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Traffic congestion index (i.e., TCI) is a metric for measuring urban road congestion 

degree. Since traffic congestion has been one of the major issues in most metropolises, it 
is a crucial demand to know the TCI of every road segment at every time slot. However, 
it is a challenging task, because the TCI sensors (e.g., road-side sensors, floating vehicles, 
etc.) are limited in spatial or temporal dimension, leading to sparse TCI data in the spa-
tial-temporal space. In this paper, we propose a method for estimating the missed TCI 
data for any road segment at any time slot, based on the sparse TCI data reported by the 
existing TCI sensors and a variety of open ubiquitous data. First, it extracts various urban 
features which have a correlation with the TCI data from the open ubiquitous data. Sec-
ond, it fuses the urban features with the sparse TCI data using a collective matrix factor-
ization algorithm, and collaboratively estimates the missed data. The advantage of our 
method is that it could adapt to the situation of high TCI data sparsity by incorporating 
external correlations from open ubiquitous data. We evaluate our method with extensive 
experiments based on a real-world TCI dataset and four open ubiquitous data sources. 
The results show the effectiveness of our method. 
 
Keywords: traffic congestion index, open ubiquitous data, urban computing, collective 
matrix factorization, feature fusion 

1. INTRODUCTION 

Traffic congestion has been one of the major issues in most metropolises. Traffic 
congestion would cause many urban problems, e.g., wasting energy, causing pollution, 
decreasing productivity, etc. TCI is a metric for quantifying the degree of urban road 
congestion [1], so the knowledge of TCI of every road segment at every time slot is val-
uable. For instance, a navigation system could leverage such knowledge to suggest the 
fastest path rather than the shortest path to drivers [2]. Such knowledge could also be 
used to support the decision making on the city’s transportation planning [3]. 

Most big cities have deployed various monitoring systems to obtain TCI data. These 
TCI monitoring systems could be roughly divided into two categories according to the 
sensing techniques: static systems and dynamic systems. Static systems monitor TCI data 
based on data from stationary road-side sensors (e.g., loop detector [4], visual camera [5], 
RFID reader [6], etc.), and dynamic systems are based on data generated by floating ve-
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hicles [7-9]. However, the results are usually sparse in spatial or temporal dimension due 
to the limitation of these systems. For static systems, they suffer from high deployment 
and maintenance costs. Thus, the expansion of their coverage is prohibitive, resulting in 
“spatial sparsity”. For dynamic systems, although floating vehicles could travel to any 
road segment, their number is usually limited (buses or taxis). Thus, for a given road seg- 
ment, only a small portion of time could have floating vehicles traveling on it, leading to 
“temporal sparsity”.    

To demonstrate the TCI data sparsity problem, we collected a real TCI dataset from 
a public traffic congestion monitoring website [10] that monitors TCI data of 199 road 
segments of Hangzhou city, China, based on stationary road-side sensors. Fig. 1 visual-
izes the monitored road segments. When zooming in the map, it can be found that a large 
proportion of road segments have not been monitored. It verifies the spatial sparsity of 
the TCI data. Besides, we analyzed the dataset and found that even for the monitored 
road segments, the TCI data only cover 65.16% time slots. Furthermore, if treating the 
TCI data of a given road segment on a given day as a unit, the units with complete data 
at every time slot only account for 8.55%. It verifies the temporal sparsity of the TCI 
data. 

 

   

 
Fig. 1. The visualization of the monitored road segments. 

 

Thus, it is crucial to have a method that could estimate the missed TCI data for any 
road segment at any time slot. According to the situations of data sparsity, we categorize 
the TCI data estimation into the following three problems. 

 
 Data filling (estimating the missed TCI data of a road segment): The road segment has 

a certain amount of TCI data available, but misses TCI data at some time slots. It cor-
responds to the temporal sparsity situation. 

 Data inference (estimating the unknown TCI data of a road segment): The road seg-
ment has not been monitored, and thus does not have any TCI data available. It cor-
responds to the spatial sparsity situation. 

 Data prediction (estimating the future TCI data of a road segment): The historical TCI 
data of the road segment are available. It also corresponds to the temporal sparsity 
situation and is a special case of data filling. For a time slot, data filling problem 
misses TCI data on a part of road segments (it might be caused by temporary failure 
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of the sensors), while data prediction problem misses TCI data on all road segments 
(since the time slot is in the future). 

