analysis BGA, IGA & GA for line

in rectangle program with mean generations.
Fig. 13. Performance analysis BGA, IGA & GA for

line in rectangle program with mean coverage.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

262

two programs here the BGA is well consistent than the IGA approach, and the minimum
of 150 generations to find the test data with 99.98% of coverage, which is almost close
to 100% of coverage accuracy. Table 4 manifests the same with greater F scores.

Table 4. ANOVA test evaluation of BGA, IGA & GA for line in rectangle program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A
 Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 1.88 1.74 2.01 2.05 2.11 0.00 1.92 0.24 3.22 0.00
 P Value 0.0005 0.0010 0.0003 0.0003 0.0003 0.0289 0.0005 0.0062 0.0000 0.1271

LR
IGA

F Value 1.36 1.15 1.54 1.61 1.70 0.00 1.41 0.48 3.36 0.00
P Value 0.0009 0.0018 0.0005 0.0005 0.0005 0.0578 0.0009 0.0124 0.0 0.2541

GA
F Value 5.03 4.57 5.45 5.60 5.79 1.92 5.15 3.08 9.48 0.70
P Value 0.0020 0.0040 0.0010 0.0010 0.0010 0.1260 0.0020 0.0270 0.0 0.5540

Meyer’s Triangle Classifier (MT) – The automated test data generation performance
with MT program has been illustrated in Figs. 14 and 15. Here, once again the BGA ap-
proach overtakes the IGA and GA approaches with the record of 711 minimum number
of generations to construct the test data set and promisingly reaches 99.9% of coverage
with stable performance. The ANOVA results in Table 5 report the significant perfor-
mance improve of BGA approach.

Fig. 14. Performance analysis BGA, IGA & GA for Me-

yer’s triangle program with mean generations.
Fig. 15. Performance analysis BGA, IGA & GA for Me-

yer’s triangle program with mean coverage.

Table 5. ANOVA test evaluation of BGA, IGA & GA for Meyer’s triangle program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A
 Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 1.82 1.52 4.31 3.49 3.55 2.22 1.07 0.29 0.00 0.00
 P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0007 0.0046 0.0604 0.0645

MT
IGA

F Value 2.02 1.86 5.00 3.77 3.86 2.77 1.19 0.58 0.00 0.00
P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0014 0.0092 0.1206 0.1289

GA
F Value 6.50 6.14 13.12 10.39 10.60 8.17 4.66 3.30 1.34 1.28
P Value 0.0 0.0 0.0 0.0 0.0 0.0 0.0030 0.0200 0.2630 0.2810

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 263

Michael’s Triangle Classifier (TM) – Figs. 16 and 17 demonstrates the greater perfor-
mance of BGA approach as it takes a minimum number of 211 generations and results
99.82% of coverage for the TM program. Whereas the IGA takes 5 times greater number
of generations to find the test data set. Table 6 report the same with superior F scores
than the other two approaches.

Fig. 16. Performance Analysis BGA, IGA & GA

for Michael’s Triangle Program with
Mean Generations.

Fig. 17. Performance Analysis BGA, IGA & GA for
Michael’s Triangle Program with Mean Co-
verage.

Table 6. ANOVA test evaluation of BGA, IGA & GA for Michael’s triangle program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A

Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 43.42 14.93 6.15 2.33 0.00 0.09 0.04 0.26 1.71 0.08

 P Value 0.0 0.0 0.0 0.0 0.0319 0.0156 0.0202 0.0055 0.0010 0.0166

TM

IGA
F Value 63.67 20.92 7.76 2.03 0.00 0.17 0.08 0.52 1.10 0.15

P Value 0.0 0.0 0.0 0.0 0.0638 0.0312 0.0404 0.0110 0.0018 0.0330

GA
F Value 143.50 48.51 19.25 6.53 1.84 2.40 2.20 3.18 4.46 2.35

P Value 0.0 0.0 0.0 0.0 0.1390 0.0680 0.0880 0.0240 0.0040 0.0720

Number of Days between two Dates (ND) – The test data generation performance on
ND program is illustrated in Figs. 18 and 19. Here the performance of BGA and IGA are
same when there is an increase in population size, however the collective results shown
that BGA takes 8 iterations to complete the automated test data generation process which
is faster than IGA and GA approaches. And BGA achieves 99.65% of mean percentage
coverage, which is closer to IGA, however the F-score from Table 7 shown that BGA
has consistent performance than IGA.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

264

Fig. 18. Performance analysis BGA, IGA & GA for number

of days program with mean generations.
Fig. 19. Performance analysis BGA, IGA & GA for

number of days program with mean coverage.

