
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1441-1468 (2018) 
DOI: 10.6688/JISE.201811_34(6).0006    

1441  

Meshfree Digital Total Variation Based Algorithm  
for Multiplicative Noise Removal* 

 
MUSHTAQ AHMAD KHAN, WEN CHEN+, ZHOUJIA FU+  

AND ASMAT ULLAH 
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering 

College of Mechanics and Materials 
Hohai University 

Jiangsu, 210098 P.R. China 
E-mail: {+d2014017; +chenwen; paul212063}@hhu.edu.cn; asmatullah75@gmail.com 

 
The Digital Total Variation (DTV) filtering is a digitized energy method used to 

denoise the measured image data. Different from the traditional variation method, this 
technique applies to arbitrarily located data points and also has the built-in edge detective 
property. This paper introduces a novel meshfree algorithm (Kansa technique) using 
DTV method and Radial Basis Functions (RBFs) approximation for the numerical solu-
tion of the DTV-based model to remove the multiplicative noise from the measurements. 
This approach is structured on local collocations and multiquadric radial basis function. 
These features enable this method to eliminate noise from images while sharply resolving 
discontinuities. It is observed that the present methodology is fast, robust, and computa-
tionally efficient, requires simple post-processing, and can be easily implemented. The 
numerical experiments show that the proposed method performs well in visual improve-
ment as well as peak signal-to-noise ratio compared with the recent total variation partial 
differential equation (PDE)-based methods for multiplicative noise removal.     
 
Keywords: image denoising, digital total variation (DTV) filter, multiquadric radial basis 
function (MQ RBF), restoration equation, mesh method, meshfree method 
 
 

1. INTRODUCTION 
 

In recent decades, the researchers have done a lot of work in the area of image de-
noising, in particular, on additive noise removal problems. However, there is another 
more complex noise called multiplicative noise. In this study, we focus on such multi-
plicative noise removal problems, which can be stated as 

f = u1, (1) 

where u is the original image and f:   R2  R, is the given noisy image having multi-
plicative noise 1. Here,  represents the image the domain which is usually a rectangu-
lar area. In this study, we consider a 2-dimensional image having size M  N. We also 
suppose that each value of u and f have positive values in the noise model. The multipli-
cative noise vanishes about all the data of the original picture when the noise corrupts the 
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original image. Therefore, it is vital to expel the multiplicative noise and to recoup the 
real picture u from the information data f. The issue of expelling the multiplicative noise 
happens in numerous applications, for example, synthetic aperture radar (SAR) images, 
ultrasound images, and laser imagining, see [48]. Multiplicative noise removal methods 
have been discussed in many reports, for instance, in [20, 29, 55, 57, 58, 61, 62]. 

In literature, many other approaches have been used to solve the problems having 
multiplicative noise by taking the logarithmic amplification which transforms multiplica-
tive noise into additive Gaussian-type noise. Popular methods include shrinkage and 
Bayesian MAP estimator methods [1, 19, 68] and various variational methods [3, 30, 50, 
58, 59] and hence many good restoration results have been produced. 

Over the last several years, many optimization methods which include fixed-point 
methods [14, 27], iterative shrinkage-thresholding algorithms [4, 66], the Newton-like 
methods [45], subspace optimization method [44], and operator splitting methods [6, 13, 
23] have proposed for the minimization model in image restoration. Among these meth-
ods, the (linearized) Augmented Lagrangian algorithm (ALM), and primal-dual hybrid 
gradient (PDHG) algorithm are two of the most successful and most widely used tech-
niques. In recent years, the augmented Lagrangian methods [6, 59] were applied to com- 
pute the solution of TV-based model efficiently. However, the original ALM requires 
inner iterations or inverses involving the Laplacian operator who is still time-consuming 
in each iteration. To improve the efficiency of ALM, the authors used the linearized 
techniques [11, 12, 67] for better restoration results for multiplicative noise removal. 
Also, the primal-dual hybrid gradient algorithm [17, 24, 46, 65] based on primal-dual 
variables [71], gradient descent, and ascent schemes for the solution of TV-based mini-
mization problem for image restoration. But in these approaches, the selection of proper 
variables and choosing the appropriate values for the parameters used in them are time- 
consuming and hence create complexity. 

The total variation (TV) filtering has proved to be one of the most successful tools 
in image processing for the solution of variational based partial differential equation 
(PDE) restoration problems. For more details about the TV filtering, see [47, 48]. An-
other method is to digitize the whole system. This idea begins with a discrete variational 
problem and works with data in the general discrete domain, a graph. The digitized ap-
proach is more adaptable as irregularly shaped domains, and scattered data points can be 
taken care of effectively. One understood digitization strategy is digital total variation 
(DTV) filtering [2, 10]. The DTV procedure can pointedly resolve discontinuities with-
out earlier information of edge locations since it has built-in edge detection [2, 60, 70]. 
The point qualities might be situated at scattered, non-structured locales in a complex 
geometry. Not at all like the other pseudo spectral post processing techniques, the DTV 
strategy does not require data location on the structured grid; therefore, it is a more broad 
technique. With regards to numerical PDEs, the DTV strategy has already been utilized 
for the steady-state, mesh-based solutions of conservation of law computed by the sec-
ond order, Lax-Wendroff methods [2, 8, 9]. The DTV strategy has been proposed and 
developed in [10, 70] to remove noise and restore accuracy. In recent years, some work 
has been done on picture denoising having additive noise [10, 70] and arbitrary data 
points having Gibbs oscillation [52] utilizing DTV filter, and thus, some desirable results 
have been obtained. 

