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The reflectance of inhomogeneous objects can be described as a linear combination 

of diffuse and specular reflection components. Most computer vision algorithms assume 
that visually observable surfaces consist only of diffuse reflection. The existence of 
specular reflection can be misleading to these computer vision algorithms. A new algo-
rithm  dark channel prior based specularity removal is proposed for separating specular 
and diffuse reflection components on colorful surfaces from a single input image. The 
dark channel prior is applied to detect the specular pixels in the image. The maximum 
diffuse chromaticity of the diffuse pixels is propagated to their neighboring specular pix-
els after specularity have been detected. Specularity removal can be achieved by using 
the specular-to-diffuse mechanism. The experimental results show that the proposed al-
gorithm obtain comparable results as the state-of-the-art reflection components separa-
tion methods with the merit of being computationally more efficient.        
 
Keywords: specularity removal, specularity detection, chromaticity, dark channel prior, 
specular-to-diffuse mechanism   
 
 

1. INTRODUCTION 
 

Highlight is a major problem for many computer vision applications. The reflec-
tance of inhomogeneous materials (including wood, plastics and other opaque noncon-
ductors with uniform pigmentation) can be described as a linear combination of specular 
and diffuse reflection components [1]. However, various vision algorithms (e.g., image 
segmentation, object recognition and tracking) assume that visually observable surfaces 
consist only of diffuse reflection. The performance of these vision algorithms will inevi-
tably suffer from the existence of specularity. Therefore, the separation of reflection 
components is highly desired in these computer vision applications.   

The separation of reflection components (also known as specularity detection and 
removal) is a challenging problem. In the literature, a few approaches for reflection com- 
ponents separation have been proposed. A recent in-depth survey is given by Artusi et al. 
[2]. Reflection components separation approaches can be roughly categorized into po-
larization based methods, multiple images based methods and single image based meth-
ods. Polarization based methods [3, 4] remove specularity through images taken under 
different polarizing angles. Multiple images based methods [5, 6] obtain more con- 
straints from images captured under changing lighting directions or viewpoints. These 
methods are effective in separating diffuse and specular reflection components, but the 
need for an additional polarization filter or multiple images significantly narrows their 
applicability. 
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In addition to polarization based and multiple images based methods mentioned 
above, there has been considerable interest in single image based methods. Klinker et al. 
[7] showed that a color histogram of a uniform colored surface forms a T-shaped distri-
bution, with specular and diffuse pixels forming two linear clusters respectively. This 
method was extended to handle highlight on textured surfaces by introducing color seg-
mentation. Unfortunately, current color segmentation algorithms are non-robust for com-
plex textured images. To mitigate this problem, Tan et al. [8] presented the specular- 
to-diffuse mechanism and an iterative technique to remove highlights effectively without 
explicit color segmentation. Yang et al. [9] proposed a faster method based on the specu- 
lar-to-diffuse mechanism. However, Yang’s approach [9] estimated the maximum diffuse 
chromaticity by applying bilateral filter to each pixel’s maximum chromaticity iteratively. 
There are cases that the specular reflection is lightly reduced but not removed.  

Instead of processing the whole image iteratively, our approach focuses on process-
ing the specular pixels which located by the dark channel prior [10, 11] and the auto-
matic thresholding [12, 13]. This enables our approach to run faster than both of Tan’s 
approach [8] and Yang’s approach [9]. Like their approaches, the specular-to-diffuse 
mechanism is used to separate the two reflection components in our approach. Therefore, 
it can produce impressive results as the previous methods. The process of reflection 
components separation is simplified. The implementation of our approach is much easier 
than the previous methods. 

The dark channel prior is first proposed for haze removal. It is a kind of statistics of 
colorful surfaces images. The key observation of the dark channel prior is diffuse color-
ful surfaces lacking color in any color channel will contribute to low values in the dark 
channel. On the contrary, specular pixels have higher intensity in all of the three color 
channels. Therefore, in the resulting dark channel image, the specular pixels can be dif-
ferentiated from their surrounding diffuse pixels due to their higher intensity. So it can be 
applied to detect highlight on colorful surfaces. It enables easy and fast detection of spe-
cularity.  

Most of the methods that use a single input image are basically based on color in-
formation, one commonly used assumptions is the surface color is chromatic (R  G  B). 
As most of the methods that have only a single input image, our method deal with specu-
lar highlight on colorful surfaces. 

The rest of the paper is organized as follows: section 2 presents the basics of the re-
flection components separation. The details of specularity detection and removal is de-
scribed in section 3. Experimental results on synthetic and real scene images is presented 
in section 4. Finally, our conclusions is offered in section 5. 