Table 7. ANOVA test evaluation of BGA, IGA & GA for number of days program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A

Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 7.99 6.40 4.88 2.07 6.68 8.52 7.07 7.78 5.92 4.22
 P Value 0.0 0.0 0.0 0.0010 0.0 0.0 0.0 0.0 0.0 0.0

ND
IGA

F Value 10.52 8.13 5.85 1.64 8.56 11.31 9.13 10.20 7.41 4.87
P Value 0.0 0.0 0.0 0.0018 0.0 0.0 0.0 0.0 0.0 0.0

GA
F Value 25.39 20.08 15.01 5.65 21.03 27.16 22.31 24.69 18.48 12.83
P Value 0.0 0.0 0.0 0.0040 0.0 0.0 0.0 0.0 0.0 0.0

Sthamer’s Triangle Classifier (ST) – based on the performance comparisons as shown
in Figs. 20 and 21, the BGA wins the race once again by reaching the solution with the
minimum of 202 generations and achieves 99.97% of coverage. Here the IGA based ap-
proach is 6 times costlier than BGA method, and the F-score has been reduces 60% by
BGA when compare to IGA as shown in Table 8.

Fig. 20. Performance analysis BGA, IGA & GA for Stham-

er’s triangle program with mean generations.
Fig. 21. Performance analysis BGA, IGA & GA for Stha-

mer’s triangle program with mean coverage.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 265

Table 8. ANOVA test evaluation of BGA, IGA & GA for Sthamer’s triangle program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A

Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 6.60 4.24 2.70 5.10 0.10 0.43 0.37 0.00 0.23 0.00

 P Value 0.0 0.0 0.0 0.0 0.0140 0.0021 0.0030 0.0647 0.0069 0.0585

ST

IGA
F Value 8.43 4.89 2.58 6.18 0.21 0.85 0.74 0.00 0.45 0.00

P Value 0.0 0.0 0.0 0.0 0.0280 0.0041 0.0060 0.1294 0.0138 0.1170

GA
F Value 20.74 12.88 7.75 15.75 2.48 3.91 3.66 1.27 3.02 1.36

P Value 0.0 0.0 0.0 0.0 0.0610 0.0090 0.0130 0.2820 0.0300 0.2550

Wegener’s Triangle Classifier (WT) – the investigation study with WT program once
again justifies that the BGA approach outperforms IGA and GA based methods. As
shown in Figs. 22 and 23 the BGA based approach achieves the feasible test data with
the minimum of 71 generations and also reached the coverage of 99.85%, which is simi-
lar to IGA. But the robustness of BGA is proved in Table 9 through decent reduce in
F-score comparatively.

.
Fig. 22. Performance analysis BGA, IGA & GA for Wegen-

er’s triangle program with mean generations.
Fig. 23. Performance analysis BGA, IGA & GA for We-

gener’s triangle program with mean coverage.

Table 9. ANOVA test evaluation of BGA, IGA & GA for Wegener’s triangle program.

P
ro

gr
am

T
ec

hn
iq

ue

A
N

O
V

A

Population Size

10 20 30 40 50 60 70 80 90 100

BGA

F Value 13.39 3.31 3.86 1.95 0.40 0.00 0.00 0.25 0.00 0.00

 P Value 0.0 0.0005 0.0003 0.0053 0.0120 0.0629 0.1058 0.0182 0.0028 0.0014

WT

IGA
F Value 18.62 3.50 4.33 1.45 0.81 0.00 0.00 0.50 0.00 0.00

P Value 0.0 0.0009 0.0005 0.0105 0.0239 0.1257 0.2115 0.0362 0.0055 0.0028

GA
F Value 43.39 9.80 11.64 5.24 3.82 1.20 0.55 3.12 1.05 1.00

P Value 0.0 0.0020 0.0010 0.0230 0.0520 0.2740 0.4610 0.0790 0.0120 0.0060

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

266

In the overall, the BGA outperforms the other GA based approaches. The study on
experimental results clearly indicates that an extra Buffer spaced Genetic Algorithm
(BGA) has significant effect on GA’s performance upgrade, especially for the applica-
tion of automated test data generation. Fig. 24 summarizes the overall performance com-
parison between BGA and IGA based test data generation on benchmark programs.

