
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 947-967 (2013)

947

Flash-Aware Cost Model
for Embedded Database Query Optimizer*

SANGWON PARK

Information and Communication Engineering
Hankuk University of Foreign Studies

Gyeonggido, 447-791 Korea

Flash memory is suitable for embedded devices because it offers small, non-volatile,

impact-resistant and low power consumption. However, in flash memory, the speeds of
the read, write, and erase operations are different. In addition, flash memory features
hardware characteristics including erase-before-write. Therefore, a flash translation layer
(FTL) is required to efficiently perform operations to the flash memory. FTL allows the
file system to consider the flash memory as a block device, and the existing file system
can be used without any additional modifications. Most databases use the disk-aware
cost model to perform query optimization. If the storage device for the database is re-
placed by flash memory, the cost model for the database query optimization must be
changed to the flash-aware cost model. In this study, we propose a cost model for flash
memory, and we compare the differences between the flash-aware and disk-aware cost
models.

Keywords: flash-aware cost model, database, query optimization, flash memory, flash
translation layer

1. INTRODUCTION

Several recently developed mobile devices, such as digital cameras, MP3 players,
and mobile phones use flash memory as their medium of storage. Flash memory is a
storage device that offers the advantages of small size, large storage capacity, low power
consumption, non-volatile memory, high access speed and high impact-resistance over
conventional hard disks. However, unlike hard disks that can directly perform overwrite
operations, flash memory is characterized by erase-before-write operation. When a sector
in flash memory is overwritten, the flash memory initializes the block to which a sector
belongs by erasing the block, and subsequently it performs write operations to the mem-
ory. Moreover, the processing speeds of the read, write, and erase operations are different.
The erase operations are much slower than the read and write operations [1]. In addition,
frequent erase operations degrade flash memory performance. Table 1 compares the
speeds of the read, write, and erase operations of the flash memory and the hard disk.

A flash translation layer (FTL) [2-8] is used to improve flash memory performance.
When a write operation is performed in a sector, the FTL uses a mapping table to record
the new data to the appropriate sector at another physical location; the old block is erased
later when required. This reduces erase operations that are the causes of the flash mem-
ory performance degradation. In addition, FTL allows the flash memory to be considered
as a block device by the operating system. Therefore, the flash memory can be used to-
gether with the existing file system.

Received May 16, 2011; revised July 20 & September 4, 2011; accepted November 2, 2011.
Communicated by Tei-Wei Kuo.
* This work was supported by Hankuk University of Foreign Studies Research Fund of 2011.

admin
打字機文字
DOI:10.1688/JISE.2013.29.5.9

SANGWON PARK

948

Table 1. Parameters of the disk and the flash memory used in this study.

Operation Time
Devices Model

Read Write Erase

Disk
Seagate Barracuda
7200.7 ST380011A

12.7ms
(2KB)

13.7ms
(2KB)

N/A

Flash Memory

Samsung
K9WAG08U1A

16Gbits SLC
NAND

80s
(2KB)

200s
(2KB)

1.5ms
(128KB)

In order to calculate the query processing cost for conventional disk-aware database,
the number of disk accesses is the most important factor. However, there are large dif-
ferences between the read, write, and erase operation times in flash memories, a new cost
model is required for flash-aware databases. Recently introduced solid state drives (SSD)
have similar read and write operation times; this is because an SSD has many internal
chips functioning with parallel operations. However, such expensive systems cannot be
applied to embedded systems. Therefore, the characteristics of the flash memory must be
considered using a new cost model.

Basically, the disk-aware cost model assumes that reads and writes have the same
operation cost. However, in flash memory, write operations are very slow compared with
read operations. However, due to the erase-before-write architecture characteristics of
flash memory, FTL has to be used for reads and writes. FTL replaces read and write op-
erations of the file system with read, write, and erase operations on flash memory. There-
fore, since file system’s reads and writes cause additional operations, accurate cost esti-
mation is not possible simply by using the number of read and write operations as in the
disk-aware cost model. Thus, a flash-aware cost model is required.

In this study, we proposed a new cost model for a join query in the flash memory;
the join query is considered the most expensive query operation. This model was tested
in five FTLs. Subsequently, we analyzed the cost models for each join query from the
test results.

This paper is organized as follows: Section 2 describes the flash memory and the
FTL system. Section 3 describes parameters and , which were used to calculate the
cost of operations to the flash memory. Section 4 uses and to propose a new model
by modifying the disk-based cost model to the flash-aware cost model. Section 5 de-
scribes the design of the query processing simulation system. In section 6, the join costs
that are calculated using the cost models are compared for five FTLs, and the FTL simu-
lator is used to compare the cost measured in the virtual flash memory with the cost
measured in the flash-embedded board. Section 7 presents our conclusions and areas of
future study.

2. RELATED WORK

Initially, flash memory was mainly used as a storage medium for devices that were
required to store infrequently changed data and system codes. However, it is now being
used, as a storage medium for files due to its advantages such as high reliability and low

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

949

power consumption. Flash memory has different operation times for read, write, and
erase operations. In the case of a large block, the read and write operations are performed
in a 2KB page unit, and the erase operation is performed in a 128KB block unit [1]. In
the case of a small block, the read and write operations are performed in a 512 bytes page
unit, and the erase operation is performed in a 32KB block unit. When data are overwrit-
ten to a page in the flash memory, the block to which the page belongs must first be
erased. For example, if all pages in a block have data, the overwrite operation on a page
requires all the valid pages in the block to be moved to another free block. After the
block is erased, the original page must be moved back. In the worst case, 126 read opera-
tions, 126 write operations, and one erase operation are required to move 63 valid pages
in order to write to a page in the case of a large block. In addition, because each block
has an erasing limit of 100,000 to 1,000,000 times, it is required to implement the wear-
leveling technique [9, 10].