2. REFLECTION MODEL 

In computer vision and computer graphics, the model widely used to describe the 
formation of a specular image is the dichromatic reflection model introduced by Shafer 
[1], which states that the reflected lights of inhomogeneous objects captured by a RGB 
camera are a linear combination of diffuse and specular reflection components: 

 
I(x) = ID(x) + IS(x) = d(x)B(x) + s(x)G.    (1) 
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Where I is the observed image intensity, x = {x, y} is the image coordinates, ID is 
the diffuse reflection component, IS is the specular reflection component, B(x) is the dif-
fuse color, G is the specular color, d(x) and s(x) represent coefficients that govern the 
magnitude of diffuse and specular reflection components respectively .  

Let chromaticity be defined as: 
 

( )
( )

( ) ( ) ( )
r g b

I I I


 

I x
x

x x x
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Where  = {r, g, b}. We define diffuse chromaticity  and illumination (specu-

lar) chromaticity  as follows: 
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With the definition in Eqs. (3) and (4), the dichromatic reflection model Eq. (1) can 
be written in terms of chromaticity: 

 
I(x) = md(x)(x) + ms(x)                    (5) 

where
 

md(x) = d(x)[Br(x) + Bg(x) + Bb(x)],  (6) 
ms(x) = s(x)[Gr + Gg + Gb]. (7) 

 
Assumed that the illumination chromaticity can be estimated by using a color con-

stancy method [14]. Then the input image can be normalized such that r = g = b = 1/3. 
The diffuse component can be obtained by subtracting the specular component from the 
normalized input image. 

 
ID(x) = md(x)(x) = I(x)  ms(x)/3 (8) 

 
Following the definition of chromaticity and diffuse chromaticity above, we define 

maximum chromaticity and maximum diffuse chromaticity as follows: 

 max = max(r, g, b),  (9) 
max = max(r, g, b).  (10) 

3. DARK CHANNEL PRIOR BASED SPECULARITY REMOVAL 

The flowchart in Fig. 1 illustrates the basic idea of our proposed method. We use the 
dark channel prior and the automatic thresholding to locate the specular pixels in the in-
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put image. A binary mask with one denotes the specular pixels’ location and zero denotes 
the diffuse pixels’ location is generated by the end of specularity detection. By applying 
a propagation operation to the maximum chromaticity under the guidance of the mask 
image, we can estimate the maximum diffuse chromaticity. With the specular-to-diffuse 
mechanism, the estimated maximum diffuse chromaticity and the input image, specular-
ity removal can be achieved. 

         
Fig. 1. Flowchart of the proposed method. 

 

3.1 Specularity Detection  
 
3.1.1 Dark channel image 
 

To detect the specular pixels in the input image, we rely on the dark channel prior. 
The dark channel prior is first proposed by He et al. in [10, 11]. It is based on the obser-
vation that in most of the nonsky outdoor haze-free images patches, at least one color 
channel has very low intensity at some pixels. Formally, for an image I, a dark channel 
Idark of I can be defined as follows: 

 

( ) }{ , ,
( ) min ( min ( ( ))).dark c

c r g b
I I

 


y x
x y                                  (11) 

 

Where (x) is a local patch centered at x, x = {x, y} is the image coordinates, Ic
 is a 

color channel of I.  
With the concept of a dark channel in Fig. 2 (c), the dark channel prior states that if 

I is an outdoor haze-free image, for the nonsky region, the intensity of I’s dark channel is 
low and tends to be zero: 

 
Idark  0. (12) 
 
The low intensity in the dark channel is mainly due to three factors: shadows, col-

orful objects or surfaces and dark objects or surfaces.  
To verify the fitness of the dark channel prior to the specularity removal problem, 

we collect 5,000 images from the Internet. Like most of the reflection components sepa-
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(c) 

ration method, our method only deals with highlight on the colorful surfaces. Therefore, 
all images in our image set are diffuse only colorful inhomogeneous material surfaces. 
The images are resized to make sure the maximum of width and height is 500 pixels and 
their dark channels are computed using a patch size of 3*3. Fig. 3 shows several colorful 
images and the corresponding dark channels.  

 

   
(a)  (b)      (c) 

Fig. 2. Calculation of a dark channel; (a) An arbitray image I; (b) For each pixel, we take the mini-
mum of its (r, g, b) value; (c) A minimum filter is performed on (b) to get the dark channel 
of I. The image size is 640*480, the patch size of  is 3*3. 