Fig. 24. Performance comparison between BGA and IGA.

7. CONCLUSIONS

A novel Genetic Algorithm (GA) based test data generator for branch coverage cri-
terion is proposed in this paper. An extra buffer space is provided for GA for maintain-
ing the list of covered target branches and to store the test data. When GA searches test
data set for a specific target, the current population may contain successful test data for
other target branch which is to be covered in future. In such situation, those test data are
store in the buffer space and the corresponding branch is marked as covered. Hence the
test data for non-specific target al.so get stored, this reduces reasonable amount of popu-
lation generation and thus saves the software testing time. The proposed Buffered Ge-
netic Algorithm (BGA) based automated test data generation is evaluated with eight
benchmark programs and the performance is compared with the existing GA based ap-
proaches. The quantified results indicate the superior performance of the proposed BGA
based test data generation approach.

8. FUTURE ENHANCEMENTS

In future, we plan to use BGA for test case generation for other data types, and also
we can use granular computing techniques to develop new methods for automated
branch coverage in software testing [51, 56, 75] A. Skowron, 2016; D. Dubois, 2016; Y.
Yao, 2016; D. Ciucci, 2016; H. Liu, 2016; S. S. S. Ahmad, 2017; G. Wang, 2017; H. Liu,
2017.

REFERENCES

1. W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based testing for

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 267

non-functional system properties,” Information and Software Technology, Vol. 51,
2009, pp. 957-976.

2. K. Agarwal and G. Srivastava, “Towards software test data generation using discrete
quantum particle swarm optimization,” in Proceedings of the 3rd ACM India Soft-
ware Engineering Conference, 2010, pp. 65-68.

3. M. A. Ahmed and I. Hermadi, “GA-based multiple paths test data generator,” Com-
puters & Operations Research, Vol. 35, 2008, pp. 3107-3124.

4. J. T. Alander, T. Mantere, and P. Turunen, “Genetic algorithm based software test-
ing,” Artificial Neural Nets and Genetic Algorithms, 1998, pp. 325-328.

5. E. Alba and F. Chicano, “Observations in using parallel and sequential evolutionary
algorithms for automatic software testing,” Computers & Operations Research, Vol.
35, 2008, pp. 3161-3183.

6. S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic re-
view of the application and empirical investigation of search-based test case genera-
tion,” IEEE Transactions on Software Engineering, Vol. 36, 2010, pp. 742-762.

7. A. Arcuri, “It does matter how you normalise the branch distance in search based
software testing,” in Proceedings of the 3rd IEEE International Conference on Soft-
ware Testing, Verification and Validation, 2010, pp. 205-214.

8. A. Arcuri and X. Yao, “A memetic algorithm for test data generation of object-ori-
ented software,” in Proceedings of IEEE Congress on Evolutionary Computation,
2007, pp. 2048-2055.

9. T. Bäck, D. B. Fogel, and Z. Michalewicz, eds., Evolutionary Computation 1: Basic
Algorithms and Operators, Vol. 1, CRC Press, NY, 2000.

10. A. Baresel, H. Pohlheim, and S. Sadeghipour, “Structural and functional sequence
test of dynamic and state-based software with evolutionary algorithms,” in Genetic
and Evolutionary Computation, Springer Berlin/Heidelberg, 2003, pp. 215-215.

11. A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function design to improve evolu-
tionary structural testing,” in Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation, 2002, pp. 1329-1336.

12. B. Beizer, Software Testing Techniques, Dreamtech Press, 2003.
13. D. J. Berndt and A. Watkins, “High volume software testing using genetic algo-

rithms,” in Proceedings of the 38th IEEE Annual Hawaii International Conference
on System Sciences, 2005, p. 318b.

14. D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, and A. Watkins, “Breeding software
test cases with genetic algorithms,” in Proceedings of the 36th IEEE Annual Hawaii
International Conference on System Sciences, 2003, pp. 10-20.

15. S. Binitha and S. Sathya, “A survey of bio inspired optimization algorithms,” Inter-
national Journal of Soft Computing and Engineering, Vol. 2, 2012, pp. 137-151.

