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Smart manufacturing is an important research field that is associated with production 

planning and scheduling, the Internet of Things and artificial intelligence technologies. 

Production lines use advanced planning and scheduling systems for production operations, 

time forecasting and planning; integrated manufacturing execution systems are used to 

collect real-time production information via the Internet of Things to strengthen scheduling 

control; and artificial intelligence machine learning technology is used to perform predic-

tive maintenance to achieve high-accuracy planning and scheduling. Advanced planning 

and scheduling systems use genetic algorithms for planning with the aim of increasing 

speed and accuracy, and the integration of real-time production information from manu-

facturing execution systems and dynamic adjustments to shift planning are important is-

sues in smart manufacturing. A traditional cyber-physical system integrates historical and 

real-time production information and carries out a machine learning analysis to improve 

the production scheduling efficiency, but the prediction of production times for new prod-

uct orders is a topic that needs further research. This paper proposes new methods of dy-

namic productivity prediction and new production feature selection, with the aim of im-

proving the performance of advanced planning and scheduling systems. A genetic ant col-

ony algorithm is used to predict dynamic productivity based on real-time production in-

formation, to reduce the error between production time plans and actual operations. His-

torical production information is analysed, and the best correlation coefficient is used in 

new production feature selection, in order to reduce the discrepancy between production 

productivity forecasts and actual results. Our proposed dynamic productivity prediction 

method can reduce the error by at least 1.5% compared with other schemes in the literature, 

while the proposed production feature selection method can reduce the error by 0.08%. 

 

Keywords: smart manufacturing, advanced planning and scheduling system, dynamic pro-

ductivity prediction, new production feature selection, machine learning 

 

 

1. INTRODUCTION 
 

Smart manufacturing is an important trend in the development of traditional indus-

tries, and is used to achieve efficient production management. Automated production 

equipment uses Internet of Things technology to upload real-time production information 

to a cloud management platform, which provides a visual monitoring service that can con-

trol the equipment conditions and make adjustment to process planning. Artificial intelli-

gence and machine learning technology can be integrated to predict and plan production 
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operation times to improve the manufacturing efficiency. A cyber-physical system inte-

grates historical data and real-time production information from the manufacturing execu-

tion system and carries out machine learning analysis and prediction, with the aim of im-

proving advanced planning and scheduling system performance [1]. The development of 

integrated manufacturing execution systems that use real-time information for advanced 

planning and scheduling algorithm design can reduce forecast errors [2]. One study in the 

literature proposed an advanced planning and scheduling algorithm that used production 

information from the manufacturing execution system and passed it to a long short-term 

memory prediction model, in order to predict production operation times based on the en-

ergy consumption, resource utilisation and production time characteristics of each machine 

at a workstation [3]. The processing algorithm performed production operations by pre-

dicting the machine path with the lowest cost. Another study put forward a cloud manage-

ment platform system that applied a manufacturing execution system to improve the per-

formance of an advanced planning and scheduling system [4]. It used the ant colony algo-

rithm to predict the production operation time based on the real-time production infor-

mation from each machine at a workstation. This algorithm performed production opera-

tions by predicting the machine path with the shortest manufacturing time. However, the 

advanced planning and scheduling algorithms in the abovementioned articles did not take 

into account the time delay caused by the continuous processing of the machine, leading 

to differences between the predicted times for production operations and the actual opera-

tion times. Traditional advanced planning and scheduling systems cannot accurately plan 

machine paths for orders with unknown products, as advanced planning and scheduling 

algorithms cannot predict the production times for unknown products [5-8]. A scheme in 

one paper used the complex features of the production process to predict the production 

times for new products with a regression prediction model [9]. The authors considered the 

complex characteristics of product manufacturing and performed a linear regression anal-

ysis on the production times. However, the advanced planning and scheduling algorithms 

in the related literature do not take into account the learning bias caused by the low corre-

lation coefficient feature, which leads to an error between the predicted production time 