Recent decades have witnessed a lot of work to use the RBFs as the effective basis 
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function for the interpolation and approximation of multi-variable smooth functions on 
scattered data sets [25]. More recently, expanding consideration has been given to the 
development of meshless strategies utilizing RBFs for the numerical solution of PDEs. 
Most PDE results have concerned steady state issues with smooth solutions. More re-
cently much attention has been given to applying BRF collocation methods to solve the 
time-dependent PDE problems for the smooth solution. The RBF methods have more 
points of interest and have exhibited superior accuracy as compared with traditional nu-
merical strategies, for instance, finite difference strategy (FDM) [69], finite element 
method (FEM) [38], finite volume strategy (FVM) [35, 39], and pseudo-spectral strategy 
[37]. For information about RBF strategies, see [5, 16, 18, 26, 31, 32, 40]. 

Global RBF collocation strategy is also simple to execute, gives excellent accuracy 
and converges exponentially to solve the PDEs. Notwithstanding, in this technique, the 
interpolation matrix is wholly populated and ill-conditioned, and thus sensitive to the 
shape parameter. Therefore, it is computationally extremely costly to apply global collo-
cation method to large-scale problems. So in literature, Kansa technique [15, 33] is a 
domain type collocation strategy to overcome these issues.  

The focal motivations behind the energy of the RBFs for interpolating scattered 
multidimensional data are investigated in [7, 34]. In late decades, meshless techniques 
have been exhibited to handle scientific and engineering issues. The mesh-less technique 
based on the collocation strategy has been superior and extremely helpful. Over the last 
several decades RBFs have been observed to be widely successful for the interpolation 
of scattered data. RBF techniques are not fixed to a grid and like this, have a place with a 
class of methods called mesh-less methods. They apply just a cloud of points without any 
information about nodal connections. It is (conditionally) positive definite [43, 51], rota-
tionally and transnationally invariant. The RBF approximation is an exceedingly power-
ful tool for representing smooth functions in non-trivial geometries since the strategy is 
mesh-free and can be spectrally accurate [21]. RBFs interpolations have been utilized to 
expel the Gibbs oscillations, and additive Gaussian noise from the given arbitrary data 
points and noisy images, and hence beneficial results have been obtained [36, 53]. In this 
work, we use the Multiquadratic MQ-RBF collocation technique (Kansa strategy) for the 
solution of the nonlinear PDE arising from the multiplicative noise model functional for 
smooth restoration results. The Kansa technique is a domain type strategy, which has 
numerous features like the finite element approach. The DTV filter for multiplicative 
noise removal problem has not been described.  

The rest of the paper is organized as follows. In section 2, some related work in-
cluding details and applications of DTV in image restoration is presented. This section 
also includes the details of RBFs and its applications in solving PDEs. Section 3 dis-
cusses the HMW [30] model used for the multiplicative noise removal. The proposed 
method which is DTV method using BRF collocation method (Kansa method) has been 
explained in section 4. Section 5 describes experimental results and discussion to com-
pare the two models regarding CPU times, the number of iterations, and visual quality of 
restoration (Peak Signal to Noise Ratio (PSNR)) of the restored images. This section also 
includes the shape parameter analysis on image restoration. Section 6 contains the com-
parison of our proposed method with other variational based methods for image restora-
tion. Section 7 shows the tabulated discussions about the sensitivity of the parameters of 
the proposed method. The conclusion is provided in section 8. 
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2. RELATED WORK 

2.1 Digital Total Variation Filtering 
 
Let us describe the DTV method [2]. The DTV filtering applies on a general graph 

with [, D], i.e., finite set  vertices (or nodes/pixels) and a directory, D, of edges. Also, 
it is supposed that the graph is associated and has no self-loops (no immediate edge from 
a vertex to itself). General vertices are indicated by , , … The notation ~ demon-
strates that  and  are neighbors. All the neighbors of  are denoted by 

N = {/~} for ~  ~. 

A digital image, u is a function u:   R, where u signify the value of u at vertex 
. At any vertex , the regularized local variation or strength function ||pu|| is charac-
terized as  

1

2

: ( ) .p
N

u u u


  


  
 
 
 
  

For any positive number a, the regularized location variation or strength function 
can be re-defined as 

1

2
2: ( ) ,p

N

u a u u


  


   
 
 
 

  

where a is a small regularized parameter to avoid the regularized local variation from 
zero denominator. 

As discussed in [2], the edge derivative of u along e can be defined as 

: ,
u

u u
e

 



 


 

where e is called the edge and represents the edge ~.  

Apparently, u u

e e 

 
 

 
 and 

2

p e
u

u

e










 
  

 
 

where e represents that  is one node of e. 
The first DTV-based model for image restoration having additive noise was pro-

posed and presented by T. F. Chan, et al., [10] in 2001. Noisy image for this model is 
modeled (for additive noise) as 

u0 = u +  or u0
 = u +  for all   , (2) 

where u0 is noisy data, u is the required clean data and  is the noisy data. The minimiza-
tion approach for Eq. (2) is given as under 
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20min ( )
2

p au
E u u u u  








     for all   , (3) 

where the first term is called the regularization term, the second term is called the data 
fidelity term,  is the fitting parameter, and a is the regularized parameter. 
 
2.2 Radial Basis Functions Approximation 

 
RBFs are multivariate functions, and the values rely on upon the detachment from 

the point of departure called center, so that (x) = (r)R, xRn, rR; or identically on 
the separation from a state of a given set {xj} to such a degree, to the point that (x  xj) 
= (rj)R. Any function  fulfilling the property (x) = (||x||2) is known as the radial 
function. Some examples of commonly used RBFs are given in Table 1.  