16. R. Blanco, J. Tuya, and B. Adenso-Díaz, “Automated test data generation using a
scatter search approach,” Information and Software Technology, Vol. 51, 2009, pp.
708-720.

17. R. Blanco, J. Tuya, E. Diaz, and B. A. Diaz, “A scatter search approach for auto-
mated branch coverage in software testing,” Engineering Intelligent Systems for
Electrical Engineering and Communications, Vol. 15, 2007, pp. 135-141.

18. A. Bouchachia, “An immune genetic algorithm for software test data generation,” in

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

268

Proceedings of the 7th IEEE International Conference on Hybrid Intelligent Systems,
2007, pp. 84-89.

19. P. M. S. Bueno and M. Jino, “Identification of potentially infeasible program paths
by monitoring the search for test data,” in Proceedings of the 15th IEEE Interna-
tional Conference on Automated Software Engineering, 2000, pp. 209-218.

20. Y. Cao, C. Hu, and L. Li, “An approach to generate software test data for a specific
path automatically with genetic algorithm,” in Proceedings of the 8th IEEE Interna-
tional Conference on Reliability, Maintainability and Safety, 2009, pp. 888-892.

21. Y. Chen, Y. Zhong, T. Shi, and J. Liu, “Comparison of two fitness functions for
GA-based path-oriented test data generation,” in Proceedings of the 5th IEEE Inter-
national Conference on Natural Computation, Vol. 4, 2009, pp. 177-181.

22. I. Chung and J. M. Bieman, “Generating input data structures for automated program
testing,” Software Testing, Verification and Reliability, Vol. 19, 2009, pp. 3-36.

23. L. A. Clarke, “A system to generate test data and symbolically execute programs,”
IEEE Transactions on Software Engineering, Vol. 3, 1976, pp. 215-222.

24. L. N. de Castro and F. J. von Zuben, “Learning and optimization using the clonal
selection principle,” IEEE Transactions on Evolutionary Computation, Vol. 6, 2002,
pp. 239-251.

25. E. Díaz, J. Tuya, and R. Blanco, “Automated software testing using a metaheuristic
technique based on tabu search,” in Proceedings the 18th IEEE International Con-
ference on Automated Software Engineering, 2003, pp. 310-313.

26. E. Díaz, J. Tuya, R. Blanco, and J. J. Dolado, “A tabu search algorithm for structural
software testing,” Computers & Operations Research, Vol. 35, 2008, pp. 3052-3072.

27. R. Ferguson and B. Korel, “The chaining approach for software test data genera-
tion,” ACM Transactions on Software Engineering and Methodology, Vol. 5, 1996,
pp. 63-86.

28. J. Ferrer, F. Chicano, and E. Alba, “Evolutionary algorithms for the multi-objective
test data generation problem,” Software: Practice and Experience, Vol. 42, 2012, pp.
1331-1362.

29. G. Fraser and F. Wotawa, “Using model-checkers to generate and analyze property
relevant test-cases,” Software Quality Journal, Vol. 16, 2008, pp. 161-183.

30. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989, Reading, MA.

31. A. Gotlieb, B. Botella, and M. Rueher, “Automatic test data generation using const-
raint solving techniques,” ACM SIGSOFT Software Engineering Notes, Vol. 23, 1998,
pp. 53-62.

32. A. Gotlieb, B. Botella, and M. Rueher, “A CLP framework for computing structural
test data,” Computational Logic, 2000, pp. 399-413.

33. G. Peters and R. Weber, “DCC: A framework for dynamic granular clustering,”
Granular Computing, Vol. 1, 2016, pp. 1-11.

34. H. Gross, P. M. Kruse, J. Wegener, and T. Vos, “Evolutionary white-box software
test with the evotest framework: A progress report,” in Proceedings of IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops,
2009, pp. 111-120.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 269

35. M. Harman and A. Mansouri, “Search based software engineering: Introduction,”
IEEE Transactions on Software Engineering, Vol. 36, 2010, p. 737.

36. M. Harman and P. McMinn, “A theoretical and empirical study of search-based tes-
ting: Local, global, and hybrid search,” IEEE Transactions on Software Engineering,
Vol. 36, 2010, pp. 226-247.

37. M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper,
“Testability transformation,” IEEE Transactions on Software Engineering, Vol. 30,
2004, pp. 3-16.