 

     

     

                      (a) 

     

   

                      (b)                                           
Fig. 3. (a) Example images in our specular-free colorful surface image database; (b) The corre-

sponding dark channels; (c) A specular image and its dark channel. 
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(a)                                      (b) 

Fig. 4. Statistics of the dark channels; (a) Histogram of the intensity of the pixels in all of the 5000 
dark channels; (b) The cumulative distribution. 

 

Fig. 4 (a) is the intensity histogram over all 5,000 dark channels, each bin stands for 
16 intensity levels. Fig. 4 (b) is the corresponding cumulative distribution. We can see 
that the intensity of approximately 70 percent of pixels is below 20. This statistics gives 
strong support to the fitness of the dark channel prior to the specularity removal problem. 

To this end, the diffuse colorful surfaces lacking color in any color channel will re-
sult in low values in the dark channel. Surface color discontinuities generally presents 
difficulties for specularity detection. Since it is colorful, it has low value in the dark 
channel. The specular pixels have higher intensity in three color channels, which will 
contribute to higher values in the dark channel. Therefore, the specular pixels are differ-
entiated from the surrounding diffuse pixels due to their higher intensity in the dark 
channel image. The specular pixels can be located by thresholding the dark channel im-
age. Fig. 2 (a) is an image with specularity and Fig. 2 (c) is the corresponding dark chan-
nel image (with patch size of 3*3). From Fig. 2 (c), we can see that the specularity be-
comes quite apparent in the dark channel image while the details of the textures and 
boundaries become less obvious.  

Patch size in Eq. (11) is an important parameter for computing image dark channel. 
As authors of [10, 11] had pointed out a larger patch size was better for the dark channel 
prior. Because the probabilitity for a patch containing a dark pixel increased as the patch 
grows larger. However, in context of images with specularity on colorful surfaces, ex-
periment results show that for such kind of images dark channel prior assumption is ap-
plicable with small patch size (Fig. 4). Furthermore, there exists small specular patches 
in specular images. These small patches would be missed if a larger patch size were used. 
Fig. 5 shows specularity detection results using different patch size. In Fig. 5 (b), the 
patch size is 3*3. Specular patches were detected accurately. While in Fig. 5 (c), the 
patch size is 15*15. Only large specular patches were marked out. In our implementation, 
we generally use a patch size of 3*3. Results show that our method works well when 
small patch size is used. When all specular patches are large and surfaces are light col-
ored, we use a larger patch size. 
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(a)                       (b)                       (c) 

Fig. 5. (a) A 387*353 image with specularity and specularity masks detected using patch size of (b) 
3*3 and (c) 15*15 respectively. 

 

3.1.2 Automatic thresholding 
 

Pixels in a specular image can be classified into specular pixels and diffuse pixels 
by using simple thresholding to the corresponding dark channel image. In our imple-
mentation, we apply the automatic thresholding [13] to a dark channel image to obtain a 
threshold value. A commonly used thresholding technique is the Otsu method [12] which 
selects threshold value that maximize the between-class variances of a histogram. It can 
provide satisfactory results for images with bimodal distribution histogram. However, the 
histogram of the dark channel image of a specular image is close to unimodal (Fig. 6 (a)) . 
The specular pixels generally consist of the minor portion of an image. They have higher 
intensity values in the dark channel image. The desired threshold value exists at the right 
bottom rim of the single peak of the dark channel image histogram. Therefore, the val-
ley-emphasis method [13], a revised version of the Otsu’s automatic thresholding method 
is used to select the threshold value (Fig. 6 (a)). The valley-emphasis method selects a 
threshold value that has a small probability of occurrence (valley in the histogram).  

The formulation for the valley-emphasis method is: 

2 2

1 1 2 2

* {(1 )( ( ) ( ) ( ) ( ))}.tt ArgMax p t t t t         (13) 

Where t is a threshold value, pt is the probability of occurrence at threshold value t. 
The smaller the pt is, the larger the weight will be. Therefore, the weight ensures the re-
sulting threshold value resides at the bottom rim of a unimodal histogram.  

A mask image is generated by thresholding the dark channel image. We use one to 
represents specular pixels and zero to denote diffuse pixels in the mask image. The result 
of specularity detection of Fig. 2 (a) is shown in Fig. 6 (b).  

 
*1          if I(x) > 

( )
0         otherwise

t
mask


 


x                     (14) 

Where mask is the mask image, t* is the threshold in Eq. (13). 
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(a)                                    (b) 

Fig. 6. (a) The histogram of the dark channel image and the threshold; (b) The mask image. 
 

