
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1285-1303 (2022)

DOI: 10.6688/JISE.202211_38(6).0010

1285

Microservice Migration Using Strangler Fig Pattern

and Domain-Driven Design*

SHANG-PIN MA1,+, CHIA-YU LI1,

WEN-TIN LEE2 AND SHIN-JIE LEE3
1Department of Computer Science and Engineering

National Taiwan Ocean University

Keelung, 202 Taiwan
2Department of Software Engineering and Management

National Kaohsiung Normal University

Kaohsiung, 802 Taiwan
3Department of Information Engineering and Computer Science

National Cheng Kung University

Tainan, 701 Taiwan

E-mail: albert@ntou.edu.tw+

The microservice architecture (MSA), comprising multiple autonomous microser-

vices, is easy to upscale, test, and maintain. Many enterprises are seeking to replace the

monolithic architecture with MSA to enhance software quality; however, researchers have

yet to develop a systematic approach to microservice migration. In the current study, we

developed a microservice migration scheme based on the Strangler Fig pattern and Do-

main-Driven Design (DDD). The efficacy of the proposed scheme was evaluated in two

cases studies, including the DataCustodian system of the Green Button project and the

BBDP (Bridge between Doctors and Patients) system.

Keywords: microservice, architecture migration, strangler fig pattern, strangler fig app-

lication, domain-driven design

1. INTRODUCTION

Most legacy applications were established within a monolithic architecture; however,

the accretion of technical updates, personnel transfers, requirement changes, and feature

additions eventually develop into a “big mud ball” [1], which significantly reduces sca-

lability and maintainability. Meanwhile, as the technology of AI (Artificial intelligence)

and IoT (Internet of Things) is getting mature, combining AI and IoT services is chal-

lenging due to the diversity of the complicated IT systems [2]. The microservice archi-

tecture (MSA) [3] comprises multiple, autonomous services with their own business logic

and databases to facilitate discrete deployment and testing. The modular nature of micro-

services makes MSA highly scalable and easy to maintain [4]. There are considerable ad-

vantages to switching over from monolithic to microservice-based applications [5] and

integrating diverse and complex systems; however, a systematic process is not well estab-

lished for the migration of microservices.

In 2004, Fowler proposed a software modernization strategy referred to as the Stran-

gler Fig application [6]. The namesake of the application grows upward around a tree to

Received October 31, 2021; revised December 3, 2021; accepted December 31, 2021.
Communicated by Meng-Hsun Tsai.
* This research was sponsored by the Ministry of Science and Technology in Taiwan under grants MOST 108-

2221-E-019-026-MY3 and MOST 110-2221-E-019-039-MY3.

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1286

reach the sunlight, whereupon the tree eventually dies, leaving only a tree-shaped vine.

This is analogous to the refactoring approach adopted for the gradual rewriting of an ex-

isting system in the incremental migration of a monolithic architecture to MSA, rather than

the “big-bang” migration that decomposes a monolith into interconnected microservices at

once. Notably, the Strangler Fig pattern allows pausing and stopping the migration and

still taking advantage of the newly-split microservices. Accordingly, we can improve the

modularity and maintainability for the newly-split microservices, and enhance the perfor-

mance of the remainder monolith since some modules are cut and converted into micro-

services. Besides, because refactoring a high-coupling or low-cohesive monolith system

to rebuild interconnected microservices at once is very costly and risky, it is evident that

the big-bang migration is impractical on many occasions.

The first thorny problem encountered in microservice migration involves splitting the

system into candidate microservices. Multiple methods were devised to extract or identify

microservices from a monolithic system, such as cutting a monolith based on the coupling

criteria [7], identifying microservices from the business processes [8], aggregating service

endpoints to form microservices using semantic reasoning for service interfaces [9], and

extracting virtual abstract dataflow to retrieve microservices [10]. However, DDD (Do-

main-Driven Design) [11, 12] has been chiefly suggested for use and widely adopted when

identifying or designing microservices [13-16]. DDD is a software development method-

ology involving a continual process of iterative improvements toward establishing com-

plex system architecture. As mentioned by [17], DDD is suitable to deal with the complex-

ity encountered in designing distributed systems, especially in large and complex domains.

In the field of microservices, DDD can provide a systematic way to set an appropriate

boundary for each service by breaking the domain into a series of bounded contexts. There-

fore, in this research, we employed DDD to facilitate the decomposition of the original

monolithic system into multiple parts in accordance with strategic and tactical objectives

from the perspective of domain-specific business logic.

We combined the Strangler Fig pattern with DDD to automate processes involved in

service identification, preparatory, service prioritization, service implementation, integra-

tion, testing, and the removal of legacy modules. The efficacy of the proposed scheme was

evaluated in two cases studies, including the DataCustodian system of the Green Button

project and the BBDP (Bridge between Doctors and Patients) system, from the viewpoint

of QoS (Quality of Service).