38. M. Harman, K. Lakhotia, and P. McMinn, “A multi-objective approach to search-
based test data generation,” in Proceedings of the 9th ACM Annual Conference on
Genetic and Evolutionary Computation, 2007, pp. 1098-1105.

39. M. Harman, S. A. Mansouri, and Y. Zhang, “Search based software engineering: A
comprehensive analysis and review of trends techniques and applications,” Tech-
nical Report TR-09-03, Department of Computer Science, King’s College London,
2009.

40. I. Hermadi and M. A. Ahmed, “Genetic algorithm based test data generator,” in Pro-
ceedings of IEEE Congress on Evolutionary Computation, Vol. 1, 2003. pp. 85-91.

41. I. Hermadi, C. Lokan, and R. Sarker, “Genetic algorithm based path testing: chal-
lenges and key parameters,” in Proceedings of the 2nd IEEE World Congress on
Software Engineering, Vol. 2, 2010, pp. 241-244.

42. J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, MA, 1992.
43. I. Hooda and R. Chhillar, “A review: Study of test case generation techniques,” In-

ternational Journal of Computer Applications, Vol. 107, 2014, p. 16.
44. W. E. Howden, “Symbolic testing and the DISSECT symbolic evaluation system,”

IEEE Transactions on Software Engineering, Vol. 4, 1977, pp. 266-278.
45. B. F. Jones, D. E. Eyres, and H. H. Sthamer, “A strategy for using genetic algo-

rithms to automate branch and fault-based testing,” The Computer Journal, Vol. 41,
1998, pp. 98-107.

46. B. F. Jones, H. H. Sthamer, and D. E. Eyres, “Automatic structural testing using
genetic algorithms,” Software Engineering Journal, Vol. 11, 1996, pp. 299-306.

47. S. Kansomkeat, J. Offutt, A. Abdurazik, and A. Baldini, “A comparative evaluation
of tests generated from different UML diagrams,” in Proceedings of the 9th IEEE
International Conference on Software Engineering, Artificial Intelligence, Network-
ing, and Parallel/Distributed Computing, 2008, pp. 867-872.

48. B. Korel, “Automated software test data generation,” IEEE Transactions on Soft-
ware Engineering, Vol. 16, 1990, pp. 870-879.

49. B. Korel, “Automated test data generation for programs with procedures,” ACM
SIGSOFT Software Engineering Notes, Vol. 21, 1996, pp. 209-215.

50. F. C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan, “Enhancing adaptive random test-
ing for programs with high dimensional input domains or failure-unrelated parame-
ters,” Software Quality Journal, Vol. 16, 2008, pp. 303-327.

51. L. Livi and A. Sadeghian, “Granular computing, computational intelligence, and the
analysis of non-geometric input spaces,” Granular Computing, Vol. 1, 2016, pp. 13-
20.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

270

52. H. Li and C. P. Lam, “Software test data generation using ant colony optimization,”
in Proceedings of International Conference on Computational Intelligence, 2004, pp.
1-4.

53. K. Liaskos and M. Roper, “Hybridizing evolutionary testing with artificial immune
systems and local search,” in Proceedings of IEEE International Conference on Soft-
ware Testing Verification and Validation Workshop, 2008, pp. 211-220.

54. J. C. Lin and P. L. Yeh, “Using genetic algorithms for test case generation in path
testing,” in Proceedings of IEEE 9th Asian Test Symposium, 2000, pp. 241-246.

55. S. Mairhofer, R. Feldt, and R. Torkar, “Search-based software testing and test data gen-
eration for a dynamic programming language,” in Proceedings of the 13th ACM An-
nual Conference on Genetic and Evolutionary Computation, 2011, pp. 1859-1866.

56. M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-objective evolu-
tionary design of granular rule-based classifiers,” Granular Computing, Vol. 1, 2016,
pp. 37-58.

57. T. Manikumar, A. J. S. Kumar, and R. Maruthamuthu, “Automated test data genera-
tion for branch testing using incremental genetic algorithm,” Sādhanā, Vol. 41, 2016,
pp. 959-976.

58. P. McMinn, “Search-based software test data generation: a survey,” Software Test-
ing, Verification and Reliability, Vol. 14, 2004, pp. 105-156.