 
The existing methods resolve the TCI data estimation problems by exploiting the 

internal spatial and temporal correlations of the TCI data [11, 12], so they would become 
less effective when the TCI data are highly sparse. Thus, a TCI data estimation method 
that could adapt to the situation of high TCI data sparsity is desirable. 

In this paper, we borrow the idea from context-aware recommender systems [13], 
and propose a TCI data estimation method by incorporating external correlations from 
open data sources. First, we analyze the correlation between the TCI data and several 
open data sources (i.e., road network, POIs, check-ins and geotagged photos). These 
open data sources can reflect the urban transportation development and human mobility 
patterns to a great extent, so they are suppose to have a correlation with the TCI data. For 
example, the traffic congestion pattern of a road segment within residential area would 
be greatly different from that of a road segment within commercial area. Likewise, a 
specific road segment is likely to embrace heavier traffic congestion during time slots 
with more user check-ins. Based on the analysis, we extract corresponding urban features. 
Second, since the extracted urban features reflect the potential correlations of TCI data, 
they could be used as “contexts” to enhance the modeling of spatial and temporal corre-
lations of TCI data. Thus, we fuse them with the sparse TCI data based on a collective 
matrix factorization algorithm, and collaboratively estimate the unavailable TCI data. 

The primary contributions of this paper are summarized as follows: 
 

 We propose a method to address the spatial and temporal sparsity problem of urban 
TCI data by exploring four open ubiquitous data sources (i.e., road network, POIs, 
check-ins and geotagged photos). 

 We analyze the correlations between the four open ubiquitous data sources and the 
TCI data, and design various urban features that can capture these correlations from 
these data sources. 

 We estimate the missed TCI data based on a collective matrix factorization algorithm, 
which exploits the correlations between the sparse TCI data and the extracted urban 
features. 

 We evaluate our method using a real TCI dataset and several open ubiquitous datasets 
over a period of a year. 

2. RELATED WORK 

2.1 Traffic Condition Estimation 
 
Conventional traffic monitoring systems use stationary road-side sensors (e.g., in-

ductive loop [4], visual camera [5], RFID reader [6], etc.) to observe traffic data (e.g., 
speed, occupancy, volume, etc.). Then, traffic condition is calculated by learning a spe-
cific relation between these traffic data and the traffic conditions [14, 15]. Since road- 
side sensors often suffer from the problem of high installation and maintenance costs, 
some advanced methods use on-road vehicles as dynamic sensors and estimate traffic 
condition based on sensor data reported by the vehicles (e.g., GPS [16, 17], cellular sig-
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nal [18], acceleration [19], etc.). However, these methods treat each road segment inde-
pendently, and do not take the correlation of traffic conditions between different road 
segments into account. On the other hand, some methods model several spatially con-
nected road segments simultaneously [20-22]. However, these methods are still restricted 
to local road segments, and cannot to be applied to the entire road network. 

Recently, more methods have turned to mine city-scale traffic condition patterns 
using massive trajectory data, generated by floating cars or mobile phone users. For ex-
ample, Gonzalez et al. [23] proposed an adaptive fastest path algorithm based on traffic 
patterns mined from a large set of trajectory data. Wang et al. [24] investigated the road 
usage based on hidden road usage patterns mined from large-scale mobile phone data 
with detailed GIS data. Janecek et al. [25] inferred road congestion patterns using 
anonymous signaling data collected from a mobile cellular network. Chawla et al. [26] 
inferred the root cause of traffic anomalies by mining the GPS trajectories from taxicabs. 
However, these patterns are high-level abstraction of urban traffic conditions, ignoring 
the fine-grained information (i.e., the traffic condition on any road segment at any time). 

To estimate the fine-grained traffic information, some methods model the traffic 
conditions in a road network with a road-time matrix, where each entry denotes the traf-
fic condition on a specific road segment at a particular time slot. Then, the missed entries 
in the matrix are estimated based on algorithms such as compressive sensing [11, 12]. 
However, these methods only consider the internal spatial and temporal correlations of 
traffic condition data. Unlike them, our method incorporates external correlations from 
other data sources (i.e., spatial correlation from road network and POI datasets, temporal 
correlation from check-in and geotagged photo datasets). These external correlations 
would be greatly helpful when the original traffic condition data are extremely sparse. 
 