The remainder of this paper is organized as follows: Section 2 introduces related work.

Section 3 details the proposed migration approach. Section 4 presents the results of imple-

menting the proposed approach on two existing systems. Section 5 discusses the design

and the results of the evaluation experiments. Section 6 outlines conclusions and future

work.

2. RELATED WORK

Knoche et al. [18] broke down the process of microservice migration into five stages:

defining an external service facade, adapting the service facade, migrating clients to the

service facade, establishing internal service facades, and finally replacing service imple-

mentations with microservices. The underlying objective is to develop well-defined, plat-

form-independent interfaces based on the underlying bounded context. This process is

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1287

suitable for migrating large, complex software systems. In the book “Monolith to Micro-

services” [19], Newman detailed the methods used to migrate existing monolithic systems

to microservices, including Strangler Fig Applications, Branch by Abstraction (BBA), Ag-

gregate Exposing Monolith, Repository per Bounded Context, etc. These patterns provided

a valuable resource in our current research.

There are numerous research efforts for microservice identification. Gysel et al. [7]

proposed an approach to service decomposition based on 16 coupling criteria. The result-

ing Service Cutter uses a “nanoentity” as a unit by which to extract coupling information

from software engineering artifacts for use in plotting an undirected, weighted graph to

find and score densely connected clusters, and aggregate loosely-coupled and highly-co-

hesive services. Petrasch [20] proposed a model-based approach to the design and integra-

tion of microservice architectures using formal UML profiles to deal with specification

gaps between microservices. Their approach extends UML component diagrams to model

the bound context pattern in DDD and enable the modeling of microservices for subsequent

model-to-model conversion and code generation. Baresi et al. [9] developed a microservice

identification method based on the semantic reasoning for OpenAPI specifications. Their

scheme involved matching concepts between a reference vocabulary and OpenAPI speci-

fications, whereupon semantic similarity is calculated according to the number of co-oc-

currences to identify candidate microservices for microservice decomposition. Amiri [8]

proposed a scheme to model a software system as a set of BPMN (Business Process Model

and Notation) business processes with data object reads and writes for use in aggregating

and clustering the structured dependency and object dependency values between two ac-

tivities. The clusters are then identified as microservices. Chen et al. [10] developed a

dataflow-driven decomposition algorithm to retrieve microservices, including three steps:

(1) engineers and users construct a detailed dataflow diagram of the business logic; (2) the

proposed algorithm combines the same operations with the same type of output data into

a virtual abstract dataflow; and (3) the algorithm extracts modules from the virtual abstract

dataflow to identify microservice candidates. Schmidt and Thiry [21] concluded that there

are two main trends of studies for microservice identification in a systematic review they

conducted. The first kind of method applied tracking systems to record dynamic behaviors

for use in identifying candidate services, and the second kind of studies that identified

microservices from established business models, such as requirement models, business

processes, and data flows.

3. MMSD: MICROSERVICE MIGRATION

This section describes the proposed microservice migration scheme, referred to as

Microservice Migration using the Strangler fig pattern and Domain-driven design

(MMSD). Fig. 1 illustrates the process underlying MMSD. Note that the migrated service

is referred to as the Strangler service. The Strangler application comprises multiple Stran-

gler services used to replace the monolithic system. Note that the activities in light yellow

are the core steps that will be fully discussed in this paper. The process includes the fol-

lowing steps:

1. First, analyze the monolith and divide it into bounded contexts as candidate services

by using DDD.

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1288

2. Create a service registry and an API gateway.

3. Select a candidate service (i.e., a strangler service) to be migrated based on the pro-

posed method of service value calculation.

4. Construct the new service based on legacy code and register it on the service registry.

5. Develop integration glues in the monolith to link the new service using the API gate-

way.

6. Conduct API testing for the new service. If the testing is failed, we can return to the

step of service construction to fix the defect; If the testing is passed, we can remove the

legacy module from the monolith to realize the Strangler Fig pattern.

7. After the completion of the migration for the target service, we need to determine if the

whole migration is completed. If the whole migration is not completed, we can return

to the step of the selection and development of the next strangler service.

Fig. 1. Process of the MMSD approach.

3.1 Service Identification

As mentioned, DDD is used to identify microservices in this study. This process re-

quires a ubiquitous language in which the terms and concepts of the business domain are

clearly identified. The underlying objective is to balance technical and business issues and

then use the ubiquitous language in subsequent conversations to enable the use of event

storming, domain storytelling, or user story mapping to identify requirements, characterize

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1289

entity classes and their relationships, and build an abstract domain model for the system.

The first step in distilling the domain model involves strategic design. The domain is

expressed as a problem space. Before finding a solution space, the domain is divided into

multiple subdomains according to business logic, which is then classified into core do-

mains, supporting subdomains, and generic subdomains.