For a continuous multivariate function f(x), xRn is the bounded domain, RBF 
interpolation for N interpolation function values {yi}

N
i=1 at the data location (which are 

called centers in the RBF concept) {xi}
N
i=1Rn, can be written as linear combination of 

RBFs, specifically, 

 
2

1

( ) ,  
N

j j
j

f x x x x 


    (4) 

where j are unknown RBF coefficients which must be determined [15]. Using the col-
location method, one may write: 

 
2

0

( ) ,     ,  = 1, 2, 3, ...., .
N

j i j

j

i iy f x x x i j N 


    

The above linear system of equations for RBF coefficients can be re-written in given 
NN linear system matrix form  

A = b, 

in which  = (1, 2, …, N)t is an unknown coefficient vector that should be b = (y1, 
y2, …, yN)t and the RBF interpolation matrix is given by 

A = [i,j] = [(||xi  xj||2)]1i, jN with i,j = j,i, 

where A is an NN,  and b are N1 matrices. Although, some RBFs are conditionally 
positive definite functions as appeared in Table 1 [15], for example, MQ, IMQ, GA, and 
TPS. Subsequently, polynomials are added to Eq. (4) to make sure that the resultant in-
terpolation matrix is invertible. Such equation condition can be written as follows, 

  12
1 1

( ) ( )
N M

j j N

j i

if x x x P x  


 

     (5) 

with constraints 

1

( ) 0,   = 1, 2, ..., ,
M

j

i

i jP x i M


  (6) 
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in which Pim-1, i = 1, 2, …, M, where m represents the polynomial space in which 
the total degree of all polynomials is then m in N variables [43],  

1

   1

N m

m

 



 
 
 

. 

Then, Eqs. (5) and (6) yields matrix system of (M+N)(M+N)  

0 0
,

t

A P b

P o




     
     
     

 

where the components of matrix A are A = [i,j] = [(||xi  xj||2)]1i, jN, the components of 
P are Pi,j = pi[xj]1iN,1 jM, and O is also MM matrix. 

Moreover, details of positive definite (PD) and conditionality positive definite (CPD) 
RBFs are discussed in [41, 43] and listed in Table 1. For RBFs containing the shape pa-
rameter c, such as in Table 1, small shape parameters produces more accurate results, but 
also associated with poorly conditioned interpolation matrix [54, 64]. 

 

Table 1. [k] denotes the nearest integers less than or equal to k, and N the natural num-
ber, c a positive constant which is known as the shape parameter, and CPD 
denotes the m-order conditionally positive definite functions [7, 22].  

Name of RBF Definition CPD order (m) 
Multiquadrics (MQ) 

Inverse Multiquadrics (IMQ) 
 

Gaussian (GA) 
 
 

Polyharmonic Splines (PS) 
 

Thin Splines Plates (TPS) 

(r, c) = (r2+c)k if k > 0, k  N 
(r, c) = (r2+c)-k if k > 0, k  N 

2

2
( , ) exp

r
r c

c





 
 
 

 

2 1

2 1

        if  
( )

lnr    if  

k

k

r k N
r

r k N













  
(r) = (r2) ln r  

[k]+1 
0 
 
0 
 

1
2

k
 

  
 

0 

3. A NEW TOTAL VARIATION METHOD FOR MULTIPLICATIVE 
NOISE REMOVAL (M1) 

Y. M. Huang, M. K. Ng, and Y. W. Wen (HMW) proposed the model in 2009 [30] 
for image restoration from given noisy image having multiplicative noise having TV 
regularization. In this model the authors consider a new variable z = log(u) where, S() 
= {uBV() : u > 0}. The minimization approach of the model (1) by [30] is formulated 
as: 

     
2

,
1

min ,i

n
z

TVi iz
i

z f e z





   (7) 

where [z]i is positive, negative, or zero and the corresponding [z]i = e[z]i is positive. The 
authors then used the unconstrained TV approach to solve the minimization functional (7) 
which is given as follows: 
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      
2

1

2

1 22
min ( ) ,i

n
z

i
z

i
i

f ez z w TV w 


   
 
 
 
  (8) 

where 1 and 2 is the original corrupted image, also ||z  w||
2

2 represents the new fitting 
term, and TV(w) is the total variation of w. 

The above Eq. (8) leads to the following minimization algorithms by alternating 
minimization algorithm: 

        
2

2

1 2
1

( 1)arg min ,i

n
zn

i iz
i

nz z f e z w



     (9) 

   2

1 2

( )arg min ( ) .n

w

nz ww TV w    (10) 

The associated Euler-Lagrange Eq. (9) of z  subproblem: 

1[f]ie
-[z]i + 21([z]i  [w(n-1)]i) = 0, i = 1, 2, …, n2    (11) 

was solved by the Newton method. The solution of z by Chambolle projection algorithm 
is utilized in the restoration problem (9) [30]. At that point, the reconstructed image for u 
is computed by exp(w). The rules for stopping criteria and the assurance of the two reg-
ularization parameters 1 and 2 for this model are also examined in [30]. 

4. PROPOSED METHOD (M2) 

Since the multiplicative noise removal model (1) is 

f = u1. (12) 

The logarithmic amplification changes [56] Eq. (12) into traditional additive noise form: 

log(f) = log(u)+log(1). (13) 

The above expression can be re-written as 

u0 = u+ or z
0

1
 = g1

 + 1
 for all 1.  (14) 

Here, we can accept  to be additive noise and can apply the traditional additive 
noise superposition procedure, for example, DTV filtering. 