for a new product and the actual operation time. In order to improve the efficiency of ad-

vanced planning and scheduling systems, we propose a dynamic productivity prediction 

method to predict the continuous processing delay time using linear regression, and de-

velop a method of selecting new production features to predict production times using the 

best correlation coefficient feature. In Section 2 of this paper, we discuss research methods 

in the recent related literature. Section 3 describes our methods of dynamic productivity 

forecasting and new production feature selection, with the aim of improving the perfor-

mance of advanced planning and scheduling systems. Section 4 presents a performance 

analysis of the proposed method and compares it with schemes in the literature. Finally, 

Section 5 summarises this paper. 

2. RELATED WORK 

The rise of Industry 4.0 has driven researchers towards the use of Internet of Things 

technology to communicate with manufacturing machinery and equipment in order to col-

lect real-time data, and to use these data to improve the rules for dynamic production 

scheduling to improve the overall production efficiency of a workshop. One study in the 
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literature has proposed a decision support system that can adjust the production sequence 

in real time, based on real-time data from workstations relating to the busy status of me-

chanical equipment, machines waiting for processing, and attributes of products waiting to 

be processed, in order to avoid idle time at workstations [10]. Another study reviewed and 

analysed research on manufacturing processing times. If mechanical equipment events and 

product specification differences were found to affect the manufacturing time, it was sug-

gested that the production schedule time could be adjusted in real time, to avoid misjudge-

ments in planning and scheduling [11]. Another study optimised the production planning 

and scheduling based on the total production time and energy consumption for the indus-

trial category of high energy consumption and large orders in the forging industry. In this 

paper, the overall production time was optimised by applying different fitness calculation 

methods to genetic algorithms, and the energy consumption was minimized [12]. A further 

paper reported that customised manufacturing represented a future trend in smart manu-

facturing, as there has been a gradual transformation from large-scale production to large-

scale customisation. New product manufacturing and assembly planning has become an 

important issue affecting scheduling planning, as the manufacture of new products in-

creases the complexity of operations and reduces the accuracy of planning and scheduling 

forecasts [13]. 

There are many studies in the literature on the classification and discussion of ad-

vanced planning and scheduling system problems, including innovative models and meth-

ods, design optimisation methods, heuristic methods and genetic algorithms, advanced 

techniques involving the integration of RFID technology with cloud computing technology, 

and advanced planning, analysis and scheduling systems that provide spreadsheets and 

visual display platforms [14-18]. These systems have been developed for use in Industry 

4.0 in the future. One study in the literature surveyed research results related to the mod-

elling and implementation of advanced planning and scheduling systems over the past two 

decades, and proposed a collaborative filtering algorithm to solve the problems encoun-

tered between modelling and implementation [19]. Due to the growing pressure from in-

dustrial competition and limits arising from capital budgets and regulatory environments, 

traditional advanced planning and scheduling systems cannot reduce the production time 

and cost without compromising the production quality. Advanced planning and scheduling 

systems are therefore needed that can optimise calculation methods, data processing and 

method design. Another study explored the differences in the production process between 

product orders, and automatically allocated product orders to the production line based on 

the characteristics of the production process [20]. This automatic allocation method also 

considered the load balance of the mechanical equipment, and applied a tabu search and 

simulated annealing algorithms as part of an advanced planning and scheduling system. In 

another study, the manufacturing process was considered, including the use of automation 

and characteristic digital information in the field of metal manufacturing and mechanical 

equipment manufacturing [21]. 

A cloud-based advanced planning and scheduling system was proposed in which the 

scheduling engine was based on an intelligent dynamic planning and scheduling system. 