Analysis of the problem space is then used to guide the definition of Bounded Con-

texts (system service boundaries) by which to describe the solution space corresponding

to subdomains in the problem space. Bounded Context is usually defined in a common

language in accordance with semantics and business capabilities. In this study, the

Bounded Context is regarded as a candidate microservice to be migrated. Context mapping

is also used to determine the means by which different Bounded Contexts interact with

each other. In context mapping, downstream services depend on upstream services. Open

Host Service/Published Language (OHS/PL) and Anti-Corruption Layer (ACL) are com-

monly used patterns, respectively, used for upstream services and downstream services.

The OHS/PL pattern is used in the upstream services to facilitate the service collaboration,

and the ACL pattern is applied in some downstream services to enable the conversion of

data in accordance with the requirements of upstream services.

Tactical design is then used to distill the results of strategic design. The design pat-

terns most commonly used for tactical design include entities, value objects, and aggre-

gates, also referred to as domain objects. Ultimately, each Bounded Context is treated as a

candidate microservice with a corresponding model.

Following the completion of domain-driven design, we recommend mapping the

models and database tables (in the original system) within the candidate microservices

(Bounded Contexts) based on the domain model. This step is essential to the conversion

of existing modules into new microservices to be used by developers to evaluate the design.

During mapping, unmatched models (in the original system) should be analyzed again for

use in modifying the design.

MSA offers many advantages; however, the complexity of communications in con-

tainer-based services imposes a heavy burden in terms of maintenance and operations.

Thus, for the preparatory tasks of the MSA environment, automated management mecha-

nisms are required to alleviate the burden in development and operation, and numerous

new technologies applicable to MSA have been developed [22]. In the current study, we

selected Eureka for service discovery and registration, and Spring Cloud Gateway for the

management of API routing. We built a service registry (Eureka Server) and an API gate-

way (Spring Cloud Gateway) for deployment in a lightweight container (Docker).

3.2 Service Prioritization

The migration process requires clearly defined criteria by which to derive the order

of services for extraction. It also requires a comparison of the expected benefits of the

identified service to facilitate prioritization. Therefore, we reviewed the existing literature

for the criteria of the scoring guidelines used to determine values for identified services

(See Table 1).

We devised five criteria, including FM (Function to be Modified), PP (Performance

Problem), CF (Core Function), RS (Related Service), and SS (Separate Service). Note that

the curly brackets express a value set; namely, the score of the criterion for a target service

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1290

is set to one of the elements in the set; the square brackets indicate a range; namely, the

score of the criterion for a target service is set to a value in the range.

We divide these criteria into three importance levels. FM is the highest prioritized

criteria because the candidate service has been planned to be modified and is very suitable

to be converted into a microservice. PP and CF are the second prioritized criteria, because

the performance issue and the maintenance of core functionality should be paid consider-

able emphasis. RS and SS are the supporting criteria to determine appropriate services to

be migrated by applying the Strangler Fig pattern. Based on the importance levels, we

allocate the maximum scores of FM, PP, CF, RS, and SS to 40, 20, 20, 10, and 10, respec-

tively, to represent their importance and let the sum of the maximum scores be 100. Besides,

because the FM indicator is either fully satisfied or fully unsatisfied, its score will be zero

or forty, not a value in a range.

After service value scores for all candidate services are calculated, the highest score

represents the highest expected benefits, indicating that the corresponding service should

be extracted first. Please refer to section 4 to see examples of service value calculation.

Table 1. Guidelines for the scoring of service value.

Criteria Score Rationales/Benefits References
FM (Function to be Modified):

The functionality involved in the

service is about to be modified.

{0, 40}

Extraction of this type of service can

eliminate the need to make changes to

the monolithic system directly.

[23-25]

PP (Performance Problem):
The service has performance

problems.

[0, 20]

If the excessive consumption of re-
sources by a candidate service affects

the performance of other modules,
then it should be extracted early.

[23, 24, 26]

CF (Core Function): The ser-
vice involves core system-level

functions.

[0, 20]

The extraction of services involving

core functions brings added benefits,

such as scalability and/or maintaina-
bility.

[25, 27]

RS (Related Service): The ser-

vice is related to a service that
has previously been migrated.

[0, 10]

Extracted services should be able to

collaborate with other migrated ser-
vices.

[23]

SS (Separate Service): The ser-

vice is obviously distinct from

the monolithic architecture.

[0, 10]
This kind of service is more easily ex-
tracted than are other candidates.

[25]

3.3 Service Implementation, Integration, and Testing

After identifying the services to be extracted, we recommend setting up a new micro-

service project on a version control system (VCS), such as GitHub or GitLab, before im-

plementing Spring Cloud Gateway and the Eureka client.