3.2 Specularity Removal  
 

The specular-to-diffuse mechanism is introduced by Tan et al. [8]. According to the 
specular-to-diffuse mechanism, a diffuse image ID (image without specularity) can be 
derived as a non-linear function of the maximum diffuse chromaticity max (see Appen-
dix A for complete derivation): 

( , , ) max

max
max

( , , )
max

( )
1 3

u r g b u u
D u r g b

I I



  

 


I I .

                 (15) 

So the objective of removing specularity is reduced to estimate the maximum dif-
fuse chromaticity of the input image.  

The difference between the maximum chromaticity max and the maximum diffuse 
chromaticity max is the specular pixels which featured by their lower the maximum 
chromaticity (the darker pixels in Fig. 7 (a) for instance). After specularity detection, the 
specular pixels have been marked out by the mask image. So we use the mask image to 
guide the estimating process of the maximum diffuse chromaticity. To estimate the 
maximum diffuse chromaticity, we propagate the maximum chromaticity of diffuse pix-
els to their nearby specular ones. Considering the specular patches may cover regions of 
different chromaticity (Fig. 7 (a)), we use a similar technique to [15] to detect bounda-
ries.  

:
(  and )

:

true boundaries
r thR g thG

false otherwise


    


 (16) 

where r(x) = r(x)  r(x  1) and g(x) = g(x)  g(x  1) with r = Ir/(Ir + Ig + Ib), g 
= Ig/(Ir + Ig + Ib). thR and thG are scalars. Therefore the estimation of the maximum dif-
fuse chromaticity can be defined as follows: 

max

max max

( )                                   if ( ) = 0 or boundaries
( ) .

max( ( ), ( ))        otherwise

mask
 


  



x x
x

x x -1
    (17) 
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Where 

(x) is the estimated maximum diffuse chromaticity. To diffuse pixels and 

boundaries between different chromaticity regions, we set the estimated maximum dif-
fuse chromaticity to the maximum chromaticity. For the rest of specular pixels, we com-
pare the maximum chromaticity of a pixel (located in x) with its neighbours (located in x 
 1)  and choose the larger one to be the estimated maximum diffuse chromaticity of the 
pixel located in x. The propagation process is summarized in Algorithm 1. 

 
Algorithm 1: Estimating the maximum diffuse chromacity using a propagation process 
1. Compute mask(section 3.1). 
2. Compute max using the input image I. 
3. Let 


 = max. 

4. for each pixel x 
5.    if mask(x) == 1 
6.           compute r(x) and g(x) 
7.           if (r > thR and g > thG)  
8.              next x 
9.           else 
10.               Let 


(x) = max(max(x), max(x  1))             

11.           end 
12.     end 
13. end 
14. apply Gaussian filter to 


 

15. return 

. 

In our experiments, we set thR and thG with the same number ranging from 0.003 
to 0.05. The estimated maximum diffuse chromaticity may have some discontinuities on 
the boundaries of specular patches. We use a Gaussian filter to smooth it. The Gaussian 
filter parameters  scale and sigma are set to 3. Fig. 7 (b) presents the estimated maxi-
mum diffuse chromaticity 


 of Fig. 2 (a). From it we can see that the propogation proc-

ess works well when the specular patches cover different chromaticity. Substitute the 
estimated maximum diffuse chromaticity and the input image I into the Eq. (15), we can 
get the diffuse image in Fig. 7 (c). The specular component (Fig. 7 (d)) can be obtained 
by subtracting the diffuse component from the input image.  

4. EXPERIMENTAL RESULTS 

Our method is implemented and evaluated on a PC with 2.1GHz Intel Core 2 CPU 
processors and 2GB RAM.  

Figs. 7-12 show some results of our method applied to synthetic and real scene im-
ages. As evaluated in [9], Yang’s [9] method runs 200X faster than Tan’s [8] method. 
Table 1 compares the runtime of Yang’s [9] method and the proposed method using the 
images provided by authors of [8] and [9]. Our method is generally faster than Yang’s [9] 
method while maintaining the visual effect. 