This system was capable of dynamically generating schedule plans for production and op-

eration, and providing production planners in small and medium-sized enterprises with 

real-time visual information for analysis. Another set of researchers investigated the ap-

plicability of advanced planning and scheduling systems to the aluminum conversion in- 
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dustry, and reported that increasing product delivery delays, overproduction, waste and 

inventory could optimise the performance of the advanced planning and scheduling system 

[22]. Manufacturing plants generate huge amounts of data, and their complexity has in-

creased significantly, meaning that extracting and using the characteristics of the manu-

facturing data curve to optimise the performance of an advanced planning and scheduling 

system can only yield limited increases in performance [23]. Deep learning technology has 

been proposed for analysing the manufacturing data curve of monitoring machinery, and 

for model training and identification. This approach can provide manufacturing plants with 

suitable methods for processing huge amounts of data and complex data volumes; it can 

improve the efficiency and accuracy of monitoring machinery and equipment, and enable 

the extraction of real-time visual information for analysis. 

A study in the literature proposed a cloud management platform system that integrates 

manufacturing execution systems to improve the performance of advanced planning and 

scheduling systems [4]. The system framework consists of a client data preprocessing layer, 

an application user interface layer, a virtual entity resource integration layer and an ad-

vanced planning and scheduling service cloud layer. The client data preprocessing layer 

uploads the customer information, purchase details, manufacturing orders, production pro-

cesses and real-time production information from a machine in the enterprise resource 

planning system to the cloud database via an API. The application user interface layer 

provides managers with updated information on production, machinery and equipment, 

and production lines, so that the advanced planning and scheduling system is aware of the 

actual operation conditions. The virtual entity resource integration layer is used to con-

struct the software and hardware co-design required for entity sensing data and visual dis-

play. The advanced planning and scheduling service layer uses an ant colony algorithm to 

predict the overall production operation time based on the information from the three layers 

described above. However, the article does not consider the delay due to the continuous 

processing time of the machine and the inability to plan a machine path for unknown prod-

uct orders, which leads to a discrepancy between the predicted times for production oper-

ations and the actual operation times of the advanced planning and scheduling algorithm. 

The advanced planning and scheduling algorithm needs to be improved, since the 

machine path planning problem cannot be solved for orders for unknown products. A study 

in the literature therefore used a product complexity approach to predict the new produc-

tion times, and the complex features of production including the quantity of components, 

the interconnections between subsystems, customisation of the final components, the va-

riety of distinct knowledge for product design, the number of product functions and the 

variety of components [9]. A complexity analysis of the features of production in this paper 

is shown in Fig. 1. For instance, the quantity of components (A) has a complexity score of 

2474 for Product 1, 1515 for Product 2, 46 for Product 3, and 2340 for Product 4. The al-

gorithm normalises the maximum complexity of feature A to a value of 100 and adjusts 

the other products accordingly. After normalisation has been applied in the same way to 

the other products, we see that the interconnection between subsystems (B) has a score of 

87 and the customisation of the final components (C) has a score of 100. The numerical 

score assigned to the variety of distinct knowledge for product design (D) is 100, the num-

ber of product functions (E) is 100, and the variety of components (F) is 100. The algorithm 

gives a normalised vaue for the feature complexity of 587 for Product 1, 436 for Product 

2, 180 for Product 3, and 552 for Product 4. The production times for Products 1 to 4 are 
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1580, 814, 245 and 1332, respectively. The algorithm is used to train a linear regression 

analysis model for the normalised sum of the feature complexities of Products 1 to 3 (587, 

437, 180) and their production times (1580, 814, 245) to predict the feature complexity of 

Product 4. The normalised sum of 552 values has a production time of 1319 values. How-

ever, the advanced planning and scheduling algorithms in the related literature do not take 

into account the learning bias caused by the characteristics of the low correlation coeffi-

cients, which leads to an error of 13 days between the predicted times for production op-

erations on new products and the actual operation times. 

 

 
Fig. 1. Feature complexity analysis for product manufacturing. 