In this section, our point is to present a new methodology by utilizing digital total 
variation (DTV) filter alongside with radial basis functions (RBFs) to reestablish the 
clean image g from degraded image z in the model (14). Let {j}

N

j=

c

1 be Nc centers in   

R2. Here the pixels vertices are represented by 1, 2, …. The notation 1~2 shows that 
1 and 2 are neighbors. All the neighbors of 1 are denoted by 

 
N1

 = {2/2~1} for 1~2  2~1.   
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Suppose {xi}
N
i=1 is the distant evaluation points in   R

2. So for any RBF the fol-
lowing equations satisfied. (r) = ||r||2 in R2, i.e., r = (x, y), and for {j}

N

j=

c

1. Given Nc cen-
ters, the radial basis function without polynomial term can be written as 

 
2

1

( ) ,
Nc

j j
j

s x x x


   (15) 

where i coefficients in RBF are determined via enforcing the interpolation condition 

s(xj) = z0,  

a set of points that usually coincides with Nc centers. The interpolation condition at Nc 
centers results in an NcNc linear system 

 
A = z0. 
 

The solution of the above system results in the solution for expansion coefficients of , 
where  = (1, 2, …, Nc)

t and z0 = (z
0

1, z
0

2, …, z
0

Nc)
t. The matrix A is called interpolation 

matrix or system matrix and is given by 
 
A = [i,j] = [(||xi  j||2)]1i, jNc. 

 
This system matrix A is always invertible because it is always positive definite matrix 
[43, 49]. Hence we have 

 = A-1z0. (16) 

The interplant is evaluated using Eq. (15) at N evaluation points {xi}
N
i=1, through forming 

NNc evaluation matrix B which is given as 
 
B = [i,j] = [(||xi  j||2)]1iN, jNc. 

 
The interplant is then evaluated at N points using matrix-vector product to produce g as 
follows, 

g = B. (17) 

Using Eqs. (16) and (17) the following equation is obtained. 

g = BA-1z0 

or 

g = Hz0 where H = BA-1, (18) 

which gives an approximate solution at any point in . 
As the minimization approach for model (14) utilizing DTV method [10] is given as 
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1

20

1 1 1min ( )
2g

p a
E g g g z  








     for all 1, (19) 

where the first term is the regularized local variation of g, the second term is called data 
fidelity term and  is the fitting parameter and a is regularized parameter. The corre-
sponding restoration equation [10] of Eq. (19) is given as 

   
1 2 1 2 1 1

2 1

00 ( ) ,
N

g g w g g z


     





     (20) 

where  

1 2

1 2

1 1
,

p pa a

w
g g

 
 


 

  (21) 

 
2 1

2 1

1
~

2: ,p g a g g  
 

     

and 

11

2: ,p pg a g      (22) 

for small fixed value of a, i.e., a = 10-4. Therfore Eq. (20) can be fixed and re-written as 
follow 

   
2 1 1 1

2 1 1 2
~

00
1 1

.
p pa a

g g g z
g g

   
   

   
 
 
   

  (23) 

In order to get the faster steady state restoration solution, the steady state time marching 
equation is derived from Eq. (23) as inspired by the recent work of Marquina and Osher 
[42] and is denoted by the equation below. 

   
2 1 1 1

2 1

1

1

1 2
~

01 1
,a

p a
p pa a

g g g z
dg

g
dt g g

   
 


 

   
 
  
   

  (24) 

or 

   
2 1 1 1

2 1

1

1 2 1
~

0 .a
p a

g g g z
dg

w g
dt    

 
       (25) 

Combining the restoration Eq. (25) with Eq. (18), and solve the resultant restoration 
equation by collocation method (Kansa method). We use the Gauss-Jacobi iterative 
method to solve the nonlinear system of restoration equations as follow, 

                     
1 2

2 1 2 1

1 1 1 1 12 2 1
~ ~

1

2
1 0nn n n n n n ng g w g g g g gdt g z

   
   

         
       
   (26) 



MUSHTAQ AHMAD KHAN, WEN CHEN, ZHOUJIA FU AND ASMAT ULLAH 

 

1450

 

with z
(


0

1

)
 = z

0

1
, g1

 = H1
z0 = B1

A-1z0, and g2
 = H2

z0 = B2
A-1z0. Where 

B1 = [1,j] = [(||x1  j||2)] for i = 1, 2, …, Nc   

and 

B2 = [2,j] = [(||x2  j||2)] for i = 1, 2, …, Nc.   

Here, g1 and g2 are the approximate values at vertices 1 and 2 respectively.  
As the Kansa technique in RBF does not necessarily to satisfy the obtained non- 

linear system of Eq. (26), so we have more flexibility to choose an RBF. The well- 
known RBF in the Kansa method is the multiquadric (MQ) [34, 41], which usually 
shows spectral accuracy if a suitable shape parameter c is chosen. Here, the shape pa-
rameter c used in RBF is also one of the most important parameters for the smoothness in 
our method M2. For the proper values of c, our proposed method produces more accu-
rate and smooth results in image restoration having multiplicative noise. In this method, 
the shape parameter c and fitting parameter  are the two critical parameters for the 
smooth result, and its optimal values rely upon the size of the image and the noise level 
in the image. On the other hand, the regularization parameter a is used to avoid a zero, so 
its value is usually taken a = 10-4. Where z1 shows the value at any pixel 1. The locality 
and adaptivity for smooth results by DTV filtering have already been discussed in [10] 
for the smooth solution. 

 

Algorithm for proposed model M2: 
RBF: 

1. Initialize the values of , , c, and z0.  
2. Set the centers 1, 2, …, ||. 
3. Find the  according to Eq. (16) by MQ-RBF. 
4. Find g according to Eq. (18) by MQ-RBF. 

DTV filtering: 
5. Set the centers 1  2  ||, set n = 0. 
6. n = n + 1. For each center point 1 and all its neighbors 2 calculate the local 

variation ||pg1|| and the weighted function w12(g
(n)) according to Eqs. (22) 

and (21). 
7. Put w12(g

(n)) and 

 
1

ng  as MQ-RBF in Eq. (26) to get NNc nonlinear system of 
equations. 