2.2 Urban Computing 

 
Urban computing is becoming a hot research area as a variety of urban data in urban 

spaces are collected [27]. The urban data implies rich knowledge about a city, which can 
be leveraged to help tackle the challenges of the city. For example, Majid et al. [28] de-
signed an urban travel recommendation system based on the knowledge mined from 
online geotagged photo data and meteorological data. Zheng et al. [29] inferred the re-
al-time air quality information throughout a city based on the air quality data reported by 
existing monitor stations and several urban data sources (e.g., taxi trajectory data, mete-
orological data, etc.). Calegari and Celino [30] predicted the Milano city’s land use and 
demographics based on heterogeneous open datasets (e.g., POIs, call data records, etc.). 
Wilke and Portmann [31] introduced a collaborative urban planning use case in a cogni-
tive city environment by using granular computing technique. Unlike these works, we 
propose a method to estimate the fine-grained TCI data leveraging open ubiquitous da-
tasets (i.e., road network, POIs, check-ins, and geotagged photos). 
 
2.3 Context-Aware Recommender Systems 

 
Our method is inspired by the idea of context-aware recommender systems [13], 

which take additional data such as user attributes (e.g., gender, age, etc.), item attributes 
(e.g., genres, keywords, etc.) or current situations (e.g., current location, current mood, 
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etc.) into account. Such additional information is called “context” and can improve the 
accuracy of user-item rating prediction [32, 33]. Collective matrix factorization (or called 
context-aware matrix factorization) is currently the most accurate technique for con-
text-aware recommender systems [34, 35]. Besides online recommendations, collective 
matrix factorization has also been widely used to conduct recommendations in urban 
environment [36, 37]. Our work adopts the collective matrix factorization technique to 
conduct TCI data estimation. 

3. OVERVIEW 

3.1 Preliminary 
 

Definition 1 (Traffic Congestion Index): TCI is a numeric value to indicate how con-
gested the road segment is currently. How to compute TCI is beyond the scope of this 
paper. As the TCI value increases, the road segment experiences heavier traffic conges-
tion. Besides, traffic congestion is not an instant state, so a TCI value is associated with a 
road segment and a time slot. Thus, a TCI is a four-tuple tci = (s, r, ts, te), where s is the 
numeric value denoting the congestion level, r is the road segment, ts to te is the time slot. 
 
Definition 2 (Road Network): A road network contains a set of road segment, each of 
which has two terminal points and a series of intermediate points between the two ter-
minal points. The road network dataset is downloaded from OpenStreetMap [38]. 
 
Definition 3 (POI): A POI (Point of Interest) is a place (e.g., a restaurant, a shop, etc.) in 
the physical world, having attributes such as name, location and category. The POI da-
taset is created based on BaiduMap [39]. 
 
Definition 4 (Check-in): Some location-based social networking services allow a user to 
mark a place when the user arrives, known as a check-in. Each check-in has a location 
and a timestamp. The check-in dataset is collected from Weibo [40]. 
 
Definition 5 (Geotagged Photo): Some location-based social networking services allow 
a user to upload a photo, associated with the user’s current location, known as a ge-
otagged photo. Each geotagged photo has a location and a timestamp. The geotagged 
photo dataset is collected from Flickr [41]. 
 
3.2 Framework 

 
Fig. 2 gives an overview of the architecture of our method. First, it extracts urban 

features from various open ubiquitous data sources (including road networks, POIs, 
check-ins and geotagged photos). These urban features are supposed to capture the po-
tential correlations of TCI data. Second, it uses matrices to model the sparse TCI data 
and the urban features. Third, it collectively factorizes the sparse TCI data matrix with 
the aid of the dense urban feature matrices, and then resolves the three data estimation 
problems (i.e., data filling, data inference and data prediction) by recovering the sparse 
TCI data matrix based on the factorized latent factors. 



MINGQI LV, YIFAN LI, TIEMING CHEN AND YINGLONG LI 

 

786

 

 

 
Fig. 2. The architecture of our method. 