3. DYNAMIC PRODUCTIVITY PREDICTION AND NEW 
PRODUCTION FEATURE SELECTION METHODS 

3.1 System Architecture 

 

This paper proposes new methods for dynamic productivity forecasting and new pro-

duction feature selection, with the aim of improving the efficiency of advanced planning 

and scheduling systems. The architecture of our system is shown in Fig. 2. The proposed 

system performs production planning and scheduling based on a genetic ant colony algo-

rithm for multiple product order information, and a dynamic productivity forecasting al-

gorithm is applied to predict the production times based on real-time production data from 

mechanical equipment. The genetic ant colony algorithm uses a highly random combina-

tion of mating and mutation to achieve high coverage; it calculates the different permuta-

tions and combinations of mechanical equipment used for each process, applies an iterative 

process to implement the ant colony pheromone mechanism and a rule of thumb, and cal-

culates each for the production route with the shortest total manufacturing time of permu-

tations and combinations. The path selection weight value is given positive feedback for 

permutations and combinations with excellent performance; otherwise, negative feedback 

is given to ensure gradual convergence to the optimal production route. The dynamic 

productivity forecasting algorithm uses a linear regression machine learning approach to 

analyse the product complexity and predict the time required by mechanical equipment to 

produce an order, with the aim of reducing the error between the predicted production time 

and actual production operations. If an order includes a new product, the new product fea- 
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ture selection algorithm is first applied to predict the production time for the new product. 

The correlation coefficient is used to calculate the degree of linear correlation between 

each feature of the production complexity of new products and the two variables of histor-

ical production time, and features with a low degree of correlation are filtered to improve 

the prediction accuracy of the manufacturing time for the new product. A genetic ant col-

ony algorithm is used to predict the machine path with the shortest manufacturing time 

based on the order information, and a machine learning linear regression analysis is used 

to predict the time delay for the continuous processing path of the machine. The prediction 

method for the dynamic production productivity is applied to reduce the error between the 

predicted production time and the actual production operations. The system calculates the 

correlation coefficient between the complex features of production and the historical pro-

duction time to obtain the best correlation coefficient feature; the best value of this feature 

is passed to a machine learning linear regression analysis to predict the new product pro-

duction time and to apply the new production feature selection method, in order to reduce 

the error between the predicted production time and the actual operation. 

 

 
Fig. 2. System architecture. 

 

3.2 Dynamic Productivity Prediction Method 

 

We propose a dynamic production productivity prediction method that uses a genetic 

ant colony algorithm to plan the machine path with the shortest manufacturing time. The 

algorithm, entitled ‘Finding the Best Planning Scheduling’, obtains the machine path with 

the shortest total manufacturing time for a complex order, and an algorithm entitled ‘Com-

bining Dynamic Productivity Prediction’ is supplemented by the dynamic productivity ma-

chine learning prediction method to predict the production time. The system randomly 

generates order sorting (order_of_population) groups based on the multiple order infor-

mation (order_of_population) using a genetic algorithm, and applies the concept of a pher-

omone (Ant_update_weight) from the ant colony algorithm to set the weight value (art_ 



DPP AND NEW PRODUCTION FEATURE SELECTION METHODS FOR APS 347 

weights_list) for each machine in the product production path. The weight of the iterative 

process of finding the path t will gradually volatilise and decrease with the number of 

iterations according to the volatility coefficient (t = (1 − )t), and the weight of the op-

timal path for this time will increase by a constant Q divided by the best solution worktime 

(t = (1 − )t + Q / best_solution.worktime). This is done to speed up the convergence of 

the genetic algorithm to obtain the machine path with the shortest total manufacturing time 

for the overall order. Pseudocode for the ‘Finding the Best Planning Scheduling’ algorithm 

is shown in Fig. 3. At the machine path planning stage (Choose_machine), we take into 

consideration the fact that the production time needed by a machine to continuously pro-

duce the same product includes a delay: the production time for the second reproduction is 

greater than for the first reproduction. The system uses a machine learning linear regression 

analysis model to predict the dynamic production productivity based on real-time machine 

information to obtain the production time for a third product in the future. Our advanced 

planning and scheduling system use the future production time (working_time) obtained 

by the dynamic production productivity prediction method (Machine Learning_Predict) to 

predict the machine path, and reduces the error in the actual time caused by the use of only 

the last rework production time to predict the machine path in previous schemes. 