8. For each 1, compute 

 
1

1ng


 according to Eq. (26) by RBF approximation.  

Where we choose z(0) = z0. 

9. 
   

 

1

510

n n

n

g g

g







  (stopping criteria), go to step 11. 

10. Go to step 6. 
11. End. 
12. Output 

 
1

1 .ng g
  
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, some numerical results are provided to demonstrate the performance 
of our proposed method M2 in comparison with the results of method M1. The test im-
ages are “Lena”, “BMW”, “SynImage1”, “SynImage2”, “Cameraman”, “SynImage3”, 
“SynImage4”, and “Shape2” which are shown in Fig. 1. We test our images on two sorts 
of multiplicative noises, i.e., multiplicative noise (Gamma distribution) with mean value 
1 and variance L1 and speckle noise (Gamma distribution) with mean value 1 and vari-
ance L2. 

 

 
(a)                  (b)                  (c)                  (d) 

 
(e)                  (f)                  (g)                  (h) 

Fig. 1. Test images in our experiments (a) Lena; (b) BMW; (c) SynImage1; (d) SynImage2; (e) 
Cameraman; (f) SynImage3; (g) SynImage4; (h) Shape2.  

 

For the 2D case, there are many ways to define N for proposed model M2. One 
way is to consider a p point neighbor of a node  as consisting of all p points that are 
closest to . In this paper, N is defined in the best way. Dividing the region surrounding 
a point  into p regions of equal angles N is defined such that it consists of points in 
each region that are closest to  as discussed in [10]. Here, it is assumed that p = the size 
of the image, for the sake of comparison between two models; M1 and M2. Multiquadric 
radial basis function (MQ-RBF) is utilized for the proposed method M2. For the com-
parison of image restoration results, the peak-signal-to-noise ratio (PSNR) is considered. 
This measure has been commonly used and applied to determine the quality of restore 
image. The following formula can calculate it. 

10

max{ }
10 log

M N
PSNR

u u

u
 



 
 
 
 
  





 (27) 
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Where ũ is the given image, u is the restored image and MN is the size of the image.  
Signal-to-noise ratio (SNR) has also used to find the visual quality of the restoration 

of the restored image. It can be deafened as 

0
10

0

10 log ,
u u

SNR
n n


 


 (28) 

where u and n denote the true image and noise, u0 and n0 represent their mean values in 
the image domain . Again greater the SNR value, better will be the restoration result. 

Iterations in our algorithm are terminated when the following condition is satisfied. 

   

 

1

,

k k

k

u u

u


 
  (29) 

where  indicates the maximum permissible error. Here, it is set to be 10-5. 
Here we use the Multiquadric (MQ) RBF to test and compare the results of model 

M2 with model M1. For each point (xj, yj), MQ-RBF is defined as equation below. 

      2 22 2 2, ,j j j jx y c r c x x y y         

where    2 2
.j j jr x x y y     

Test 1: 
In this first test, the two methods, M1, and M2 are applied and tested on natural 

images “Lena” and “BMW” with multiplicative noise (Gama noise) with noise levels L1 
= 10 and L1 = 12, respectively, which are shown in the Figs. 2 and 3, respectively. In all 
two Figures, (a) and (b) are the original and noisy images while (c) and (d) depict the 
restored images by the methods M1 and M2, respectively. In each case, we can see that 
the quality of the restorations of two the images by proposed method M2 are quite effi-
cient than method M1. In model M1, the restoration quality of the pictures is good but 
creates the staircase effect, which is a congenital disability of TV regularization method. 
These reconstructed images are shown in the Figs. 2 (c) and 3 (c), respectively. In our 
technique M2, the visual quality and preservation of edges of the restored images are far 
superior to method M1 because of edge detective property of DTV filter and the mesh-
less characteristics of MQ-RBF used in M2. These denoised images are shown in the 
Figs. 2 (d) and 3 (d), respectively. In M2, the shape parameter c plays a vital role in im-
age denoising. The range of optimal values of shape parameter for M2 in this test is set 
to 1.68  c  1.75. Moreover, the PSNR values for the two images “Lena” and “Bmw” 
for two methods M1 and M2 are listed in Table 2. The bigger the PSNR value, the better 
the denoising performance. It can be verified from Table 2 that the PSNR values of 
method M2 are greater than model M1 for the two images, which shows the dynamic 
restoration performance of the M2 over M1. The number of iterations and CPU time of 
computation required for convergence of the two methods M1 and M2 are also listed in 
Table 2. It can likewise be seen from the Table 2 that the number of iterations and CPU 
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time of computation of the M2 are smaller than M1, which indicates the faster restoration 
performance of M2 over M1 due to MQ-RBF properties used in M2. The best optimal 
values of parameters of our technique M2 (shape parameter (c)), fitting parameter ()) 
for the two images “Lena” and “BMW” are (1.74, 0.113) and (1.69, 0.211), respectively. 
So, it is evident from this test, that the performance of our mesh-free method M2 is supe-
rior to that of mesh-based model M1 regarding visual restoration quality (PSNR), the 
number of iterations and CPU time of computation. In this test we select dt = 0.001. 
 

 
(a)                  (b)                  (c)                  (d) 

Fig. 2. Experimental results on “Lena” images; (a) True image; (b) Degrade image with L1 = 10; (c) 
Obtained image by method M1; (d) Obtained image by method M2. 

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 3. Experimental results on “BMW” images; (a) Noiseless image; (b) Degrade image with L1 = 
12; (c) Restored image by method M1; (d) Restored image by method M2. 