The service should be implemented by adding models of the corresponding service

based on the legacy code, creating controllers to define the service interface, and establish-

ing a new database for that service. To facilitate collaboration between the original mono-

lithic service and the new service (i.e., the design of integration glue/adapter), we adopted

the following strategies:

1. Using REST API to query data: The Aggregate Exposing Monolith pattern can be used

to facilitate collaboration. The APIs required by the new service are designed and

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1291

provided by the original monolithic system, while the new service also provides APIs

needed by the monolith. In other words, the monolith and the new service communicate

with each other via API calls.

2. Updating data in an event-driven manner: Maintaining data consistency requires the

triggering of updates by posting publish/subscribe events in the monolith and new ser-

vice. We can leverage an event bus to enable subscription, un-subscription, and pub-

lishing events.

Microservice testing includes unit testing, integration testing, component testing, and

end-to-end testing (E2E testing) [23]. We recommend conducting integration testing and

component testing at the very minimum.

Finally, we suggest preparing a docker file to specify commands used to host the new

microservice in a container and configure a continuous integration tool (such as Jenkins or

Travis CI) to enable CI (continuous integration)/CD (continuous deployment). By trigger-

ing the webhook provided by VCS, the microservice can be deployed in the container for

collaboration with the original monolithic system.

Reconstructing the system using the Strangler Fig pattern allows the monolithic sys-

tem to operate simultaneously with the Strangler application without affecting client-side

users. After completing the development and testing of a Strangler service, code fragments

corresponding to the functions that have been implemented by services can be removed.

The migration process is implemented incrementally until all services have been migrated.

4. CASE STUDIES

This section describes the details of the architecture migration for two monolithic

systems: Green Button and BBDP (Bridge between Doctors and Patients), by using the

proposed MMSD approach.

4.1 Green Button

The U.S. government launched the “Green Button” [28] project in 2012. The use of

Smart Grid technology lets the users get detailed information on energy consumption

(mainly electrical power data) by clicking a button on the website. The users are also able

to authorize their data to third-parties for diagnosing energy consumption, assisting the

energy management, or cutting out unnecessary power usage to save energy fees. The

“Green Button” project also released an open-source project for the Green Button system.

The system provides two core features: (1) Download My Data (DMD): a user can down-

load personal energy data hosted by the data custodian, and (2) Connect My Data (CMD):

a third-party application can also obtain authorized user data from the data custodian to

provide value-added services. This open-source project is divided into three sub-projects:

DataCustodian, ThirdParty, and their shared Common projects. These projects were devel-

oped by the Spring framework and JSP (Java Server Pages).

In the past, we tried to develop a new third-party application to obtain user energy

data from DataCustodian through CMD for data analysis and visualization. However,

HTTP 404 and data rollback errors occur occasionally. Therefore, we decided to redesign

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1292

the DataCustodian project’s architecture and migrate it to MSA based on the proposed

MMSD approach.

4.2.1 Domain-driven design for DataCustodian of green button

We first extracted all of the nouns from the requirement specifications of Green But-

ton, assessed whether they belong to vital classes, and used them to create an abstract do-

main model (See Fig. 2) by which to identify associations among classes.

Fig. 2. Abstract domain model of DataCustodian.

We implemented the strategic design by dividing the system into four subdomains in

accordance with the business capabilities. Each subdomain was mapped to a microservice

(Bounded Context) with a corresponding domain model, as shown in Fig. 3. We then im-

plemented the tactical design to derive model details.

Fig. 3. Strategic design of DataCustodian.

Among the identified services, UsagePoint involves the processing of large quantities

of energy data on which are performed read and write operations. Here, the Command

Query Responsibility Segregation (CQRS) pattern [29] was used to design the UsagePoint

service. Read and write operations were respectively separated into the DownloadMyData

(DMD) service and UploadData service. The former is a dedicated query service that al-

lows users to query energy data, whereas the latter is a dedicated command service that

uploads/updates energy data. In terms of database design, both services possess the same

data structure. When the UpdateData service alters the database, a data update event is

published to notify the DownloadMyData service in order to maintain data consistency.

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1293

4.2.1 Service prioritization for DataCustodian in green button

The above analysis results were used to guide the splitting of DataCustodian into five

microservices: User, ThirdParty, Authorization, DMD, and UploadData. The proposed ser-

vice value scoring guidelines were used to select the most valuable service as the primary

target of service migration. As shown in Table 2, DownloadMyData (DMD) was identified

as the core service with the most profound effect on system performance, and was therefore

adopted as the first Strangler service. Note that in the original system, DMD consumes

considerable resources (CPU and memory). Please refer to [30] to see details of the tactical

design, system mapping between the original and new system designs, and the deployment

process for the migrated microservice (DMD, Download My Data).

Table 2. Service scores for application of DataCustodian to green button.