4. URBAN FEATURE EXTRACTION 

We extract two categories of urban features from the open ubiquitous data sources: 
geographic features and mobility features. Geographic features are extracted from road 
network and POI datasets, describing the static spatial contexts of a road segment. Mo-
bility features are extracted from check-in and geotagged photo datasets, revealing the 
dynamic correlations between road segments from temporal aspect. 
 
4.1 Geographic Features 
 
4.1.1 Road network features 

 
First, the objects of TCI data estimation are road segments in road network, so the 

basic features of road segments have a correlation with the TCI data. Given a road seg-
ment r, we extract the following five basic features as a feature vector fr from it: (a) road 
level (indicating the road segment is urban express way, arterial road or small street); (b) 
road direction (indicating the road segment is a one-way road or not); (c) number of in-
tersections; (d) road length (which is the total distance between all the consecutive 
points of r); and (e) road tortuosity (which is the ratio between road length and the Eu-
clidian distance of the two terminal points of r). 

Second, congested road segments are usually spatially close [21], so we calculate 
the spatial closeness between road segments as an extra road network feature. A direct 
way is to calculate the Euclidean distance between the centroids of all pairs of road seg-
ments. However, it would cause every road segment to maintain the distance with all 
other ones, leading to an over large feature vector. Thus, we calculate a coarse-grained 
feature vector fc for a road segment r, indicating which part of the city it falls in. We par-
tition the city into N×N grids, and the fc of r is represented by the grid that r falls in and 
its eight neighbors. Note that we do not use the single grid that r falls in, because it can-
not distinguish grids that are close to each other from grids that are far away from each 
other. For instance, as shown in Fig. 3 (a), fc of road segment r is (0, 0, 0, 0, 0, 1, 1, 1, 0, 
1, 1, 1, 0, 1, 1, 1). Thus, road segments that fall in closer grid would have more similar fc. 
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                      (a)                                (b) 
Fig. 3. Geographic features: (a) the coarse-grained spatial closeness of road segments; (b) the POIs 

around a road segment. 
 

4.1.2 POI features 
 
The category of POIs and their density near a road segment r indicate the land use 

of the region around r, which further influences the traffic patterns in the region. Fig. 4 
gives an example to show the TCI at different time slots of six road segments on a typi-
cal weekday. Road segments A to C are picked from residential area of Hangzhou city, 
and road segments D to F are picked from scenic area. It can be found that road seg-
ments from residential area have fairly different traffic patterns with those from scenic 
area. Road segments A to C encounter high traffic congestion during rush-hours, and D 
to F have relatively high traffic congestion in the afternoon. Besides, TCI of road seg-
ments from residential area is generally higher than that of road segments from scenic 
area. 
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Fig. 4. The traffic patterns of road segments in different functional regions. 

 

For a road segment r, from the POIs around r (as shown in Fig. 3 (b)), we calculate 
the density of POIs as a feature vector fp across 8 categories, i.e., Residence, Work (e.g., 
companies, office buildings, etc.), Commerce (e.g., supermarkets, malls, shops, etc.), 
Restaurant, School, Transportation (e.g., railway station, subway station, airport, etc.), 
Entertainment (e.g., cinema, bar, etc.), and Scenery (e.g., park, lake, temple, etc.). The 
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density of POI category i around r is calculated based on TF-IDF as follow, where ni
r is 

the number of POIs of category i around r, nr is the total number of POIs around r, Ni is 
the total number of POIs of category i in the POI dataset, and N is the total number of 
POIs in the POI dataset. 

log
r
i

i r
i

n N
f

n N
   (1) 