59. P. McMinn, “Search-based software testing: Past, present and future,” in Proceed-
ings of the 4th IEEE International Conference on Software Testing, Verification and
Validation Workshops, 2011, pp. 153-163.

60. P. McMinn and M. Holcombe, “Evolutionary testing using an extended chaining
approach,” Evolutionary Computation, Vol. 14, 2006, pp. 41-64.

61. P. McMinn, D. Binkley, and M. Harman, “Empirical evaluation of a nesting testabil-
ity transformation for evolutionary testing,” ACM Transactions on Software Engi-
neering and Methodology, Vol. 18, 2009, p. 11.

62. P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The species per path approach
to search-based test data generation,” in Proceedings of ACM International Sympo-
sium on Software Testing and Analysis, 2006, pp. 13-24.

63. A. Mehrmand, “A factorial experiment on scalability of search-based software test-
ing,” Master’s Thesis, Thesis No. MSE-2009:20, Blekinge Institute of Technology,
Sweden, 2009.

64. C. C. Michael, G. E. McGraw, M. A. Schatz, and C. C. Walton, “Genetic algorithms
for dynamic test data generation,” in Proceedings of the 12th IEEE International
Conference on Automated Software Engineering, 1997. pp. 307-308.

65. C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test data by evo-
lution,” IEEE Transactions on Software Engineering, Vol. 27, 2001, pp. 1085-1110.

66. J. Miller, M. Reformat, and H. Zhang, “Automatic test data generation using genetic
algorithm and program dependence graphs,” Information and Software Technology,
Vol. 48, 2006, pp. 586-605.

67. H. D. Mills, M. Dyer, and R. C. Linger, “Cleanroom software engineering,” IEEE
Software, Vol. 4, 1987, p. 19.

68. G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, John Wiley &
Sons, 2011.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 271

69. P. B. Nirpal and K. V. Kale, “Comparison of software test data for automatic path
coverage using genetic algorithm,” International Journal of Computer Science &
Engineering Technology, Vol. 1, 2011, pp. 12-16.

70. A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” in Proceedings
of ACM SIGSOFT Software Engineering Notes, Vol. 21, 1996, pp. 195-200.

71. J. Oh, M. Harman, and S. Yoo, “Transition coverage testing for simulink/stateflow
models using messy genetic algorithms,” in Proceedings of the 13th ACM Annual
Conference on Genetic and Evolutionary Computation, 2011, pp. 1851-1858.

72. A. Pachauri and G. Srivastava, “Automated test data generation for branch testing
using genetic algorithm: An improved approach using branch ordering, memory and
elitism,” Journal of Systems and Software, Vol. 86, 2013, pp. 1191-1208.

73. R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic al-
gorithms,” Software Testing Verification and Reliability, Vol. 9, 1999, pp. 263-282.

74. M. Pei, E. D. Goodman, Z. Gao, and K. Zhong, “Automated software test data gen-
eration using a genetic algorithm,” Technical Report No. 1, Department of Computer
Science, Michigan State University, 1994, pp. 1-15.

75. P. Lingras, F. Haider, and M. Triff, “Granular meta-clustering based on hierarchical,
network, and temporal connections,” Granular Computing, Vol. 1, 2016, pp. 71-92.

76. P. W. Tsai, J. S. Pan, S. M. Chen, B. Y. Liao, and S. P. Hao, “Parallel cat swarm
optimization,” in Proceedings of International Conference on Machine Learning
and Cybernetics, Vol. 6, 2008, pp. 3328-3333.

77. P. W. Tsai, J. S. Pan, S. M. Chen, and B. Y. Liao, “Enhanced parallel cat swarm
optimization based on the Taguchi method,” Expert Systems with Applications, Vol.
39, 2012, pp. 6309-6319.

78. H. H. Sthamer, “The automatic generation of software test data using genetic algo-
rithms,” Doctoral dissertation, Department of Computer Studies, University of Gla-
morgan, 1995.

79. S. M. Chen and N. Y. Chung, “Forecasting enrollments using high-order fuzzy time
series and genetic algorithms,” International Journal of Intelligent Systems, Vol. 21,
2006, pp. 485-501.

80. S. M. Chen and T. H. Chang, “Finding multiple possible critical paths using fuzzy
PERT,” IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernet-
ics, Vol. 31, 2001, pp. 930-937.