Service/Criteria FM PP CF RS SS Total

User 0 0 15 0 5 20

ThirdParty 0 0 10 0 5 15

Authorization 0 0 20 0 5 25

DMD 0 20 20 0 3 43

UploadData 0 20 5 0 3 28

4.2 BBDP

Bridge between Doctors and Patients (BBDP) is a mobile application developed by

our lab for personal health tracking, conducting questionnaires, and assessing medical rec-

ords for in-depth diagnosis and treatment. BBDP is meant to promote communication

among patients, doctors, and the patients’ families to mediate medical information inequity

and improve the quality of medical care.

Fig. 4. Problems in existing BBDP system.

BBDP is a typical monolithic application, in which all modules affect all data items

in the database. In other words, individual modules do not have clear responsibilities, and

many operations are implemented multiple times in different modules. Fig. 4 illustrates the

problem.

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1294

We decided to redesign the architecture and migrate it to MSA using redefined APIs

with clear functions. We also sought to enhance the performance of the folder module,

which allows a patient to upload image files to the doctor.

4.2.1 Domain-driven design for BBDP

We first extracted all nouns from the specifications of BBDP, assessed whether they

belong to vital classes, and used them to create an abstract domain model by which to

identify associations among classes (See Fig. 2).

Fig. 5 Abstract model for BBDP.

We then implemented the strategic design by dividing the system into 14 subdomains

in accordance with the business capabilities, including Doctor, Patient, Family, Push,

PushTimer, ClinicHours, Questionnaire, Folder, HealthTracking, Notice, DoctorNotice,

MedicalRecord, Schedule, and PatientInstruction. Each subdomain was mapped to a mi-

croservice (Bounded Context) with a corresponding domain model, as shown in Fig. 6.

Note that core domains are marked in red, supporting subdomains are marked in orange,

and generic subdomains are marked in blue. We then used “context mapping” to describe

interactions among Bounded Contexts (as shown in Fig. 7). Besides, we used upstream U

and downstream D to express dependencies.

The results of the strategic design were used to guide the implementation of the tac-

tical design aimed at deriving model details, as shown in Fig. 8 (please refer to https://

shorturl.at/nHMRY to browse the version of a larger image). We then mapped the modules

and database tables in the original BBDP system to the identified services. We discovered

that two of the modules could not be mapped to an appropriate microservice: (1) The

BBDPBase64 module, which is responsible for Base64 encryption and decryption and is

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1295

not included in any business function. We decided to wrap it as a system library to enable

its use by multiple services; and (2) The Doctor/Patient Suggestion module, for which the

original specifications lack requirement statements. We decided to implement a new ser-

vice to deal with it, such that the total number of identified services was increased to 15.

Fig. 6. Strategic design of BBDP: Subdomain design.

Fig. 7. Strategic design of BBDP: Subdomain design and context mapping.

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1296

Fig. 8. Tactical design for BBDP.

4.2.1 Service prioritization and construction for BBDP

Following the completion of DDD, we used the proposed service score calculation

method to prioritize services for migration. The first calculations are listed in Table 3. Note

that the Folder service was adopted as the first Strangler service due to its performance

issues. The second calculations are presented in Table 4. Questionnaire was adopted as the

second Strangler service, due to its core functionality. The third calculations are presented

in Table 5. MedicalRecord was adopted as the third Strangler service, due to its core func-

tionality, which is strongly linked to the Questionnaire service but distinct from the re-

minder services.

We created new microservice projects for the Folder, Questionnaire, and Medi-

calRecord services. The microservices were deployed using Docker and registered using

Eureka, as shown in Fig. 9. All service invocations were transmitted via an API gateway.

Collaboration between migrated microservices and the monolithic system was based on

REST APIs. Postman1 test results verified that requests for the three migrated micro-

services produced the expected responses.

 1 https://www.postman.com/

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1297

Table 3. Service score calculations for BBDP-1.

Service/Criteria FM PP CF RS SS Total

Patient 0 5 5 0 0 10

Doctor 0 5 5 0 0 10

Family 0 0 5 0 0 5

Questionnaire 0 0 20 0 8 28

MedicalRecord 0 0 18 0 8 26

Folder 0 20 15 0 10 45

HealthTracking 0 0 15 0 10 25

DoctorNotice 0 0 10 0 8 18

Notice 0 0 10 0 8 18

ClinicHours 0 0 5 0 10 15

Schedule 0 0 5 0 10 15

PatientInstruction 0 0 5 0 8 13

PushTimer 0 10 10 0 0 20

Push 0 5 10 0 0 15

SystemAdmin 0 0 0 0 10 10

Table 4. Service score calculations for BBDP-2 (partial).

Service/Criteria FM PP CF RS SS Total

Patient 0 5 5 1 0 11

Doctor 0 5 5 1 0 11

Family 0 0 5 2 0 7

Questionnaire 0 0 20 0 8 28

MedicalRecord 0 0 18 0 8 26

Table 5. Service score calculations for BBDP-3 (partial).