 

Test 2: 
In this second test, we study how our algorithm M2 deals with the synthetic images 

“SynImage1” and “SynImage2” having the speckle noise (Gama noise) which are shown 
in the Figs. 4 and 5, respectively. The noise level for the two artificial images “SynIm- 
age1” and “SynImage2” in this test are L2 = 10 and L2 = 12, respectively. In both cases, 
the restoration results by M2 are better than M1. In M1, we obtain better-restored images 
but have staircase effect due to TV regularization and the problem with the initial guess 
of the algorithm used in method M1. These restored images by M1 can be seen in Figs. 4 
(c) and 5 (c). In this test, our proposed method M2 shows the improved performance 
regarding the visual quality of the restoration (PSNR), edges preservation of images than 
M1 because of the built-in edge detect the property of DTV method and mesh-free char-
acteristics of MQ-RBF approximations used in M2. These resultant images are shown in 
Figs. 4 (d) and 5 (d). In approach M2, the shape parameter c plays a significant role in 
image denoising. The range for the optimal values of c for M2 in this example is set to 
1.77  c  1.84. In this case, the parameters used for the two images “SynImage1” and 
“SynImage2” for the method M2 (shape parameter (c), fitting parameter ()) are (1.83, 
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0.011) and (1.78, 0.021) respectively. We also choose dt = 0.001. The preference of the 
two methods M1 and M2 concerning restoration (PSNR values), CPU computation time 
and the number of iterations required for convergence for the two images, i.e., “SynIm- 
age1” and “SynImage2”, can be seen in Table 2. Again, from Table 2, M2 shows superi-
or and faster performance than M1. 

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 4. Test results on “SynImage1” images; (a) Original image; (b) Noisy image with L2 = 10; (c) 
De-noised image by method M1; (d) De-noised image by method M2. 

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 5. Test results on “SynImage2” images; (a) Original image; (b) Degrade image with L2 = 12; 
(c) Restored image by method M1; (d) Restored image by method M2. 

 
Table 2. Comparison of model M1 and model M2 regarding PSNR, number of iterations 

and CPU-time (in seconds). 

Image Size 
Model M1 Model M2 

PSNR Iterations CPU Time PSNR Iterations CPU Time 
Lena 
Parrot 

SynImage1 
SynImage2 

3002 

3002 

3002 

3002 

27.82 
26.24 
25.03 
24.96 

118 
105 
128 
116 

40.75 
34.09 
68.59 
53.31 

29.08 
27.36 
26.54 
25.36 

46 
40 
51 
47 

22.92 
19.32 
27.43 
23.87 

 

Test 3: 
In this test, both the methodologies M1 and M2 are examined on “Cameraman” 

having different noise levels. It can be noticed that the quality of image restoration 
(PSNR) of the proposed method M2 is better than M1 due to the properties of MQ-RBF 
used in M2 mainly when the noise variance is large. These results are given in Figs. 6-8, 
and Table 3. The values of the parameters for M2 (shape parameter (c), fitting parameter 
()) for the three different noise levels i.e., L2 = 5, 7, 9 for “Cameraman” are (1.73, 
0.110), (1.76, 0.152), and (1.78, 0.189) respectively. In this case we select dt = 0.001. 
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(a)                  (b)                  (c)                  (d) 

Fig. 6. Experimental results on “Cameraman” image; (a) True image; (b) Degrade image with L2 = 
5; (c) Processed with method M1; (d) Processed with method M2. 

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 7. Experimental results on “Cameraman” image; (a) Original image; (b) Noisy image with L2 
= 7; (c) Reconstructed image by method M1; (d) Reconstructed image by method M2. 

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 8. Experimental results on “Cameraman” image; (a) Original image; (b) Degrade image with 
L2 = 9; (c) Restored image by method M1; (d) Restored image by method M2. 

 
Table 3. Comparison of PSNR value of the restored image “Cameraman” for different 

speckle noise values for two methods M1 and M2. 

Image 
L1 = 5 L1 = 7 L1 = 9 

M1 M2 M1 M2 M1 M2 
Cameraman 23.46 25.22 24.89 26.02 25.91 27.04 

 

Test 4: 
Here, the homogeneity is checked, and loss (or preservation) is examined for the 

two techniques M1 and M2 while being applied to “Lena”. For this purpose, different 
lines of the original image compared with noisy and restored images that are shown in 
Figs. 9 and 10. It is clear that the lines restored by proposed method M2 (shown in Figs. 
9 (c) and 10 (c)) is far better than what acquired utilizing model M1 that are presented in 
the Figs. 9 (b) and 10 (b). 
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(a)                  (b)                  (c) 

Fig. 9. The 129th line compression of the original image with noisy image, restored image by 
method M1, and restored the image by model M2 of the “Lena”; (a) Original and noisy 
images lines; (b) Original and restored by method M1 images lines; (c) Original and re-
stored by method M2 images lines. Here the blue line is the original image, and the red 
line is the restored image. 

 

 
(a)                   (b)                   (c) 

Fig. 10. The 178th line compression of the original image with noisy image, restored image by 
method M1, and restored the image by model M2 of the “Lena”; (a) Original and noisy 
images lines; (b) Original and restored by method M1 images lines; (c) Original and re-
stored by method M2 images lines. Here the blue line is the original image, and the red 
line is the restored image. 

5.1 Shape Parameter Analysis 

In this subsection, we compare the quality of restoration (PSNR) of the restored 
images by choosing different values of shape parameter c for “Lena” and “SynImage2” 
having multiplicative and speckle noises as mentioned in Tests 1 and 2, respectively. 
Different values of the shape parameter c affect the image restoration quality (PSNR) of 
two images “Lena” and “SynImage2,” that are shown in Figs. 11 and 12. The PSNR va- 
lues of the two images are also given in Table 4 for different values of shape parameter. 