 

Finding the best planning schedule algorithm 

Requires: Genetic algorithm [CROSS_RATE = 0.1, MUTATE_RATE = 0.01] 

Requires: planning_to_circuit 

Requires: ML algorithm 

Requires: count variable supervised_iteration = 0 

Requires: art_weights_list 

Requires: machine weights as t  

Requires: volatility coefficient as  = 0.03 

Requires: constant as Q = 10 

def Ant_update_weight (best_solution): 

    get machine weight: art_weights_list 

    get machine weight form best_solution path: best_machine _list 

    for t in art_weights_list: 

       if t in best_machine_list: 

          t = (1 − )t + Q / best_solution.worktime 

       else: 

          t = (1 − )t   

main(): 

   set the number of iterations: Iteration 

   get order list: order_list 

   order_of_population = random permutations from order_list 

   while (true): 

       if Iteration _sup == Iteration: 

          break 

       else: 

         order_of_population.total_working_time = planning_to_circuit (or 

der_of_population) 
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   set the number of iterations: Iteration 

   get order list: order_list 

   order_of_population = random permutations from order_list 

         fitness = 1 / order_of_population.total_working_time 

         if best_solution.fitness < fitness: 

             best_solution = order_of_population 

         if top 3 fitness: 

             Ant_update_weight (best_solution) 

         order_of_population = Genetic Algorithm (order_of_population, fitness) 

         supervised_iteration += 1 

  return best_solution 

Fig. 3. Pseudocode for the ‘Finding the Best Planning Schedule’ algorithm. 

 

The ‘Combined Dynamic Productivity Prediction’ algorithm is shown in Fig. 4. Our 

scheme incorporates real-time production information from the manufacturing execution 

system, which is passed to a machine learning algorithm to predict future productivity 

(predict_model). This enhances the prediction accuracy of the advanced planning and 

scheduling system. An ant colony algorithm is used to dynamically adjust the machine 

selection weights of the product production path in real time (Ant_update_weight), and to 

find the machine path with the shortest total manufacturing time for the overall order, with 

a fast convergence speed. 

 

Combined dynamic productivity prediction algorithm 

Requires: ML algorithm 

Requires: process_array 

Requires: sklearn.linear_model import LinearRegression 

Requires: ordered_insert_list 

def Choose_machine (process): 

         machine = choose (machine_list, weights _list) 

         machine_path.append (machine) 

    return machine_path 

def MachineLearning_Predict (machine,order): 

    machine_time = 0 

    get machine historical data: machine_date 

    get production quantity: product_count 

    predict_model = LinearRegression (machine_date) 

    machine_time += predict_model (product_count) 

    return machine_time 

def planning_to_circuit (order_of_population): 

    working_time = 0 

    total_working_time = 0 

    for order_list in order_of_population: 

      for order in order_list: 

        product process sequence: manufacturing_process 
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        for process in manufacturing_process: 

          machines_path = Choose_machine (process) 

          for machine in machines_path: 

            working_time = MachineLearning_Predict (machine, order) 

            total_working_time += working_time 

      order_of_population.total_working_time = total_working_time 

    return order_of_population 

Fig. 4. Pseudocode for the ‘Combined Dynamic Productivity Prediction’ algorithm. 