An FTL is the system software required to solve these problems. The FTL is present
between the flash memory and the file system. The read and write operations of the file
system are delivered to the FTL, which reduces the read, write, and erase operations in
the flash memory via efficient mapping to rapidly process the requests of the file system.

The FTL algorithm uses sector, block, and hybrid mapping methods to map the
flash memory [11]. Sector mapping [2] creates a mapping table by sector, and maps the
logical sector number of the file system to the physical sector number of the flash mem-
ory. Block mapping [4, 5, 13] reduces the mapping table size by mapping in block units.
Sector mapping enables very fast operations because the physical sector number of the
flash memory can be identified with a single mapping table search. Block mapping uses a
RAM with a smaller capacity when compared with that for sector mapping because the
number of blocks in the flash memory defines the size of the mapping information. How-
ever, the overwrite operation cannot be efficiently performed because the sector location
does not change in the block. Hybrid mapping [3, 6, 12] reduces memory usage for re-
cording the mapping table by using block mapping. In addition, this mapping method
performs sector mapping within a block, thereby using the advantages of both block and
sector mapping methods.

There are two ways to store data at a sector in a block in the flash memory. Re-
cording to a sector in a fixed location in a block is called the in-place method, and storing
to a sector in a variable location is called the out-of-place method [11].

Kim et al. [6] used the hybrid mapping algorithm. In this hybrid mapping method,
for a given number of sectors in a block, the sector numbers are recorded in each sector’s
spare area. Thus, although this algorithm involves more read operations, it requires fewer
erase and write operations. In another study, Estakhri et al. [12] used block mapping and
recorded a sector using the in-place method. In this method, when an overwrite occurs,
the algorithm reduces the number of erase operations by recording the relevant data to a
replacement block. In this study, five algorithms were selected from many FTL algo-
rithms that use typical mapping and recording methods.

File system uses logical sector number to access storages, and FTL translate this
logical sector number to physical sector number. A block is composed of several sectors.
In Mitsubishi algorithm [5], one logical block is mapped to one physical block. A physi-
cal block in Mitsubishi algorithm is composed of a general sector area and a space sector
area. If a logical block consists of m sectors, a physical block consists of m general sec-

SANGWON PARK

950

tors and some additional n space sectors. In-place mapping is used to find a sector in the
general sector area, and out-of-place mapping is used to find the sector in the space sec-
tor area. The space sectors are used as buffers in order to reduce the number of erase op-
erations when overwrite occurs.

In FMAX algorithm [4], one logical block is mapped to the two physical blocks
known as a primary block and a replacement block. In-place mapping is used at the pri-
mary block, and out-of-place mapping method is used at the replacement block. The re-
placement block is used as buffer in order to reduce the number of erase operations when
overwrite occurs.

In log block algorithm [6], it assumes that the operations are composed of numerous
long sequential writes and a small number of random overwrite operations. The blocks in
the log block algorithm are composed of numerous data blocks and several log blocks.
In-place mapping is used at data blocks; and out-of-place mapping is used at log blocks
in order to reduce the number of erase operations when random overwrite operations are
occurred. FAST [7] classifies log blocks as a sequential log block and random log blocks.
The sequential log block is used for sequential write, and random log blocks are used for
random overwrites.

In superblock algorithm [8], a set of adjacent logical blocks shares data blocks and
update blocks. The logical pages within a superblock are allowed to be freely located in
one of the allocated physical blocks for the superblock.

Table 2 shows the comparison of the selected algorithm which include the FMAX
of M-System [4], algorithm of Mitsubishi (MITS) [5], LOG (with log blocks) [6], FAST
[7], and superblock [9] systems.

Table 2. Comparison of selected FTL algorithms.
FTL Mapping Overwrite Features

FMAX block
Records to the data block in with the in-
place method and to the replacement
block with the out-of-place method

Every data block has a cor-
responding replacement
block.

MITS block
Records to the spare sector with the out-
of-place method

Spare sector in the block is
used.

Superblock hybrid
Allow logical pages within a superblock
to be freely located in one of the alloca-
ted physical blocks

Several superblock are used
for overwrite.

LOG hybrid
Records to the log block with the out-
of-place method and to the data block
with the in-place method

One log block is assigned to
one data block. There are
several log blocks.

FAST hybrid
Records to the random log block with
the out-of-place method and to the se-
quential log block with in-place method

One log block for sequential
overwrite and several log
blocks for random overwrite.

3. AVERAGE COSTS OF READ AND WRITE OPERATIONS
TO THE FLASH MEMORY

In the disk-aware cost model, the read and write operations require the same time
and their operational costs are identical. Accordingly, the query processing cost in this
case is defined as the number of I/O operations. In contrast, flash memory involves three

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

951

operations read, write, and erase and they require different operation times. In addi-
tion, because the read and write requests are performed via mapping in FTL, additional
read, write, and erase operations other than those requested occur in the flash memory.
Thus, one read or one write request produces multiple read, write, and erase operations.
Therefore, the additional cost of one read or one write request can be calculated for each
FTL. In FTL, the ratio of the additional cost that arises from the write request is denoted
as , and the ratio of the additional cost that arises from the read request is denoted as .
Table 3 lists the parameters of the equations.