 

 
       (a)              (b)              (c)              (d)             (e) 
Fig. 11. Experimental results on Lena; (a) Original image; (b) Noisy image with L1 = 10; (c) Re-

sultant image by optimal value of c = 1.74; (d) Resultant image by c = 1.88; (e) Resultant 
image by c = 1.69.  
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       (a)              (b)              (c)              (d)             (e) 
Fig. 12. Experimental results on SynImage2; (a) Original image; (b) Noisy image with L12 = 12; (c) 

Obtained image by optimal value of c = 1.78; (d) Obtained image by = 1.82; (e) Obtained 
image by c = 1.71.  

 

Table 4. Comparison of the image quantity (PSNR) for different values (increase and 
decrease) in shape parameter c with the optimal value of shape parameter c of 
the proposed method M2 for two images. 

Image Size Optimal value c PSNR Increase c PSNR Decrease c PSNR 
Lena 

SynImage2 
3002 

3002 
1.74 
1.78 

29.08
25.36

1.88 
1.82 

28.20
25.10

1.69 
1.71 

27.39 
24.96 

6. COMPARISON WITH OTHERS METHODS 

Here, we have also compared our method M2 with some other variational methods 
used for multiplicative noise removal problems. 

RLO method: 
The RLO-model is presented in [50], and its solution is also discussed in [50], 

which is given by the following gradient projection iterative scheme: 

   

( )( ) 2
( 1) ( )

1 3 2( ) ( ) ( ) ( )
.

nn
yn n x

x yn n n n
x y

D uD u f f
u u dt D D

D u D u u u 

 
 


  

 
    

 

    
            

(30) 

The experimental values of the two Lagrange multipliers 1, ,  and time step dt are 
already discussed and explained in [50]. 

AA method: 
This model is also presented and described in [3], its solution is given by gradient 

projection method: 

 
( 1) ( )

2( )

( )( )

2 ( ) ( )
.n n

n

nn
yx

x yn n
x y

f
u u dt

u

D uD u
D D

D u D u
 







 

 
  



     
     

          

 (31) 

The optimal values of  and dt are taken as RLO method and Lagrange multiplier 2 is 
discussed in [3]. 
 
LL method: 

This method was presented by Huang et al. in [28] for image restoration having 



MUSHTAQ AHMAD KHAN, WEN CHEN, ZHOUJIA FU AND ASMAT ULLAH 

 

1458

 

multiplicative noise which is given as follow; 

1

2

arg min ( ) log( ) ,
u

u f
u E u u dxdy u dxdy

u


 

     
   

     
    

where 

2 2 .x yu u u    (32) 

In the above Eq. (32), the first term is regularization term while the second term is 
fitting/fidelity term and 1 and 2 are two fitting parameters. The corresponding Euler- 
Lagrange equation is given as under; 

 2
0

u
u f

u





    

 

 
 
  



 in  for t > 0, (x, y)R, (33) 

where 

 1 2

1
.

u u 






 The gradient descent is applied to solve Eq. (33). For further  

details, see [28]. 
In our computational experiments, we use u(0) = f as the initial guess for RLO and 

AA models. 
Here, ROL, AA, and LL methods are compared with proposed method M2 for the 

same images having the same size and noise variances and same parameter values that 
have been selected in [28]. Again, from the results in Figs. 13 and 14, and Table 5, we 
can observe that our proposed technique M2 has better performance in the visual quality 
of restoration (PSNR), iterations and CPU times compared to ROL, AA and LL methods. 
The values of the parameters selected for our proposed model M2 (shape parameter (c), 
fitting parameter () for the two images “SynImage3” and “SynImage4” are (1.87, 0.033) 
and (1.86, 0.029) respectively. 

 

 
(a)                (b)                (c)                (d) 

 
(e)                (f) 

Fig. 13. Denoised results on SynImage3; (a) Original image; (b) Noisy image with speckle noise L2 
= 2; (c) Resultant image by RLO method; (d) Resultant image by AA method; (e) Result-
ant image by LL method; (f) Resultant image by our method M2. 
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(a)                (b)                (c)                (d) 

 
(e)                (f) 

Fig. 14. Obtained results on SynImage4; (a) Original image; (b) Noisy image with speckle noise L2 
= 5; (c) De-noised image by RLO method; (d) De-noised image by AA method; (e) 
De-noised image by LL method; (f) Resultant image by our method M2. 

 

Table 5. Comparison of models RLO, AA, LL and proposed our method M2 in terms of 
PSNR, number of iterations and CPU-time (in seconds) of the two artificial 
images of size 2562. 

Image 
RLO method AA method LL method Our method M2 

PSNR It. Time PSNR It. Time PSNR It. Time PSNR It. Time 

SynImage3 
SynImage4 

25.84 
29.71 

251 
591 

152.9 
261.2 

25.71
31.86

246
575

42.7
77.9

26.95
33.17

53
119

100.0
166.7

27.03 

33.29 

47 
108 

41.9 
38.1 

 

6.1 PDWAM Model 
 
X. Wang, et al. [63] proposed primal-dual algorithm to solve the iteratively re-

weighed TV-based (PDWAM) model [63] for multiplicative noise removal. The mini-
mization functional of the model is 

arg min ( ) ( ) ( ) ,z

op
z

z g x z dxdy z fe dxdy  

 

  
 
 
 
   (34) 

where z(x) = log(u(x)), (z) = |z|.  is the regularization parameter, and g(x) represents 
the nonnegative weight function which is defined as under: 

( 1) ( )

1                                 =1

1( )  ,    
      2

( )n n

n

g x
n

z x 




 







 (35) 

where n is the number of outer iteration and (n) represents the stability for iterations. The 
authors split Eq. (34) as done in [30] as follow: 
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2

, ,
min ( , ) min ( ) ( ) ( ) ,z

z w z w
J w z z fe dxdy w z dxdy g x wdxdy 

  

     
 
 
 