4.2 Mobility Features 
 
Check-in and geotagged photo datasets from location-based social networks reflect 

different aspects of human mobility in a city. Check-in data usually reflect the mobility 
of local inhabitants, while geotagged photo data usually reflect the mobility of tourists 
[42]. Thus, a road segment with more check-ins is likely to be within an area with more 
popular local POIs (e.g., restaurants, malls, etc.), while a road segment with more ge-
otagged photos is likely to be within an area with more hot scenic spots. Obviously, this 
kind of human mobility is relevant to traffic congestion. In order to verify this fact, we 
pick two road segments (road segment A is from the scenic area and B is from the down-
town area) and draw the TCI, the check-in number and the geotagged photo number on 
each hour of a day in Fig. 5 (the numbers are normalized into a value falling in [0, 1]). 
We can find that the check-in number has a strong correlation with the TCI (the Pearson 
correlation of A is 0.914 and the Pearson correlation of B is 0.865). Likewise, the ge-
otagged photo number also has a positive correlation with the TCI (the Pearson correla-
tion of A is 0.861 and the Pearson correlation of B is 0.738). The correlation between 
geotagged photo number and TCI is weaker than that between check-in number and TCI. 
It might be because that few photos are taken in the evening, even if the number of tour-
ists is large. 

For mobility features, given a road segment r, we calculate the average check-in and 
geotagged photo number around r for every time slot of a day over a long period. 

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
o
rm

a
li

ze
d

 V
a

lu
es

Time Slots

Check-In Count

Geotagged Photo Count

Traffic Congestion Index

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
o

rm
a

li
ze

d
 V

a
lu

es

Time Slots

Check-In Count

Geotagged Photo Count

Traffic Congestion Index

 
                    (a)                                        (b) 
Fig. 5. The TCI, the number of check-ins, and the number of geotagged photos on each hour of a 

day: (a) road segment A from the scenic area; (b) road segment B from the downtown area. 
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5. TRAFFIC CONGESTION INDEX ESTIMATION 

5.1 Matrix Construction 
 
As shown in Fig. 6, we use matrices to model TCI and urban features as follows. 
 

 Traffic congestion index: The TCI data could be modeled by using a matrix, where the 
first dimension denotes road segments r = [r1, r2, ..., rJ], and the second dimension 
denotes time slots of a day t = [t1, t2, ..., tK], where each time slot lasts for an equal pe-
riod of time. Since the TCI data are collected from a long period of time, we use two 
matrices C and C′. C is built from the data of the current day, on which the estimation 
is performed. C′ is built from the historical data, corresponding to the same time slots 
with C. Thus, C(i, j) stores the TCI of road segment ri at time slot tj on the current day 
and C′(i, j) stores the average TCI of road segment ri at time slot tj over the historical 
days. 

 Geographic features: For each road segment, we combine fr, fc and fp as a long feature 
vector, and then place all the long feature vectors into a matrix G, where each row 
denotes a road segment and each column represents a kind of feature, including basic 
road segment features, the spatial closeness of road segments, and the density of POIs 
around road segments. 

 Mobility features: We use two matrices M and M′ to model the mobility features, 
where each row denotes a road segment and each column denotes a time slot of a day t 
= [t1, t2, ..., tL]. M(i, j) and M′(i, j) contain the historical check-in number and ge-
otagged photo number of road segment ri at time slot tj, respectively. Note that the 
time slot of mobility features is usually coarser than that of TCI (i.e., K > L). It is be-
cause that the number of check-ins and geotagged photos is usually very limited (es-
pecially the geotagged photos). Thus, if we use too fine-grained time slots for mobility 
features (i.e., setting a large L), a large amount of time slots would become “empty” 
(i.e., no check-in or geotagged photo would be in these time slots). 
 

 
Fig. 6. An illustration of our method based on collective matrix factorization. 

 
5.2 Collective Matrix Factorization 

 
We uniformly formulate all the three TCI data estimation problems as a collabora-

tive filtering problem, i.e., to estimate the missed entries of C. Although we could solve 
this problem by solely factorizing C based on the non-zero entries of it, the results would 
be not accurate enough. The reason is that some dimensions of C might be over sparse, 
and thus it is very difficult to capture the correlations between these sparse dimensions 
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and other dense dimensions. For example, in the data inference problem, the data are 
completely missed on some road segments, so it is very difficult to infer the correlations 
between these road segments and other ones that have available data. 