 

3.3 Proposed Production Feature Selection Method 

 

Since no historical information is available for predicting the production operation 

time for new products using existing advanced planning and scheduling algorithms, we 

consider the correlation coefficient [24] between the characteristics of artificial intelli-

gence machine learning technology and the target to adjust the prediction results from our 

algorithm. Our scheme predicts the production time for new products based on the charac-

teristics of the best correlation coefficient between the original product and the production 

time, supplemented by a machine learning linear regression analysis model. Our new 

productivity prediction algorithm is shown in Fig. 5. A production feature selection method 

is proposed that uses a product moment correlation coefficient detector to calculate the p-

value (which ranges from zero to one). The more highly the product features are correlated 

with the production time, the smaller the p-value. Our new production feature selection 

method is based on an analysis of the correlation coefficient p-value between the original 

product and the production time. The best correlation coefficient characteristics of the orig-

inal product and its production time are passed to the machine learning linear regression 

analysis prediction model to calculate the production times for new products, which can 

be used for advanced planning and scheduling operations. The novel production feature 

selection method proposed in this paper can avoid the problem of analysis error caused by 

overfitting of the prediction model, and can provide professionals to recommend feature 

selection to add machine learning linear regression analysis prediction model training for 

new production operation times. 

 

New product productivity prediction algorithm 

Requires: scipy.stats import pearsonr 

def feature_filtering (list_of_features_new_product): 

   get machine production time: product_time 

   get product features: product_features 

   for fn in product_features: 

        p = pearsonr (fn, product_time) 

        if p < TH:  

           Train_Feature.append (fn) 

           TH = p 

   for new_feature_data in list_of_features_new_product: 

        if new_feature_data in Train_Feature: 

           new_feature.append (new_feature_data) 
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   predict_model = ML algorithm (Train_Feature, product_time) 

   new_order_time = predict_model (new_feature) 

   return new_order_time 

Fig. 5. Pseudocode for the ‘New Product Productivity Prediction’ algorithm. 

 

3.4 Example Involving the Proposed Methods 

 

To illustrate our advanced planning and scheduling algorithm, we take three orders 

(Order_1, Order_2 and Order_3) as an example. In this case, three, one and two products 

need to be produced, respectively. Order_2 is a new product. The system uses the ‘Finding 

the Best Planning Schedule’ algorithm to create 20 solutions in the form of groups of ran-

dom permutations and combinations using genetic algorithms. It executes three iteration 

process, and uses the above group solutions to use the ‘Combined Dynamic Productivity 

Prediction’ algorithm for dynamic productivity prediction method scheduling operations. 

For Order_1, the production process list has the order [laser, welding, grinding], and the 

Choose_machine function is used to select the machine path. If each machine produces a 

specific product, there are nearly three manufacturing times, such as Laser_machine_1 = 

[20, 20, 21], Laser_machine_2 = [23, 22, 23] and Laser_machine_3 = [21, 22, 21] values, 

which will give the machine weight values in an average reciprocal manner as [1/20, 1/23, 

1/21] values, to implement the ant colony algorithm to obtain the machine path. The higher 

the value of a machine weight, the higher the selection probability. Since Order_1 requires 

the production of three products, if the genetic ant colony algorithm chooses Laser_ma-

chine_1, then the dynamic productivity prediction algorithm predicts the follow-up pro-

duction time to be 21, based on the real-time data of [20, 20, 21]. The system applies the 

‘New Product Productivity Prediction’ algorithm to predict the production operation time 

for new products for Order_2. The laser process similar product features [feature A, feature 

B, feature C], the complex features of similar product 1 [2000, 500, 810] and production 

operations 15 minutes, the complex features [1500, 200, 400] of similar products 2 and the 

production operation 8 minutes and the complex features [50, 25, 30] of similar products 

3 and the production operation 2 minutes information to carry out the best correlation co-

efficient characteristic analysis to get. The above example gives the feature C [810, 400, 

30] and the production operation time with the best correlation coefficient of 0.0094. Using 

a feature value of 700, the above machine learning linear regression prediction model gives 

the production operation time as 9.7 min. If the abovementioned characteristics have a 

threshold value for the correlation coefficient that is lower than 0.05, we use the complex 

correlation coefficient characteristics to predict the production time of new products. Oth-

erwise, we use all of the existing product complexity and production times to predict the 

manufacturing times for new products. The system uses the Ant_update_weight function 

to update the weight of each machine selection based on the path planning of the top three 

machines with the highest fitness. Taking the best solution as an example, we see that the 

total manufacturing time is 350 min, and the weight t of of Laser_machine_1 is updated 

from the original value of 1/20 to a value of 0.077. Our approach achieves dynamic produc-

tivity forecasting accurately and quickly, and can carry out machine path planning with the 

shortest total manufacturing time for the complex overall order. 
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Fig. 7. (a) Results for five orders: Existing scheme in [4]. 