Table 3. Parameters of the cost model.
Cr time to read a page from the flash memory (μs)
Cw time to write a page to the flash memory (μs)
Ce time to erase a block in the flash memory (μs)
m the number of buses in a NAND flash controller
Sp size of a block of database (KB)
Sfp size of a page in the NAND flash (KB)

ndr, ndw number of read and write operations to the disk in the database system

nrr, nrw, nre
number of additional read, write, and erase operations to the flash
memory when a read operation occurred in database system

nwr, nww, nwe
number of additional read, write, and erase operations to the flash
memory when a write operation occurred in database system

The equations for cost calculations involving a write request are as follows,

 p

fp

S
k

S m
, (1)

pw = kCw, (2)

1
 i

n

w w dw w
i

P p k n C , (3)

Pw = nwrCr + nwwCw + nweCe, (4)

.w wr r ww w we e wr r ww w we e

w dw w dw w

P n C n C n C n C n C n C

P n p k n C

 (5)

Writing to one block in the database results in the writing of k pages in the flash

memory. Eq. (1) is used to calculate k for a database block size Sp (KB), with a flash
memory page size of Sfp (generally 2KB in the case of large block), and the number of
chip interleaving is denoted as m. Chip interleaving is a method of sending a single com-
mand simultaneously to m flash memory chips through m buses. If the chip interleaving
value is 1, one command is transferred to a chip; and if it is 2, the command is simulta-
neously transferred to two chips. For example, if the size of a page in the database (Sp) is
8KB and the chip interleaving (m) is 1, k is calculated as 8KB / (2KB 1) = 4. That is, an
8KB write request produces a write operation that uses four pages in the flash memory.

The term pw in Eq. (2) denotes the cost that is required for recording to a block in
the database. The cost is calculated by multiplying the number of write operations to the

SANGWON PARK

952

pages for a write request for a block (k) with the cost of the write operation to a page in
the flash memory (Cw). The term Pw in Eq. (3) denotes the sum of write costs of the flash
memory arising from the ndw write requests from the file system; thus, Pw denotes the
optimal write cost. The term P'w in Eq. (4) is the sum of the numbers of read operations
(nwr), write operations (nww), and erase operations (nwe) that occur upon the write request
of the file system. The ratio of the additional cost that arises from the write request, , is
calculated as in Eq. (5) by dividing the flash memory cost that arises from the write re-
quest (P'w) by the optimal write cost (Pw); this ratio is the average ratio of the additional
cost that arises from a write request to a block in the database.

For example, if the numbers of read, write, and erase operations that arises from a
write request for 100 blocks in the database are 200, 750, and 50, respectively, is cal-
culated using Eq. (5), as follows:

[(200/100) 80 + (750/100) 200 + (50/100) 1,500] / (4 200) = 4.7875.

It means that additional cost of write request from file system is 4.7875 times com-

pared to optimal cost.
The equations for cost calculations involving a read request are as follows:

pr = kCr, (6)

1
 i

n

r r dr r
i

P p k n C (7)

' , 0 r rr r rw r re e rr r rw reP n C n C n C n C n n (8)
'

r rr r rr

r dr r dr

P n C n

P n p k n

 (9)

The additional cost that arises from the read request () can be calculated in a simi-
lar manner. The term pr in Eq. (6) denotes the time spent in the flash memory to read a
block in the database using the k value calculated in Eq. (1). The term Pr in Eq. (7) is the
sum of the read operation costs when the number of read requests from file system is ndr.
The term P'r in Eq. (8) denotes the sum of the read, write, and erase costs that are in-
curred upon a read request sent to the flash memory. The terms nrr, nrw and nre indicate
the accumulated numbers of read, write, and erase operations, respectively, for a received
read request. Because the write and erase operations are not performed for a read request,
only the term nrr is not zero. Accordingly, P'r denotes the cost of the read and additional
read operations (nrr) that arise from the read request (ndr). The terms and are used to
estimate the additional cost that arises from read and write operations to the flash mem-
ory. In this study, these terms are used to mainly estimate the additional cost in the
flash-aware cost model.

To obtain the and values in FTL, additional operations have to be defined when
creating FTL. Linux is frequently used as an embedded operating system. To install FTL
on Linux, a device driver has to be made. Linux supports proc file system that provides a
method to obtain values inside the kernel in user mode. That is, a file that gets the and
 values is created on the proc file system when creating the device driver using FTL and
values are read from that file.

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

953

4. FLASH-AWARE JOIN COST MODEL

Among the many relational database operations, the cost model of the join operation
exerts the most influence on query optimization. The join operation accesses multiple
relations when performing queries; therefore, it has a much higher cost than that of other
operations. Therefore, in this study, we apply the flash-aware cost model only to the join
operation. In order to formulate the flash-aware cost model, we defined the following pa-
rameters:

Cdisk: Cost of the disk
Cflash: Cost of the flash memory
M: Number of buffer blocks
br, bs: Number of buffer blocks of r and s relations
nr, ns: Number of records of r and s relations

In this study, we present a flash-aware cost model for the following four representa-

tive join types: the block nested loop join, merge join, hash join and indexed nested loop
join [14]. While the disk-aware cost model estimates the results based on the number of
I/Os, the flash-aware cost model estimates the results based on the required operation
time. Therefore, the flash-aware cost model was defined by classifying the disk-aware
I/O costs as write and read costs, and multiplying them by and , which are the ratios
of the additional costs for the write and read operations, respectively.