Service/Criteria FM PP CF RS SS Total

Patient 0 5 5 2 0 12

Doctor 0 5 5 2 0 12

Family 0 0 5 4 0 9

Questionnaire / / / / / /

MedicalRecord 0 0 18 5 10 33

Fig. 9. Registration of BBDP services in Eureka.

5. EXPERIMENTAL EVALUATIONS

To demonstrate the feasibility and benefits of the proposed microservice migration

approach, we designed and conducted quantitative experiments for the above two cases,

the Green Button system and the BBDP system. Because that the modularity and main-

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1298

tainability are difficult to measure objectively, and the migrated microservices are obvi-

ously more modular and maintainable than monolithic systems, we planned to evaluate

MMSD from the viewpoint of QoS (Quality of Service) and answer the following research

questions:

RQ-1: Does the migrated microservices enhance reliability?

RQ-2: Does the migrated microservices improve the performance, such as response

time or throughput?

RQ-3: Can any benefits be gained for the unmigrated modules in a monolithic system?

In the following sub-sections, we describe the experiment setup first and discuss the

design and evaluation results for the two experiments.

5.1 Experiment Setup

As mentioned above, DMD and Folder were selected as the first Strangler services,

due to the fact that they imposed performance bottlenecks in the original systems. We

expected that the performance of modules in the original application could be improved

through service migration. To monitor the quality of the migrated microservices, we con-

ducted two experiments involving quantitative evaluations of Green Button and BBDP

using Apache JMeter.2 Note that Apache JMeter is an open-source Java software package

commonly used to test the performance of applications deployed on servers.

The experiments were run on a 64-bit Ubuntu server (version 16.04) with an Intel 4-

Core i5-6400 @ 2.7GHz with 24GB of RAM and a 1TB hard disk. All systems and services

were deployed in different docker containers. We also configured the CPU to use three

cores and 6GB of memory for the sake of uniformity.

5.2 Experiment 1: Green Button Migration

The first experiment on the Green Button system was used to evaluate the perfor-

mance of services before and after migration, including DMD services (see Table 5) and

ThirdParty services (see Table 6). The DMD modules with the highest resource consump-

tion were migrated as microservices. We did not observe a significant improvement in the

computational performance of DMD (63.2 versus 62.6 seconds); however, we observed a

notable improvement in reliability, as evidenced by a reduction in the error rate (from 1.6%

to 0%). We observed a significant improvement in the computational performance of the

unmigrated module, ThirdParty, as evidenced by a reduction in response time from 0.73

seconds to 0.01 seconds, when migrated microservices were called at the same time. The

bar charts for Tables 6 and 7 are shown in Fig. 10.

Table 6. DMD service testing before and after its migration.

AUT: DownloadMyData (DMD) Before migration After migration

Samples 1000 (threads)

Average Response Time (ms) 63,239 62,561

Error (%) 1.6 0

Throughput (/sec) 3.1 3.1

Average response size (byte) 2,622,433 2,624,419

2 https://jmeter.apache.org/

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1299

Table 7. ThirdParty service testing before and after the migration for DMD service.

AUT: ThirdParty Before migration After migration

Samples 1000 (threads)

Average Response Time (ms) 734 10

Error (%) 0 0

Throughput (/sec) 3.6 3.7

Average response size (byte) 5,156 5,156

Fig. 10. Comparison for the migrated service and the unmigrated module in GreenButton.

5.3 Experiment 2: BBDP Migration

The second experiment on the BBDP system was used to evaluate the performance

of services before and after migration, including the Folder service (see Table 7) and

HealthTracking (see Table 8). Again, the DMD modules with the highest resource con-

sumption were migrated as microservices. We observed a slight decrease in the computa-

tional performance of Folder services (13.67 versus 15.56 seconds); however, the perfor-

mance of the unmigrated module, HealthTracking, improved significantly, as evidenced

by a reduction in the response time from 3.56 seconds to 0.08 seconds when migrated

microservices were called at the same time. The bar charts for Tables 8 and 9 are shown

in Fig. 11.

Table 8. Folder service testing before and after its migration.

AUT: Folder Before migration After migration

Samples 1000 (threads)

Average Response Time (ms) 13,665 15,559

Error (%) 0 0

Throughput (/sec) 10.8 10.7

Average response size (byte) 10,979,214 10,979,228

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1300

Table 9. HealthTracking service testing before and after the migration for folder service.
AUT: HealthTracking Before migration After migration

Samples 1000 (threads)
Average Response Time (ms) 3,561 78

Error (%) 0 0
Throughput (/sec) 10.9 10.8

Average response size (byte) 282 282

Fig. 11. Comparison for the migrated service and the unmigrated module in BBDP.

5.4 Discussion

Experiment results for GreenButton and BBDP revealed that system performance

could be improved by eliminating performance bottlenecks via migration to microservices.