4. EXPERIMENTAL RESULTS 

4.1 Performance of Dynamic Productivity Prediction 

The proposed advanced planning and scheduling system was developed and imple-

mented using the Anaconda development environment in Python, and was based on the 

Scikit-learn machine learning suite. To verify our dynamic productivity prediction method, 

experiments were carried out using five, 10 and 15 orders for analysis. The data included 

actual production time information on six products, which were used for a performance 

analysis, and some of the open data are shown in Fig. 6 [25]. The number of system itera-

tions is equal to the number of orders: when there are five orders, the algorithm will un-

dergo five iterations, each of which will give 20 random solutions. In order to verify the 

effectiveness of the proposed model, a public dataset is considered in this paper. Using an 

exhaustive method, the changes in machine production times in this public dataset are input 

to the proposed model to obtain a theoretical value (Theoretical optimum for the total time) 

for optimal production planning and scheduling. Advanced research is carried out for five 

orders, and the theoretical value is found to be 20.3 h for the best production planning and 

scheduling scheme. The results from our advanced planning and scheduling system for 

five orders are shown in Fig. 7, and the theoretical optimal total time is 20.3 h. Existing 

schemes in the related literature [4] do not consider the continuous processing time delay 

of the machine, and the total pre-scheduling time is 19.8 h. The method proposed in this 

paper uses a dynamic productivity forecasting method, which gives a total pre-arrangement 

time of 20.5 h. From this, we can observe that the prediction error for the existing scheme 

in the literature is 2.5%, whereas the prediction error for our method is 1.0%. The proposed 

dynamic productivity prediction method can therefore reduce the error by 1.5% compared 

with the existing scheme. 

 
Fig. 6. Example of prediction problem. 

 



MING-FONG TSAI, WEI-TSE LI, LIEN-WU CHEN 

 

352 

 

 
Fig. 7. (b) Results for five orders: Proposed method. 

 

The results from our advanced planning and scheduling system for ten orders are 

shown in Fig. 8, and the theoretical optimal total time is 33.8 h. Existing schemes in the 

related literature do not consider the continuous processing time delay of the machine, and 

the total pre-scheduling time is 31.9 h. The method proposed in this paper uses a dynamic 

productivity forecasting method, which gives a total pre-arrangement time of 33.3 h. From 

this, we can observe that the prediction error for the existing scheme in the literature is 

5.6%, whereas the prediction error for our method is 1.5%. The proposed dynamic produc-

tivity prediction method can therefore reduce the error by 4.1% compared with the existing 

scheme. The results from our advanced planning and scheduling system for fifteen orders 

are shown in Fig. 9, and the theoretical optimal total time is 75.6 h. Existing schemes in 

the related literature do not consider the continuous processing time delay of the machine, 

and the total pre-scheduling time is 71.7 h. The method proposed in this paper uses a dy-

namic productivity forecasting method, which gives a total pre-arrangement time of 74.4 

h. From this, we can observe that the prediction error for the existing scheme in the litera-

ture is 5.2%, whereas the prediction error for our method is 1.6%. The proposed dynamic 

productivity prediction method can therefore reduce the error by 3.6% compared with the  

 

 
(a) Existing scheme in [4]. 

 
(b) Proposed method. 

Fig. 8. Results for 10 orders. 
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(a) Existing scheme in [4]. 

 
(b) Proposed method. 

Fig. 9. Results for 15 orders. 