4.1 Block Nested Loop Join (BNLJ)

The cost equations for the block nested loop join are given as follows:

()

 if or then () ,
disk r s r

r s disk r s

C BNLJ b b b

b b M C BNLJ b b

 (10)

() ()

 if or then () ().

flash r r s r

r s flash r r s

C BNLJ k C b b b

b b M C BNLJ k C b b

 (11)

In the disk-aware cost model in Eq. (10), relation r is called the outer relation and
relation s the inner relation of the join, since the loop for r encloses the loop for s. Every
block of the inner relation is paired with every block of the outer relation. Within each
pair of blocks, every tuple in one block is paired with every tuple in the outer block, to
generate all pairs of tuples [14]. Therefore, when the two relations cannot be loaded on
the memory at the same time, bs br repetitions are required; and since br itself has to be
read, br bs + br block accesses are required. In the best case when the two relations can
be loaded to the memory at the same time, there will be br + bs block accesses.

The time required by a flash memory to read a block is kbCr. The k is the number of
pages in a block in the flash memory, Cr is the cost of reading a page of the flash mem-
ory, and is the additional cost for reading flash memory. Therefore, the cost of a flash
memory of BNLJ is determined by multiplying br bs + br and kbCr.

SANGWON PARK

954

4.2 Merge Join (MJ)

The cost equations for the merge join are given as follows,

1 1

1 1

() 2 (log +1) + 2 (log +1)

 3() 2 log 2 log ,

sr
disk r s r M s M

sr
r s r M s M

bb
C MJ b b b b

M M

bb
b b b b

M M

 (12)

1 1

() (2)()

 ()(log log).

flash w r r s

sr
w r r M s M

C MJ k C C b b

bb
k C C b b

M M

 (13)

If the relations are in sorted order, tuples with the same value on the join attributes
are in consecutive order. In that case, each tuple in the sorted relation needs to be read
once only. Therefore, each block is also read only once from the disk [14]. If either of the
input relations r and s is not sorted on the join attributes, the relations r and s should be
sorted and joined in MJ method. If the size of the relation is larger than main memory,
merge sort algorithm is used to sort the relations. The join operation is performed with
the two sorted relations, and the blocks of the relations are read consecutively after sort-
ing two relations.

The disk-aware cost model (Eq. 12) calculates the cost of merge sorting the rela-
tions r and s and the cost of reading the two sorted relations. First, sorted runs are created
by splitting the relations into the size of M in order to sort the relations in the memory.
The number of initial runs is br/M. To sort the runs, each run must be read from the disk,
and the records of each run must be sorted in the memory, and then written on a disk.
After all the initial runs are sorted, M 1 runs are merged into a run for the next stage.
This is recursively repeated until only one run is left, which is [logM-1(br/M)] times. There-
fore, merge sorting of relation r requires reading relation r and writing it according to the
repetitions of [logM-1(br/M)]. Thus, the number of I/O operations becomes 2br([logM-1(br/
M)] + 1). Because relation s goes through the same process, the required number of I/O
operations of relation s is 2bs([logM-1(bs/M)] + 1). For the join operation, each sorted runs
of the relations must be read in order. The cost of this join operation is br + bs. Therefore,
the total cost is computed with Eq. (12).

In the flash-aware cost model (Eq. 13), the costs of the read and write operations
should be separately considered in the calculation. When a run is made, M blocks are
read from flash memory at first, and the records in the blocks are sorted in the main
memory, and then the sorted blocks are written to the flash memory. In the flash-aware
cost model, the write cost is calculated by multiplying the number of write operations by
the cost of writing one block (kCw), and the read cost is calculated by multiplying the
number of read operations by the cost of reading one block in the database (kCr).

4.3 Hash Join (HJ)

The cost equations for the hash join are given as follows:

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

955

1() 2() log 1 (where)disk r s r s M s r sC HJ b b b b b b b (14)

1

() () (where)

 ()() log () 1

flash r r s r s

w r r s M s

C HJ k C b b b b

k C C b b b

 (15)

In the disk-aware cost model (Eq. 14), the cost is calculated by summing the cost of
the hash construction and the cost of reading the constructed hashed partitions. Recursive
partitioning is required while making the hash when the relation is larger than the size of
main memory M. The recursive partitioning is performed [logM-1bs 1] times until the
number of blocks in each partition becomes smaller than M. To partition relation r, each
partition must be read into the memory, and must be rewritten on the new divided parti-
tion. As the partitioning of relation r requires recursive [logM-1bs 1] repetitions, the total
cost of the partitioning becomes 2br[logM-1bs 1]. The multiplication by two is because
two I/Os are required to divide a partition; one is a read operation from the old partition
and the other is a write operation to the new partition. The total cost of partitioning rela-
tion s that was found in this manner is 2bs[logM-1bs 1]. After the partitions for relation r
and relation s are made, each partition must be read for the join operation. The cost of
reading all the partitions is the same as that of the number of blocks of relation r and re-
lation s, which is br + bs. The cost of the disk-aware cost model is shown in Eq. (14).

In the flash-aware cost model (Eq. 15), the read and write operations are performed
when the hash is constructed. Therefore, the sum of the read cost (kCr) and the write
cost (kCw) are multiplied by the hash construction cost. In addition, the cost of reading
the hashing results is multiplied with the read cost (kCr).