81. S. M. Chen and C. Y. Chien, “Parallelized genetic colony systems for solving the
traveling salesman problem,” Expert Systems with Applications, Vol. 38, 2011, pp.
3873-3883.

82. X. B. Tan, C. Longxin, and X. Xiumei, “Test data generation using annealing im-
mune genetic algorithm,” in Proceedings of the 5th IEEE International Joint Con-
ference on INC, IMS and IDC, 2009, pp. 344-348.

83. P. Thevenod-Fosse and H. Waeselynck, “STATEMATE applied to statistical soft-
ware testing,” ACM SIGSOFT Software Engineering Notes, Vol. 18, 1993, pp. 99-
109.

84. P. Tonella, “Evolutionary testing of classes,” ACM SIGSOFT Software Engineering
Notes, Vol. 29, 2004, pp. 119-128.

T. MANIKUMAR AND A. JOHN SANJEEV KUMAR

272

85. N. Tracey, J. Clark, and K. Mander, “Automated program flaw finding using simu-
lated annealing,” ACM SIGSOFT Software Engineering Notes, Vol. 23, 1998, pp.
73-81.

86. N. Tracey, J. Clark, K. Mander, and J. McDermid, “Automated test-data generation for
exception conditions,” Software-Practice and Experience, Vol. 30, 2000, pp. 61-79.

87. J. Voas, L. Morell, and K. Miller, “Predicting where faults can hide from testing,”
IEEE Software, Vol. 8, 1991, pp. 41-48.

88. Y. Wang, Z. Bai, M. Zhang, W. Du, Y. Qin, and X. Liu, “Fitness calculation ap-
proach for the switch-case construct in evolutionary testing.” in Proceedings of the
10th ACM Annual Conference on Genetic and Evolutionary Computation, 2008, pp.
1767-1774.

89. J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for auto-
matic structural testing,” Information and Software Technology, Vol. 43, 2001, pp.
841-854.

90. J. Wegener, A. Baresel, and H. Sthamer, “Suitability of evolutionary algorithms for
evolutionary testing,” in Proceedings of the 26th IEEE Annual International Com-
puter Software and Applications Conference, 2002, pp. 287-289.

91. J. Wegener, K. Buhr, and H. Pohlheim, “Automatic test data generation for structur-
al testing of embedded software systems by evolutionary testing,” in Proceedings of
the 4th Annual Conference on Genetic and Evolutionary Computation, 2002, pp.
1233-1240.

92. L. D. Whitley, “The GENITOR algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best,” ICGA Journal, Vol. 89, 1989, pp. 116-123.

93. A. Windisch, S. Wappler, and J. Wegener, “Applying particle swarm optimization to
software testing,” in Proceedings of the 9th ACM Annual Conference on Genetic and
Evolutionary Computation, 2007, pp. 1121-1128.

94. S. Xanthakis, C. Ellis, C. Skourlas, A. le Gall, S. Katsikas, and K. Karapoulios,
“Application of genetic algorithms to software testing,” in Proceedings of the 5th
International Conference on Software Engineering and Applications, 1992, pp. 625-
636.

95. M. Xiao, M. El-Attar, M. Reformat, and J. Miller, “Empirical evaluation of optimi-
zation algorithms when used in goal-oriented automated test data generation tech-
niques,” Empirical Software Engineering, Vol. 12, 2007, pp. 183-239.

96. H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and adequacy,”
ACM Computing Surveys, Vol. 29, 1997, pp. 366-427.

T. Manikumar received his Bachelor’s degree in Science and
his Master’s degree in Computer Applications from Madurai Ka-
maraj University in 2004 and 2008, respectively. He obtained his
Ph.D. degree in Computer Applications from Anna University in
2018. Currently he is working as an Assistant Professor in MCA
Department at RVS College of Engineering, Dindigul, Tamilnadu,
India. His current research interests include software engineering,
search based software testing, optimization techniques.

BGA FOR AUTOMATED BRANCH COVERAGE IN SOFTWARE TESTING 273

A. John Sanjeev Kumar received the Ph.D. degree in Com-
puter Applications from Anna University Chennai, India in 2010.
Currently he is working as an Assistant Professor in MCA Depart-
ment, Thiagarajar College of Engineering, Madurai, India. His re-
search interests include spatial databases, image processing, cloud
computing and software engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