From Fig. 7 (c) we can see that the specularity has been removed and the textures 
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are well preserved. Fig. 8 (a) is a synthetic image. Our result is close to Yang’s [9] result 
and better than Tan’s [8] result. In Figs. 9 and 10, the diffuse component in our result is 
comparable to Tan’s [8] result and Yang’s [9] result. Fig. 11 shows that our method suc-
cessfully separated diffuse and specular components as Yang’s [9] method did. From Fig. 
12 we can see that Yang’s [9] result and our result are better than Tan’s [8] result. Our 
result has a little artifact at the bottom of the image. The reason is our method mistaken 
those white pixels for specularity. The intensity difference between those white pixels 
and their surrounding pixels are below the thR and thG we set. For the white pixels on 
the green apple, our result is the closest to the ground truth image. While in Fig. 12 (c), 
Yang’s [9] result contains artifacts on the pear and the green apple. Our method recov-
ered the diffuse component on that part appropriately. 

  
(a)                                  (b) 

  
                   (c)                                  (d)                
Fig. 7. (a) The maximum chromaticity of Fig. 2 (a); (b) The estimated maximum diffuse chroma-

ticity of Fig. 2 (a); (c) The diffuse image of Fig. 2 (a); (d) The specular image of Fig. 2 (a). 

 

    
(a) (b) (c) (d) 

Fig. 8. (a) The input synth image; (b) The diffuse component (ours); (c) The diffuse component 
(Yang [9]); (d) The diffuse component (Tan [8]). 
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Fig. 11. (a) The input pear image; (b) The diffuse component (ours); (c) The specular component
(ours); (d) The ground truth image; (e) The diffuse component (Yang [9]); (f) The specular 
component (Yang [9]). 

    
(a)               (b)                (c)               (d) 

Fig. 9. (a) The input head image; (b) The diffuse component (ours); (c) The diffuse component (Yang 
[9]); (d) The diffuse component (Tan [8]). 

 

    
(a) (b) (c) (d) 

Fig. 10. (a) The input toys image; (b) The diffuse component (ours); (c) The diffuse component (Yang 
[9]); (d) The diffuse component (Tan [8]). 

   
(a)                  (b)                  (c) 

   
(d)                  (e)                  (f) 
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(a)               (b)              (c)              (d)              (e) 
Fig. 12. (a) The input circle image; (b) The diffuse component (ours); (c) The diffuse component 

(Yang [9]); (d) The diffuse component (Tan [8]); (e) The ground truth. 
 

Table 1. Speed comparison. 
Image name (image size) Our method Yang’s method 

fish (640*480 pixels) 0.062s  0.110s 
synth (200*200 pixels) 0.015s 0.015s 
head (190*287 pixels) 0.016s   0.031s 
pear (450*560 pixels) 0.047s   0.063s 
toys (353*387 pixels) 0.032s   0.125s 

circle (400*800 pixels) 0.094s 0.141s 

5. CONCLUSION 

In this paper, we have proposed a new specularity removal method using a single 
image. We use the dark channel prior and the automatic thresholding to detect the specu-
lar pixels. The maximum diffuse chromaticity of the detected specular pixels are esti-
mated by propagating that of their nearby diffuse pixels. The specular-to-diffuse mecha-
nism is applied to obtain the diffuse image from the input image. The proposed method 
offers some advantages. First, explicit color segmentation is avoided due to the use of the 
dark channel image. Surface color discontinuities which generally presents difficulties 
for specularity detection are become less apparent in the dark channel image. The specu-
lar pixels can be located by exploiting the fact that the specular pixels have higher inten-
sity than their surrounding diffuse pixels. Therefore, the automatic thresholding can be 
used to detect specularity in the image. Second, the proposed method process only the 
specular pixels instead of the whole image and avoid iteration in estimating the maxi-
mum diffuse chromaticity, which enables our method to run faster. The experimental 
results demonstrate that the performance of our method is promising.  
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APPENDIX A 

According to the definition of the maximum chromaticity max in Eq. (9) and the di- 
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chromatic reflection model which written in terms of the chromaticity in Eq. (5), we obtain 

max

max
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( ) ( ) ( )max( , , ) 3
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since r(x) + g(x) + b(x) = 1, then we can get 

max max
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1 / 3
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Substitute ms in the above equation into Eq. (5), we can obtain: 
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Substitute the maximum chromaticity max in Eq. (9) into the above equation, 

( , , )max
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I I
m







x
x

Λ x
.
 (21) 

Since ms(x) = u(r,g,b)Iu  md(x), combined with Eq. (21), the following equation 
can be obtained:  

3( ( ) max )max ( , , )( , , )
( )

3 ( ) 1max

I Iu uu r g bu r g b
ms

  


 

x
x

x
. (22) 

According to Eq. (8) ID(x) = ID(x)  ms(x)/3, combined with the above equation, we 
can get:
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