4.4 Indexed Nested Loop Join (INLJ)

If there is an index in either of the relations r and s, the indexed nested loop join can
be performed. If there is an index in relation s, each record of relation r is joined with
relation s by referring to the index.

The cost equations for the indexed nested loop join are given as follows:

() log ,
Bdisk r r f sC INLJ b n n (16)

() (log).
Bflash r r r f sC INLJ k C b n n (17)

In the disk-aware cost model (Eq. 16), it is assumed that the B+ tree index exists in

relation s. The cost is calculated by adding the index searching cost to find the join result
for a record in relation r. The term fB denotes the size of the entry that can be stored in a
node of the B+ tree. The height of the B+ tree is [logfBns], which is the cost of a single
selection on s using the join condition. For the joining operation, the index must be
searched for each tuple of relation r. Because the number of tuples of relation r is nr, the
cost of index searching is nr[logfBns]. Thus, the cost in the disk-aware cost model is the
sum of the cost of reading relation r, which is br, and the cost of index searching.

The flash-aware cost model is defined by multiplying the read cost of the flash mem-

SANGWON PARK

956

ory for reading a block in the buffer (kCr) with the cost of the disk-aware cost model.

5. QUERY PROCESSING SIMULATION SYSTEM

In this study, a query processing simulator and an FTL simulator were used to
measure the query processing costs. A trace executor that can be operated in the embed-
ded board was used to verify the results. As observed in Fig. 1, the query processing sim-
ulator consists of a query processor and a buffer manager. The query processor requests
the I/O required to process the query for the buffer manager. The buffer manager man-
ages the buffer in the least recently used (LRU) method. It reads and writes the pages in
the buffer to the database. The FTL simulator consists of the FTL and the virtual flash
memory. In order to verify the accuracy of the results obtained from the FTL simulator,
the operation that was transferred from the FTL to the virtual flash memory was per-
formed in the flash-embedded board.

Query Processing Simulator

FTL Simulator

I/O Trace

Flash Embedded Board

Query Processor

FTL

Virtual Flash Memory

Trace Executor

Flash Memory

Buffer Manager

Fig. 1. Diagram of query processing simulation system.

The flash-embedded board consists of the EDB9315A board, daughter board, flash
memory and the data acquisition (DAQ) device. The embedded Linux Kernel 2.6.11 was
installed on the flash-embedded board, and a system call was added to the kernel to ac-
cess the flash memory and perform the read, write, and erase operations. The trace ex-
ecutor was used to measure the time spent for the read, write, and erase operations that
were produced by the join operation. Using the measured time results, we selected the
algorithm that required the least operation time from among the chosen join algorithms;
all the algorithms were operated under identical conditions. The results were compared
with the cost models.

In order to measure the operation time required for the flash memory, we used a
DAQ, as shown in Fig. 2. The DAQ device is a data collection device (provided by Na-
tional Instruments) that can be connected to the flash-embedded board to measure time
and power consumption.

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

957

Fig. 2. Experiment system architecture.

FTL Simulator

I/O Trace

FTL

Virtual Flash Memory

Synthetic Workload

MySQL

FTL Simulator

I/O Trace

Query Processor

FTL

Virtual Flash Memory

Buffer

SysBench/TPC-A/TPC-C

Fig. 3. Architecture for determining and using workloads.

6. EXPERIMENT RESULTS

As shown in Fig. 3, the parameters and , which are required for the flash-aware
cost model, were calculated by processing the I/O traces that were obtained by executing
SysBench [15], TPC-A [16], TPC-C [16] benchmarks on MySQL and synthetic work-
load in the FTL simulator. The number of read, write, and erase operations for the virtual
flash memory were subsequently measured using the FTL simulator. The FTL simulation
results were obtained based on the flash memory operation time listed in Table 1. Table 4
summarizes the parameters of each benchmark program. The results of the flash-aware
cost model were compared with the results of the FTL simulation to verify the cost
model. The I/O trace extracted from the FTL simulator was processed in the flash-em-
bedded board, while the required time was measured using the DAQ device. The re-
quired time that was measured in the flash-embedded board was compared with the cal-
culated results from the FTL simulation to verify the simulation results.

SANGWON PARK

958

Table 4. Parameters of the benchmark programs.
Benchmark Parameters
SysBench database size 120 MB

TPC-A account 100,000, teller 10, branch 1, history 2,592,000

TPC-C
warehouse’s cardinality 20, district 10, customers 3,000
items 100,000, orders 3,000, stock 100,000, new_orders 900
20 terminals per warehouse, warehouse’s selectivity 20

Synthetic
80% clustered data, 20% non-clustered data
20% random & 80% sequential read/write I/Os

Table 5. Parameters of the experiments.
Parameters Data

Size of relation r (KB) 500
Size of relation s (KB) 50, 100, 200, 400, 600, 1000, 5000, 10000, 20000

Size of buffer (KB) 100
Size of a record (byte) 100
Join algorithms type BNLJ, MJ, HJ, INLJ

FTL algorithms FMAX, MITS, LOG, Superblock, FAST

Table 5 lists the parameters of the experiment. The size of relation r was fixed while
the size of the relation s was increased from 50KB (smaller than the buffer size) to 20
MB. Three log blocks are used in LOG, and one sequential log block and two sequential
log blocks are used in FAST. The cost and time spent according to the size of relation s
were measured.