 

existing scheme. The dynamic productivity prediction method can reduce the error be-

tween the predicted production time and the actual production time, and is better than the 

existing scheme from the literature by at least 1.5%, as shown in Table 1. 

 

Table 1. Summary of experimental results. 

Number 

of orders 
Methods 

Total  

prescheduling 

time (h) 

Theoretical opti-

mum (Exhaustive 

method) for the 

total time (h) 

Prediction 

error (%) 

Error  

reduction 

(%) 

5 

Existing 

scheme [4] 
19.8 

20.3 

2.5 

1.5 
Proposed 

method 
20.5 1.0 

10 

Existing 

scheme [4] 
31.9 

33.8 

5.6 

4.1 
Proposed 

method 
33.3 1.5 

15 

Existing 

scheme [4] 
71.7 

75.6 

5.2 

3.6 
Proposed 

method 
74.4 1.6 

 

4.2 Performance of New Production Feature Selection 

 

To verify our new production feature selection method, we used real data on produc-

tion times from the literature to conduct a performance analysis. This included four product 
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samples and six feature indicators [9]. The system uses the scipy.pearsonr correlation co-

efficient detector in Python to provide data analysis for the relevant literature. The corre-

lation coefficient obtained in this way is shown in Fig. 10. The equation used in the existing 

scheme in the literature to predict the new product production time is shown in Eq. (1), 

while the equation used by our proposed new production feature selection method is shown 

in Eq. (2). This paper proposes a new production feature selection method using the best 

correlation coefficient F feature for prediction with a value of 0.0074, so using the original 

three product F features [927, 404, 46] and their manufacturing time [1580, 814, 245]. A 

machine learning linear regression prediction model was built and the production time was 

predicted to be 1320 days using the new product F feature [750]. The actual production 

time for the new product provided by the relevant literature is 1332 days and its method 

prediction are 1319 days, this paper effectively improves the 0.08% value ((1320 − 1319) 

/ 1332) of the prediction error of the relevant literature.  

yRelated = 0.0071x
2
Related + 2.146xRelated + 402.11 (1) 

yMethod = 1.511xRelated + 185.83 (2) 

 

Indicator Pearsonr 

A. Quantity of components 0.13 

B. Interconnection between subsystems 0.48 

C. Customisation of the final components 0.10 

D. Variety of distinct knowledge for product design 0.3 

E. Number of product functions NAN 

F. Variety of components 0.007 

Fig. 10. Correlation coefficient. 

5. CONCLUSIONS 

Smart manufacturing is an important trend in the development of traditional industries, 

and relies on efficient production management. Automated production equipment uses In-

ternet of Things technology to upload real-time production information to a cloud man-

agement platform, which provides a visual monitoring system for control over all the 

equipment conditions and adjustments to process planning. Artificial intelligence and ma-

chine learning technology needs to be integrated into production operation time prediction 

planning in order to improve manufacturing efficiency. In this paper, we have proposed 

dynamic productivity prediction and new production feature selection methods that can 

improve the performance of advanced planning and scheduling systems. A genetic ant col-

ony algorithm is used to predict dynamic productivity based on real-time production infor-

mation to reduce the discrepancy between production time plans and actual operation. His-

torical production information is analysed and the best correlation coefficient is used for 

new production feature selection to reduce the error between the forecast productivity and 

the actual operation. The dynamic productivity prediction method put forward in this paper 

can reduce this error by 1.5% compared with an existing scheme in the literature, and our 

proposed new production feature selection method can reduce the error by 0.08% com-

pared with the alternative scheme. From the experimental results presented in this paper, 
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it can be seen that obtaining strong correlation features after filtering the features can ef-

fectively improve the prediction performance; however, when the product model has high 

complexity and many features, the improvement in the prediction results will be limited. 

In future work, we will effectively normalise the threshold used for the strong correlation 

features, and will apply deep learning for model training and prediction in order to elimi-

nate those features that will not affect the results and improve the prediction accuracy. 
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