We made two important observations that can answer the research questions:

(1) The migration of microservices can enhance reliability without compromising compu-

tational performance. Therefore, the answer to RQ-1 is yes; the number of errors for

the migrated services is reduced. The answer to RQ-2 is no; microservice architecture

can only keep the same level for response time and throughput.

(2) The performance of unmigrated modules in monolithic systems can be improved by

migrating problematic services in order to eliminate bottlenecks. Therefore, the answer

to RQ-3 is the performance of the unmigrated modules can be effectively improved.

Based on the analysis of case studies, we also conclude two possible issues/difficul-

ties when applying MMSD: (1) preparing the environment of hosting migrated micro-

services is non-trivial. We need to deploy the service discovery system, API gateway, ser-

vice monitor system, distributed tracing system, and even service orchestration platform

(such as Kubernetes). The preliminary work is laborious for some organizations; and (2)

designing the interface of a migrated microservice is not simple and even challenging. We

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1301

need to carefully ensure the correct integration of the newly-built microservice and the

remainder monolith. However, since the process of applying the Strangler-Fig pattern is

reversible, we can abandon a microservice if the integrations testing fails or some unex-

pected errors occur when using migrated services.

6. CONCLUSIONS

This paper reports on the application of the Strangler Fig pattern in software migration

from a monolithic architecture to MSA. The proposed scheme involves the incremental

extraction and construction of microservices based on DDD (Domain-Driven Design). The

Bounded Context in DDD makes it possible to assign specific responsibilities to each ser-

vice and clearly define the scope. The identified services are mapped to the models and

database of the original system to facilitate service implementation. The proposed scheme

proved effective in identifying and establishing appropriate microservices when applied to

two existing monolithic applications, Green Button and BBDP. Architecture migration was

shown to enhance the reliability of migrated microservices and the efficiency of unmi-

grated modules.

In the future, we will apply the proposed MMSD approach to additional monolithic

systems, conduct scalability experiments in the cloud, and apply the sidecar pattern to en-

hance service monitoring, circuit breaker, and load balancing features.

REFERENCES

1. B. Foote and J. Yoder, “Big ball of mud,” Pattern Languages of Program Design, Vol.

4, 1997, pp. 654-692.

2. G. Kousiouris, S. Tsarsitalidis, E. Psomakelis, et al., “A microservice-based frame-

work for integrating IoT management platforms, semantic and AI services for supply

chain management,” ICT Express, Vol. 5, 2019, pp. 141-145.

3. C. Richardson, Microservices Patterns: With Examples in Java, Simon and Schuster,

USA, 2018.

4. S.-P. Ma, C.-Y. Fan, Y. Chuang, I. H. Liu, and C.-W. Lan, “Graph-based and scenario-

driven microservice analysis, retrieval, and testing,” Future Generation Computer

Systems, Vol. 100, 2019, pp. 724-735.

5. C. Y. Fan and S. P. Ma, “Migrating monolithic mobile application to microservice

architecture: An experiment report,” in Proceedings of IEEE International Conference

on AI & Mobile Services, 2017, pp. 109-112.

6. M. Fowler, “StranglerFigApplication,” https://martinfowler.com/bliki/StranglerFig

Application.html, 2004

7. M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A sys-

tematic approach to service decomposition,” in Proceedings of European Conference

on Service-Oriented and Cloud Computing, 2016, pp. 185-200.

8. M. J. Amiri, “Object-aware identification of microservices,” in Proceedings of IEEE

International Conference on Services Computing, 2018, pp. 253-256.

9. L. Baresi, M. Garriga, and A. de Renzis, “Microservices identification through in-

terface analysis,” in Proceedings of European Conference on Service-Oriented and

https://martinfowler.com/bliki/StranglerFig%20Application.html
https://martinfowler.com/bliki/StranglerFig%20Application.html

SHANG-PIN MA, CHIA-YU LI, WEN-TIN LEE, SHIN-JIE LEE

1302

Cloud Computing, 2017, pp. 19-33.

10. R. Chen, S. Li, and Z. Li, “From monolith to microservices: A dataflow-driven app-

roach,” in Proceedings of the 24th Asia-Pacific Software Engineering Conference,

2017, pp. 466-475.

11. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley Professional, USA, 2004.

12. E. Evans, Domain-Driven Design Reference: Definitions and Pattern Summaries, Dog

Ear Publishing, USA, 2014.

13. R. H. Steinegger, P. Giessler, B. Hippchen, and S. Abeck, “Overview of a domain-

driven design approach to build microservice-based applications,” in Proceedings of

the 3rd International Conference on Advances and Trends in Software Engineering,

2017, pp. 79-87.

14. B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck, “Designing

microservice-based applications by using a domain-driven design approach,” Interna-

tional Journal on Advances in Software, Vol. 10, 2017, p. 2017.