6.1 Estimated Results Based on Flash-Aware Cost Model

In this section, the estimated results of the minimum cost join algorithm according
to the size of the relation are presented based on the aforementioned flash-aware cost
model. As show in Fig. 3, SysBench, TPC-A, TPC-C benchmarks were processed on
MySQL and synthetic workload was processed on the simulator directly to determine
and for the flash-aware cost model. The read and write I/Os transferred to the storage
device when SysBench, TPC-A and TPC-C were operated on MySQL were extracted
with trace, and processed in the FTL simulator. SysBench benchmark was run by creat-
ing an environment that occurred when multiple users perform queries on a client-server
database. TPC-A and TPC-C benchmarks are generally used for evaluation of commer-
cial database performance. In addition, a synthetic workload was created. The synthetic
workload was composed of 20% sequential I/Os and 80% random I/Os. Table 6 shows
the measured values of and for each FTL algorithm.

The and values are affected by the I/O patterns and depend on how long I/O has
been performed on the flash memory. However, if I/O operations are performed for
somewhat long time, the and converge to a specific value. Fig. 4 shows the change of
 and values according to the number of I/O operations extracted by each workload.
As shown in the Fig. 4, if I/O operations are performed for more than a given number of
times, and converge to a specific value. Table 6 shows the values measured after
repeating the trace multiple times on flash memory; how and converge.

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

959

Table 6. and values in flash memory measured using Synthetic, SysBench, TPC-A
benchmark and TPC-C benchmark (large block, database page size: 2KB).

Syntheic SysBench TPC-A TPC-C
FTL

FMAX 7.72 43.45 13.90 33.77 13.52 51.80 8.89 43.80
MITS 3.57 11.84 3.21 5.31 4.56 12.03 4.26 8.62

Superblock 2.82 1.29 1.73 1.06 1.25 1.21 2.12 1.26
FAST 17.46 1.00 10.13 1.00 5.60 1.00 15.30 1.00
LOG 17.48 1.00 10.43 1.00 3.48 1.00 12.89 1.00

According to and values, FTL algorithms can be divided into three types. FMAX
and MITS reserve one half of the entire flash memory space as extra space to avoid overwrit-
ing pages in the flash memory. LOG and FAST keep some blocks called as log blocks to
avoid overwriting operations. Superblock improves space utilization by placing adjacent
blocks in a superblock while page-level mapping is used in superblocks. The of LOG and
FAST is larger than other FTL algorithms because the hit ratio of log blocks decreases
when the ratio of small random writes is being increased such as database systems. The
utilization of the LOG and FAST is very low, and continuous merge operations are oc-
curred because of many small random write operations. This result is due to the small
number of log blocks. The increase in the number of log blocks in FAST contributed to
FAST’s better performance. Especially, with the increase in the number of random log
blocks in FAST, FAST performs better than LOG [7]. FMAX and MITS write overwrit-
ten pages on the extra space of a block during random writes, is relatively smaller than .
This is because many pages in a block have to be scanned to find the desired page since a
page is written using out-of-place method on extra space. We selected the and values
measured using synthetic workload for the cost estimation and simulation.

Fig. 5 shows the estimated costs of each join in the disk-aware and flash-aware cost
models. The horizontal axis represents the size of relation s. The size of relation r was fixed
at 500KB. The costs in the disk-aware cost model and flash-aware cost model are the
total operation time required. We used the average seek time as 13ms in the disk-aware
cost model, and the time specified on Table 1 was applied on flash-aware cost model.

(a) Synthetic workload () (b) Synthetic workload ()

Fig. 4. Transition of and with respect to increasing the number of I/O operations (large block,
database page size: 2KB).

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

α

number of I/O

FMAX

MITS

LOG

FAST

Superblock
1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

β

number of I/O

FMAX

MITS

LOG

FAST

Superblock

SANGWON PARK

960

(c) SysBench benchmark () (d) SysBench benchmark ()

(e) TPC-A benchmark () (f) TPC-A benchmark ()

(g) TPC-C benchmark () (h) TPC-C benchmark ()
Fig. 4. (Cont’d) Transition of and with respect to increasing the number of I/O operations

(large block, database page size: 2KB).

(a) DISK (b) FMAX
Fig. 5. Estimated results for disk-aware and flash-aware cost models (large block, database page

size: 2KB).

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

α

number of I/O

FMAX

MITS

LOG

FAST

Superblock

0

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

β

number of I/O

FMAX

MITS

LOG

FAST

Superblock

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

α

number of I/O

FMAX

MITS

LOG

FAST

Superblock

0

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

β
number of I/O

FMAX

MITS

LOG

FAST

Superblock

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

α

number of I/O

FMAX

MITS

LOG

FAST

Superblock

1

10

100

1
0
0
0

3
0
0
0

5
0
0
0

7
0
0
0

9
0
0
0

1
1
0
0
0

1
3
0
0
0

1
5
0
0
0

1
7
0
0
0

1
9
0
0
0

2
1
0
0
0

2
3
0
0
0

2
5
0
0
0

2
7
0
0
0

2
9
0
0
0

β

number of I/O

FMAX

MITS

LOG

FAST

Superblock

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

961

(c) MITS (d) Superblock

(e) FAST (f) LOG
Fig. 5. (Cont’d) Estimated results for disk-aware and flash-aware cost models (large block, data-

base page size: 2KB).

When the size of relation s is 20,000KB, both HJ and INLJ have low costs in the
disk-aware cost model. In the flash-aware cost model, the cost curve of INLJ is very dif-
ferent from those for other join methods. If the flash memory is used as a storage device,
the join operation that performs queries in the shortest time must be selected according to
the results shown in Fig. 5.