    (36) 

where w is an auxiliary function and  is the regularization parameter which represents 
the relation between w and z. The authors then used the alternating minimization algo-
rithm to split Eq. (36) into two equations, i.e., 

( ) arg min ( ) ( ) ,n z

w
w z fe dxdy g x wdxdy 

 

   
 
 
 
   (37) 

 2( ) ( )arg min ( ) .n z n

z
z z fe dxdy w z dxdy

 

   
 
 
 
   (38) 

By using the primal-dual algorithm, the authors defined the convex close set K as 

  1 2/ , ,  ( ),  .cK divp p C R p g x x       

Where{} denotes the convex close set of {}. So this procedure the Euler Eq. (37) is 
given as under: 

 ( ) ( ) ( 1) .
2

n n nw z K z





   (39) 

The nonlinear system of Eq. (38) is defined in similar way as under: 

(1  fe-z) + 2(z  w(n)) = 0. (40) 

For further details see [63]. 
The displayed results in Figs. 15-16, and Table 6 recommend that the proposed al-

gorithm M2 performs superior to PDWAM regarding the quality of restoration (SNR) 
for the same noise levels and parameters as taken in the model [63]. The values of pa-
rameters for the two images “Shape2” and “Lena” for our method M2 (shape parameter 
(c), fitting parameter ()) are (1.80, 0.019) and (1.74, 0.196) respectively. Here, the val-
ue of dt is selected as 0.001.  

 

 
(a)                  (b)                  (c)                  (d) 

Fig. 15. Resultant results on Shape2; (a) Original image; (b) Noisy image with multiplicative noise 
having standard variance 1/10; (c) Restored image by PDWAM method; (d) Restored im-
age by method M2. 
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(a)                  (b)                  (c)                  (d) 

Fig. 16. Experimental results on Lena; (a) Original image; (b) Noisy image with multiplicative 
noise having standard variance 1/10; (c) Obtained image by PDWAM method; (d) Ob-
tained image by method M2. 

 
Table 6. Comparison of PDWAM and our method M2 regarding of SNR. 

Image Size 
PDWAM Our proposed method M2 

SNR SNR 

Shape2 
Lena 

2562 

2562 
16.0540 
10.9022 

16.9501 
12.3270 

7. SENSITIVITY ANALYSIS OF PARAMETRS 

To discuss the selection of the shape parameter (c) and fitting parameter () used in 
our proposed method M2. It is suggested from our experience that all the two parameters 
c and  are harder to pick. In any case, their ideal values are adjusted and tuned accord-
ing to the noise variance, image size, etc. It has been observed that the range of values 
allowed is: c[1.68, 1.84] and [0.0083, 0.3160], for natural and synthetic images ac-
cording to the noise variance L1 = 10, 12 and L2 = 10, 12 respectively. It demonstrates 
that all the parameters c and  are more imperative for enhancing de-noising perfor-
mance. Similarly, the number of iterations needed for convergence is considered to be in 
the range [34, 37] for results with enhanced PSNR. Thus, the accessibility of data about 
the instability of the de-noising effect on the user-chosen parameters is helpful to keep 
away from wrong choices. For brevity, for Tables 7 and 8 we shall denote by 

 
 ()% increase  and ()%decrease . 
 For example (0.15) stands for 0.15% the decrease in PSNR. 
 (0.22) stands for 0.22% increase in PSNR. 
 

Table 7. PSNR value of the reestablished picture “Lena” with ideal values of c and  is 
29.08. Parameter sensitivity examination for our proposed technique M2 by 
percentage increased in values of the parameters c and  values, with the re-
sultant percentage increase or decrease in PSNR of the restored image of size 
(3002). 

Image 
40%() 70%() 

c  PSNR c  PSNR 

Lena 2.44 0.1582 2.38() 2.96 0.1921 4.21() 
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Table 8. PSNR value of the reestablished picture “Lena” with ideal values of c and  is 
29.08 Parameter sensitivity examination for our proposed technique M2 by 
percentage decreased in values of the parameters c and  values, with the re-
sultant percentage increase or decrease in PSNR of the restored image of size 
(3002). 

Image 
40%() 70%() 

c  PSNR c  PSNR 

Lena 1.04 0.0678 2.69() 0.52 0.0339 5.15() 

8. CONCLUSION 

In this paper, a new DTV based mesh-free algorithm for multiplicative noise re-
moval is presented in which DTV filter is employed in conjunction with MQ-RBF ap-
proximation. This algorithm is exploited for the solution of non-linear equation arisen 
from the minimization of the associated DTV functional. The proposed methodology 
based on the Kansa method is mathematically robust and straightforward compared with 
the classical mesh-based method and hence provides more optimal results because of its 
mesh-free merit. The significant advantage of the present strategy is that it not only re-
stores the images but also allows smooth translation without sacrificing sharp edges.  

This approach is tested on different artificial and real images for multiplicative 
noise, and the results are compared with the current model. Our experimental results 
have demonstrated that the quality of the restoration of images, the number of iterations, 
and the CPU times with the use of the proposed method is excellent, and the proposed 
method is efficient. We have additionally seen that the execution of our proposed tech-
nique is apparently better than that of the current method regarding restoration quality 
(PSNR and SNR), the number of iterations, and CPU times on account of the mesh-free 
properties of RBF utilized in our technique. The choice of shape parameter $c$ also 
plays an essential role in our algorithm, which affects the image restoration. The analysis 
of shape parameter and sensitivity of parameters have also been discussed. A comparison 
with other related methods is also presented.  

However, this technique results in an unsymmetrical interpolation matrix. Also, 
sometimes, this algorithm suffers relatively lower accuracy in boundary-adjacent regions. 
These problems are under intense study and results will be reported in the subsequent 
paper. 
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