15. F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of domain-driven micro-

service design: a model-driven perspective,” IEEE Software, Vol. 35, 2018, pp. 36-43.

16. M. Rizki, A. Fajar, and A. Retnowardhani, “Designing online healthcare using DDD

in microservices architecture,” Journal of Physics: Conference Series, Vol. 1898,

2021, pp. 1-5.

17. I. J. Munezero, D.-T. Mukasa, B. Kanagwa, and J. Balikuddembe, “Partitioning micro-

services: A domain engineering approach,” in Proceedings of IEEE/ACM Symposium

on Software Engineering in Africa, 2018, pp. 43-49.

18. H. Knoche and W. Hasselbring, “Using microservices for legacy software moderni-

zation,” IEEE Software, Vol. 35, 2018, pp. 44-49.

19. S. Newman, Monolith to Microservices: Evolutionary Patterns to Transform Your

Monolith, O'Reilly Media, USA, 2019.

20. R. Petrasch, “Model-based engineering for microservice architectures using Enterprise

Integration Patterns for inter-service communication,” in Proceedings of the 14th In-

ternational Joint Conference on Computer Science and Software Engineering, 2017,

pp. 1-4.

21. R. A. Schmidt and M. Thiry, “Microservices identification strategies : A review focus-

ed on model-driven engineering and domain driven design approaches,” in Proceed-

ings of the 15th Iberian Conference on Information Systems and Technologies. 2020,

pp. 1-6.

22. F. Montesi and J. Weber, “Circuit breakers, discovery, and API gateways in micro-

services,” arXiv Preprint, 2016, arXiv:1609.05830.

23. C. Richardson, Microservices Patterns: With Examples in Java, 2019, Manning Pub-

lications, Switzerland, Europe.

24. P. S. Kocher, Microservices and Containers, Addison-Wesley Professional, USA,

2018.

25. D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues for migrating

to microservices architectures: An empirical investigation,” IEEE Cloud Computing,

Vol. 4, 2017, pp. 22-32.

26. A. Cowart, “The phases of a microservices project,” https://headspring.com/2018/02/

05/microservices-project-phases/, 2018.

https://headspring.com/2018/02/%2005/microservices-project-phases/
https://headspring.com/2018/02/%2005/microservices-project-phases/

MICROSERVICE MIGRATION USING STRANGLER FIG PATTERN AND DOMAIN-DRIVEN DESIGN 1303

27. A. Deshpande and N. P. Singh, “Challenges and patterns for modernizing a monolithic

application into microservices,” https://developer.ibm.com/articles/challenges-and-pa

tterns-for-modernizing-a-monolithic-application-into-microservices/, 2020.

28. D. S. Sayogo and T. A. Pardo, “Understanding smart data disclosure policy success:

the case of Green Button,” in Proceedings of the 14th ACM Annual International

Conference on Digital Government Research, 2013, pp. 72-81.

29. C. Richardson, “Pattern: Command query responsibility segregation,” https://micro

services.io/patterns/data/cqrs.html, 2020.

30. C. Y. Li, S. P. Ma, and T. W. Lu, “Microservice migration using strangler fig pattern:

A case study on the green button system,” in Proceedings of International Computer

Symposium, 2020, pp. 519-524.

Shang-Pin Ma (馬尚彬) received his Ph.D. degree in Computer

Science and Information Engineering from National Central Univer-

sity, Taiwan, in 2007. Dr. Ma is currently a Professor in the Depart-

ment of Computer Science and Engineering at National Taiwan Ocean

University. His research interests include service-oriented computing,

software engineering, mobile computing, and chatbot architecture.

Chia-Yu Li (李佳育) received her BS (2018) and MS (2020)

degrees from the Department of Computer Science and Engineering,

National Taiwan Ocean University, Taiwan. Her research interests in-

clude software engineering and microservice architecture.

Wen-Tin Lee (李文廷) received his Ph.D. degree in Computer

Science and Information Engineering from National Central Univer-

sity, Taiwan, in 2008. Dr. Lee is the Department Head and an Associ-

ative Professor in the Department of Software Engineering and Man-

agement at National Kaohsiung Normal University. His research in-

terests include software engineering, service-oriented computing, and

deep learning.

Shin-Jie Lee (李信杰) is an Associate Professor in Computer and
Network Center at National Cheng Kung University in Taiwan and

holds joint appointments from Department of Computer Science and

Information Engineering at NCKU. His current research interests in-

clude software engineering and service-oriented computing. He re-

ceived his Ph.D. degree in Computer Science and Information Engi-

neering from National Central University in Taiwan in 2007.

https://developer.ibm.com/articles/challenges-and-pa%20tterns-for-modernizing-a-monolithic-application-into-microservices/
https://developer.ibm.com/articles/challenges-and-pa%20tterns-for-modernizing-a-monolithic-application-into-microservices/