In both the disk-aware and flash-aware cost models, when relation s is smaller than
the buffer size (M), BNLJ is the lowest cost incurred because the inner relation s (smaller
relation will be inner relation) can be loaded into main memory. The read operation is
performed rapidly in the flash memory compared to the write operations, the join opera-
tion that produces more read operations performs faster than in the disk. Because is
larger than in the LOG and FAST algorithms, the read operations are executed rapidly
compared to the write operations. Therefore, BNLJ and INLJ, which mainly perform
read operations, have less cost in LOG and FAST algorithm than in FMAX and MITS
algorithms. HJ and MJ, which produce write operations, have higher costs than INLJ in
LOG and FAST. In the FMAX and MITS algorithms, wherein is larger than , BNLJ
and INLJ require longer times than in other FTLs. The flash-aware cost model for the
join operation is influenced more by , which is the ratio of the additional read cost, than
by , which is the ratio of the additional write cost. Therefore, to improve the perform-
ance of FTL in terms of the join operation, the required time must be shortened by re-
ducing the additional read cost and the additional write cost .

In case that the size of relation s is about 50KB, BNLJ has the least cost in both the
disk-aware and flash-aware cost models. INLJ is advantageous when the relation with the
index is very large and a very small relation is joined to it. INLJ performs well in an FTL

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

SANGWON PARK

962

Fig. 7. FTL simulation results (small block, database page size: 2KB).

which can perform the read operation quickly. BNLJ has the lowest cost in the best case,
but its cost abruptly increases with increasing s values.

(a) FMAX (b) MITS

(c) Superblock (d) FAST

(e) LOG
Fig. 6. FTL simulation results (large block, database page size: 2KB).

 (a) FMAX (b) MITS

0

1

10

100

1,000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0

1

10

100

1,000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

963

(c) Superblock (d) FAST

(e) LOG
Fig. 7. (Cont’d) FTL simulation results (small block, database page size: 2KB).

In order to compare the predicted results using the cost model with the required time in
the virtual flash memory in the FTL simulator, the following test was performed.

6.2 FTL Simulation Results

In order to obtain the FTL simulation results, the I/O trace produced from the query
processing simulator was extracted. The extracted trace was run in the FTL simulator to
obtain the numbers of read, write, and erase operations. The results in this section repre-
sent the total required time that was calculated in the virtual flash memory by multiply-
ing the numbers of read, write, and erase operations and the costs listed in Table 1.

If it is assumed that all flash memory blocks are clean, the result can be distorted
with decreased costs since no overwrite operations occur. Thus, to get correct answers,
lots of read and write operations are performed on flash memory to converge and
using synthetic workload as shown in Fig. 4, which is called aging.

The FMAX, MITS, LOG and FAST were originally designed for small block flash
memory, we extended these algorithms for large block flash memory. Figs. 6 and 7 show
the experimental results on the large block flash memory and the small block flash mem-
ory, respectively. The performance on the large block flash memory is slightly better
than that of small block flash memory. Because the page size of the flash memory and
the block size of database are identical in this case, some additional read and write opera-
tions could be reduced. It is the reason why the performance of the large block flash
memory is better.

To obtain the experimental results of Figs. 6 and 7, the block size of database was
fixed to 2KB. Generally, the block size of embedded database is small such as 1KB or

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000
ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

SANGWON PARK

964

2KB. In this study, experiments were performed at both block sizes of 1KB and 2KB;
there was little difference in the results while the 2KB size performed slightly better. The
sectors are more clustered in case of 2KB block size, so this reduces the number of addi-
tional read and write operations slightly.

When comparing to Figs. 5 and 6, the results are similar except that the size of rela-
tion s is smaller than 100KB. In INLJ, it is assumed that a B-Tree is created for relation s.
Here, the B-Tree has to be traversed to find joinable records; a visit on a node of the tree
occurs a read operation. However, if there is sufficient buffer, the root node and some
internal nodes of the tree can be existed in the buffer with high hit ratio. If the relation s
is smaller than the buffer size, the tree becomes very small and the performance could be
very good.

6.3 Results on Flash Embedded Board

Figs. 6 and 7 show the results of the application of the flash-aware cost model based
on and in Table 6. In all the five FTLs, the results obtained from the FTL simulator
(Figs. 6 & 7) and the cost model estimation (Fig. 5) were similar. This can be considered
as a verification of the cost model’s suitability. Query will be processed faster if the
minimum-cost query plan is selected using the flash-aware cost model.

In order to verify the results of the FTL simulator, the I/O traces of each join opera-
tion were run in the flash-embedded board (Fig. 1), and each time was measured using
the DAQ device (Fig. 2). The trace executor of the flash-embedded board performed the
I/O trace in the flash memory, and the DAQ device measured the time of the read, write,
and erase operations as produced from the flash memory according to the I/O trace. It
was assumed for the costs of INLJ that the B+ tree index was constructed for relation s.

Fig. 8 shows the I/O trace of the query performance simulation as measured in the
embedded board; these results were similar to the results obtained from the FTL simula-
tor because of the same reason mentioned in section 6.2.

In the flash-embedded board, the required time was 153s per 2KB for the read op-
eration, 275s per 2KB for the write operation, and 1,814s per 128KB for the erase
operation. Compared with the operation time listed in Table 1 (which was used in section
6.2), the read operation speed was much lesser. This is because the flash-embedded
board stores the flash memory operation results in bulk RAM, subsequently, the re-

(a) FMAX (b) MITS
Fig. 8. Required time measurement results in the flash-embedded board (large block, database page

size: 2KB).