To achieve a higher accuracy of estimation, we factorize C with the aid of C′, G, M 
and M′, where C′ contains the historical TCI patterns of every road segment, G models 
the correlations between road segments from spatial aspect, and M and M′ model the 
correlations between road segments from temporal aspect. Fig. 6 illustrates our method 
based on collective matrix factorization, where three matrices X, Y and Z are formulated 
based on C, C′, G, M and M′, i.e., X = C||C′, Y = G, Z = M||M′. Then, we can factorize X, 
Y and Z as: X ≈ R×(T; T)T, Y ≈ R×FT, Z ≈ R×(G; G)T, where R, T, F and G are low-rank 
matrices representing latent factors, TT means the transpose of matrix T. X and Y share 
latent factor R. X and Z also share latent factor R. The temporal dimensions of X and Z 
are factorized by different matrices (i.e., T and G, respectively), because they have dif-
ferent granularity on time slots. Since Y and Z are dense matrices, they can effectively 
improve the accuracy of inferring the correlations between different dimensions of X, if 
we factorize them with X collaboratively. 

The objective function of our collective matrix factorization model is defined as Eq. 
(2), where ||·|| denotes the Frobenius norm. The first three terms in Eq. (2) are used to 
control the error of matrix factorization. The last term is used to prevent over fitting. The 
goal of collective matrix factorization is to minimize the objective function, and the al-
gorithm is shown in Fig. 7. It uses gradient descent to get a local optimal solution. The 
gradients for the four variables (i.e., R, T, F and G) are defined in Eq. (3). In each step, 
the algorithm firstly searches for the maximal step size (lines 3-6), and then adjusts the 
four variables according to their gradients (line 7). After the factorization, we can recov-
er X through the production of R and (T; T)T. Then, the recovered entries of X are the 
estimation results. 
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Algorithm 1: CMF 
Input: Incomplete matrix X, matrices Y and Z, maximum iteration number θ, 
      iteration precision  
Output: Complete matrix X 
1: current iteration count t = 0 
2: while t < θ and L(Rt, Tt, Ft, Gt)  L(Rt+1, Tt+1, Ft+1, Gt+1) >  do  
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3:     initial step size γ = 1 
4:     while L(Rt  γL(Rt), Tt  γL(Tt), Ft  γL(Ft), Gt  γL(Gt)) ≥ L(Rt, Tt, Ft, Gt) do 
5:         γ = γ / 2 
6:     end while 
7:     Rt+1 = Rt  γL(Rt), Tt+1 = Tt  γL(Tt), Ft+1 = Ft  γL(Ft), Gt + 1 = Gt  γL(Gt) 
8:     t = t + 1 
9: end while 
10:X = Rt(Tt; Tt)

T 
Fig. 7. The gradient descent algorithm for collective matrix factorization. 

6. EXPERIMENT 

6.1 Experimental Setting 
 
6.1.1 Datasets 

 
We evaluated our method based on five real datasets of Hangzhou city, China, 

which are summarized as follows. 
 

 TCI dataset: It consists of 5305859 TCI records (the sampling interval is 15 minutes) 
collected from 199 monitored road segments for a period from 16/10/2013 to 03/10/ 
2014. Note that a two-way road segment is treated as two different road segments in 
the dataset. 
 Road network dataset: It is comprised of the 199 monitored road segments, the average 

length of which is 2.6 km. There are 30 urban express ways, 153 arterial roads and 16 
small streets. 
 POI dataset: It contains 39305 POIs over 8 categories (i.e., residence, work, commerce, 

restaurant, school, transportation, entertainment, scenery). 
 Check-in dataset: It contains 540395 check-ins collected for a period from 31/10/2013 

to 31/10/2014. 
 Geotagged photo dataset: It contains 2686 geotagged photos collected for a period 

from 01/10/2013 to 01/10/2014. 
 
6.1.2 Model configuration 

 
First, as weekdays and weekends usually have different traffic patterns [43], we 

create matrices for them separately. 
Second, there are several parameters in our method, and we configure them as fol-

lows. We partition the area of our road network into 16×16 grids. The number of moni-
tored road segments is 199. The number of time slots for TCI data (matrices C and C′) is 
set as 96, as the time span for estimating traffic congestion in the collected dataset is 15 
minutes. The number of time slots for mobility features (matrices M and M′) is set as 24 
(since it results in a relatively higher accuracy). 
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6.1.3 Evaluation process 
 