1

10

100

1,000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

965

(c) Superblock (d) FAST

(e) LOG
Fig. 8. (Cont’d) Required time measurement results in the flash-embedded board (large block, da-

tabase page size: 2KB).

Fig. 9. Read, write, and erase time for one block from the flash-embedded board.

sults are transferred to the operating system. Fig. 9 shows the measured time of the read,
write and erase operations for the data that correspond to one unit to be erased in the
flash memory in the flash-embedded board. The graph shows the time spent in the flash
memory and the CPU time required for the flash memory results to be transferred to the
operating system. The read time was longer than that in Table 1, and the read operation
was slower. The write operation takes more CPU time than the read operation because
the CPU is occupied for a longer time during writing.

The overall join operation results in the estimated cost model results, FTL simulator
results, and flash-embedded board results were similar. Based on the flash-aware cost
model used in this paper, the query can be optimized by considering the characteristics of
the flash memory and the FTL.

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000

ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0.01

0.1

1

10

100

1000
ti
m
e
 (
se
co
n
d
)

size of relation s (KB)

BNLJ

MJ

HJ

INLJ

0

10

20

30

Erase Write Read

ti
m
e
 (
m
s)

Flash Memory

CPU

SANGWON PARK

966

7. CONCLUSION

Flash memory has attracted considerable interest as a storage device for many pur-
poses. FTL is essential to the efficient use of flash memories. Databases are used in di-
verse areas; embedded databases with flash memory as their storage device are expected
to become popular in the near future. The characteristics of the flash memory differ from
those of conventional hard disks; therefore, the query optimization method for the
flash-aware database must be modified to accommodate these characteristics.

The existing cost model is defined based on the disk-aware method, and it must be
modified for flash memory. In the disk-aware cost model, the number of I/Os that call for
read and write operations is interpreted as the cost. In the flash-aware embedded database,
the read and write requests are replaced by the read, write, and erase operations for the
flash memory according to the FTL. The cost must be calculated by considering the
overhead and for the write and read operations, respectively. In this study, we exam-
ined the cost model for the join operation of a database.

If the parameters and for the flash memory are unknown, the database must
gradually calculate and to estimate the suitable cost of the flash memory storage de-
vice. In this case, after setting the initial values from experience as and , the time of
the read or write operation to a page must be measured to gradually determine and
with precision.

In this study, we examined the cost model only for the join query. The model needs
to be analyzed for other operations in the future. In addition, it is required to minimize
the power consumption for the embedded database; therefore, it is necessary to develop a
cost model that minimizes power consumption.

REFERENCES

1. Samsung Electronics, Nand Flash Memory & Smartmedia Data Book, 2007.
2. A. Ban, “Flash file system,” United States Patent, No. 5,4040,485, Apr. 1993.
3. B. Kim and G. Lee, “Method of driving remapping in flash memory and flash mem-

ory architecture suitable therefor,” United States Patent, No. 6,381,176, 2002.
4. A. Ban, “Flash file system optimized for page-mode flash technologies,” United

States Patent, No. 5,937,425, 1999.
5. T. Shinohara, “Flash memory card with block memory address arrangement,” United

States Patent, No. 5,905,993, 1999.
6. J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient flash trans-

lation layer for compact flash systems,” IEEE Transactions on Consumer Electron-
ics, Vol. 48, 2002, pp. 366-375.

7. S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S. W. Park, and H. J.
Song, “A log buffer based flash translation layer using fully associative sector trans-
lation,” ACM Transactions on Embedded Computing Systems, Vol. 6, 2007.

8. J. U. Kang, H. Jo, J. S. Kim, and J. Lee, “A superblock-based flash translation layer
for NAND flash memory,” in Proceedings of the 6th ACM & IEEE International
Conference on Embedded Software, 2006, pp. 161-170.

9. S. E. Wells, “Method for wear leveling in a flash EEPROM memory,” United States

FLASH-AWARE COST MODEL FOR EMBEDDED DATABASE QUERY OPTIMIZER

967

Patent, No. 5,341,339, 1994.
10. E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM

Computing Surveys, Vol. 37, 2005, pp. 138-163.
11. T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song, “A survey of flash transla-

tion layer,” Journal of Systems Architecture, Vol. 55, 2009, pp. 332-343.
12. P. Estakhri, and B. Iman, “Moving sequential sectors within a block of information

in a flash memory mass storage architecture,” United States Patent, No. 5,930,815,
1999.

13. S. J. Kwon and T. Chung, “An efficient and advanced space-management technique
for flash memory using reallocation blocks,” IEEE Transactions on Consumer Elec-
tronics, Vol. 54, 2008, pp. 631-638.

14. P. A. Silberschatz, H. K. Korth, and S. Sudarshan, Database System Concepts, 4th
ed., McGraw-Hill, 2002, pp. 503-514.

15. SysBench: a system performance benchmark, http://sysbench.sourceforge.net.
16. J. Gray, The Database Handbook: for Database and Transaction Processing Sys-

tems, Morgan Kaufmann, CA, 1993.

Sangwon Park received the B.S. and M.S. degrees in the
Computer Engineering Department from Seoul National Univer-
sity, February 1995 and February 1997, respectively, and the
Ph.D. degree in School of CS&E from Seoul National University,
February 2002. He is currently an Associate Professor in Hankuk
University of Foreign Studies. His research interests include flash
memory based DBMSs, multimedia databases, and mobile phones.