The evaluation process is as follows. First, we pick a day from the period of TCI 

dataset as the estimation day. Then, the data before the estimation day are treated as his-
torical data. The estimation days are chosen from the last months of TCI dataset in the 
experiments. Second, we use different strategies to generate test cases from the data of 
the estimation day (i.e., matrix C) for the three TCI data estimation problems (as shown 
in Fig. 8). For data filling problem, we randomly remove % non-zero entries from C. 
For data inference problem, we completely remove the entries of % road segments 
from C (the historical entries of the % road segments in C′ are also removed). For data 
prediction problem, we completely remove the entries of % time slots from C. Third, 
our method is used to estimate the values of the removed entries, and the original values 
of the removed entries are used as ground-truth to evaluate the estimated values. RMSE 
(i.e., root mean square error) and MAE (i.e., mean absolute error) are used as evaluation 
metrics (defined in Eqs. (4) and (5)), where n is the number of estimated entries, yi′ is an 
estimated value and yi is the ground-truth. 

 
       Time Slots                   Time Slots                 Time Slots 

 
           Data Filling                   Data Inference                Data Prediction 
Fig. 8. An illustration of the strategies of test case generation (the gray entries are to be removed). 
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6.2 Evaluation Results 
 
In the first set of experiments, we verify our idea by comparing our method (denot-

ed as CMF) with the naïve method that does not take the urban features into account 
(denoted as MF), i.e., only factorizing the TCI data (i.e., matrix X). We set  = 10, and 
adopt 10-fold cross validation to generate the test cases. Fig. 9 shows the evaluation re-
sults. CMF has higher performance than MF for all the three TCI data estimation prob-
lems. It demonstrates that the urban features are effective in improving the accuracy of 
TCI data estimation. Moreover, the performance improvement rate of data inference is 
much higher than that of data filling and data prediction (MAE and RMSE decrease by 
8.9% and 8.4% for data filling, 28.6% and 26.3% for data inference, and 7.3% and 7.9% 
for data prediction). It is because that the historical TCI data of data inference are una-
vailable for the road segments to be estimated, so it has much more sparse TCI data ma-
trix X than data filling and data prediction. In this situation, the urban features could help 
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to establish the correlations between road segments to a much greater extent. It also in-
dicates that the historical TCI data has much stronger correlation with the current TCI 
data than other urban features. The result is consistent with many previous researches 
[44], which found that the urban traffic conditions usually follow some patterns over a 
long period of time. 
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Fig. 9. The Performance of our method and the naïve method: (a) MAE; (b) RMSE. 
 

In the second set of experiments, we evaluate the contribution on data estimation of 
each kind of urban features, i.e., comparing CMF with the method that collectively fac-
torizes the TCI data (i.e., matrix X) and the geographic features (i.e., matrix G), denoted 
as CMF(X + G), or that factorizes X and the mobility features based on check-in data (i.e. 
matrix M), denoted as CMF(X + M), or that factorizes X and the mobility features based 
on geotagged photo data (i.e., matrix M′), denoted as CMF(X + M′). We also compare 
our collective matrix factorization based model with those regression based models, i.e., 
LR (linear regression) and GBDT (gradient boosting decision tree). The regression based 
models are created as follows. First, we form training instances by concatenating the 
corresponding values from the TCI data and the urban features. Specifically, a training 
instance is {<t, fr, fc, fp, nc, ng>, tci}, where t is a time slot, fr, fc and fp are the geographic 
features of the road segment r, nc and ng are the average check-in number and geotagged 
photo number of r in t, tci is the TCI value of r in t (i.e., the ground-truth). Then, we 
train regression models from these training instances based on LR or GBDT. Note that 
LR and GBDT use all the urban features for TCI data estimation. The results are shown 
in Fig. 10. Among the three kinds of urban features, i.e., G (i.e., the geographic features), 
M (i.e., the mobility features based on check-in data) and M′ (i.e., the mobility features 
based on geotagged photo data), G has the strongest contribution and M′ has the weakest 
contribution. The reason might be that the geotagged photo data usually reflects the mo-
bility of tourists, and thus it is relatively difficult to capture the traffic patterns of local 
road segments (i.e., road segments outside scenic area). Among the three models, CMF 
(i.e., our collective matrix factorization based model) has the best performance, and LR 
has the worst performance. In addition, model choice has stronger influence on the per-
formance than feature selection for data filling and data prediction. Conversely, feature 
selection has stronger influence on the performance than model choice for data inference. 
Since data inference is conducted on sparser TCI data than data filling and data predic-
tion, the results indicate that the effect of these urban features becomes more significant 
when the available TCI data are of higher sparsity. 
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  (a)                                       (b) 

Fig. 10. Comparison of different features and models: (a) MAE; (b) RMSE. 
 

In the third set of experiments, we evaluate the performance of our method by var-
ying the amount of removed entries (i.e., varying the value of ). As shown in Fig. 11, 
the estimation errors generally increase as more entries are removed (i.e., the value of  
increases). However, the increasing trend of data filling and data prediction is fairly sta-
ble. It means that our method could well capture the correlations between different di-
mensions, even the TCI data matrix is highly sparse. On the other hand,  has much 
stronger influence on the performance of data inference. It might be because that we re-
move all the TCI data of the road segments. The removed entries are not evenly distrib-
uted, but concentrate on some road segments. Consequently, as more road segments were 
removed, the valid rows of TCI data matrix would become limited, so it would be very 
difficult to explore the correlations between road segments. On the other hand, the re-
moved entries of data filling and data prediction are scattered over different road seg-
ments, so the situation that many road segments are completely “empty” is unlikely to 
happen, even with a large value of . Thus, the correlations could still be well estab-
lished based on the available TCI data and urban features on each road segment. 
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      (a)                                      (b) 

Fig. 11. The performance by varying the value of : (a) MAE; (b) RMSE. 
 

In the fourth set of experiments, we explore the performance of our method under 
different conditions. Fig. 11 (a) shows the performance on weekdays and weekends. It 
can be found that the performance on weekdays is generally higher than that on week-
ends. It indicates that the traffic pattern on weekdays is usually more stable than that on 
weekends. Fig. 11 (b) explores the performance changing over time of day. Since most 
vehicles do not travel at night, the TCI is highly predictable (i.e., no traffic congestion 
would happen). Thus, the corresponding RMSE is lower than those at other time slots. 
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As more vehicles traveling on road surfaces, the traffic patterns on different road seg-
ments start to become chaotic. Therefore, the largest RMSEs are observed during rush- 
hours (i.e., 7am-9am, 5pm-7pm). 
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Fig. 12. The performance in different conditions: (a) the performance on weekdays and weekends; 
(b) performance changing over time of day. 

 

Finally, we evaluate the efficiency of different components of our method, which 
was implemented based on Java language and MySQL database and tested on a 64-bit 
PC with a Dual-Core 1.60GHz CPU and 8GB RAM. Table 1 presents the results. First, 
in these components, only data estimation needs to be executed online (geographic fea-
ture extraction and mobility feature extraction could be executed offline). Thus, the exe-
cution time is acceptable. Second, the largest proportion of execution time of the offline 
components (i.e., geographic feature extraction and mobility feature extraction) is cost 
on querying corresponding objects (i.e., POIs, check-ins or geotagged photos) around a 
road segment from the database, so it could be reduced by using appropriate spatial in-
dex. 

 
Table 1. Efficiency of different components of our method (fr denotes basic road segment 

features, fc denotes spatial closeness features, fp denotes POI features, M denotes 
mobility features based on check-ins, M′ denotes mobility features based on ge-
otagged photos). 

Procedures Time (ms) Procedures Time (ms) 
Geographic 

feature  
extraction 

fr 269 Mobility feature 
extraction 

M 907974 
fc 280 M′ 12522 
fp 79904 Data Estimation (CMF) 1095 

7. CONCLUSIONS 

In this paper, we propose a method for estimating the missed TCI data on urban 
road segments by fusing the sparse TCI data and open data sources (i.e., road network, 
POIs, check-ins and geotagged photos). By incorporating external correlations from the 
open data sources, our method could better address the high sparsity problem of TCI data. 
The experiment results drawn from real datasets have demonstrated that our method has 
its advantage over the baseline methods when there is a high degree of sparsity of TCI 
data. 
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In the future, we will extend our work from the following aspects. First, we will 
consider more information (e.g., weather, public events, etc.) to further enhance the per-
formance. Second, we will exploit the latest studies (e.g., deep learning, granular compu-
ting, etc.) to upgrade our estimation model. 
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