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Query translation has been a central task for data integration or information sharing. 

In this paper, we assume that the source and target databases may be XML or relational, 
with the query languages XQuery and SQL, respectively. Besides, there may exist many 
possible mappings with different weights between two schemas, which are usually pro-
duced by automatic schema matching tools. We intend to output the most preferable 
query based on weights among all equivalent ones, so we need to properly represent the 
weighted schema mappings and input queries. Our approach is to first classify the sche-
ma representation into two basic units, i.e., collections and values, and apply mapping 
functions to represent the correspondence for each basic unit with weight information. 
We then propose a set of tree structures, collectively called CanForest, which show the 
structural constraints and semantics of the input query and assist in producing the output 
queries. We have constructed the complete translation system and shown its effectiveness. 
Experimental results also demonstrate that the system is very efficient.      
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1. INTRODUCTION 
 

Query translation has become an important research issue currently since many 
types of data are connected through the World-Wide-Web. For example, XML, with 
XQuery as the query language, is the standard for data exchange in the Web. On the oth-
er hand, relational databases with mature techniques are still widely used in enterprises 
to support critical business operations. An SQL statement encoded in existing applica-
tions might need to be transformed to an XQuery for retrieving relevant data from the 
XML data source, so that the information presented respectively as XML data or in the 
relational database could be shared. 

Performing query translation needs to utilize the correspondence of the target 
schema, i.e., where the query is issued, and the source schema, i.e., where the data are 
stored. Previous studies basically considered simple schema mappings, but some re-
searchers [5] started to investigate the problem of uncertainty in schema matching. That 
is, a unit represented in the target schema may correspond to several units represented in 
the source database, with different similarity scores, or called weights. Such situation 
frequently occurs when automatic schema matching tools are used to identify the corre-
spondence of two schemas, and we call it the case of multiple mappings between schema 
units, or schema mappings with weights. One way to handle such case is to represent all 
possible mappings between two schemas in a compact way and produce all correspond-
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ing transformed queries [5], but there are cases that users are only interested in the most 
possible one, and require only one translated query. Therefore, in this paper, we will 
output the most convincible query based on the weights of schema mappings. 

To achieve this goal, the major challenges are twofold. The first one is how to 
properly represent the correspondence between schemas with weight information. Sche-
ma mappings are usually represented by mapping rules or mapping languages [9, 17], 
but it is not easy to represent the weights of mappings by using such approach. Therefore, 
we propose to classify the schema representation into several basic units, which are col-
lections and values, such as the relations and attributes in the relational database. We 
then utilize mapping functions to represent the correspondence of the basic unit, and de-
note the weight of each correspondence. Such design can be used to easily identify the 
most appropriate corresponding unit, i.e., which has the highest weight among all candi-
dates. 

The second challenge lies in how to represent the complex structure of a query to 
facilitate query translation. In this paper, we focus on the core expressions of SQL and 
XQuery, which consist of Selection-Projection-Join (SPJ) expressions with nested sub- 
queries. To reflect the structural constraints and semantics of the input query, we adopt 
the tree structure to represent a query as a set of collection trees and a set of value trees, 
which are collectively called the Canonical Forest, or CanForest in short. Take XQuery 
as an example. Each collection tree is used to illustrate the structural constraint imposed 
by a binding variable, by representing all the path expressions associated with the partic-
ular variable specified in the FOR, LET, and WHERE clauses. On the other hand, the 
path expressions specified in the RETURN clause will be used to construct the value 
trees. The purpose of CanForest is to divide a query into different components, and we 
can then invoke the corresponding mapping function to identify the appropriate matching 
units, and directly represent such information within the node of CanForest for produc-
ing output query fragments. CanForest is also constructed level by level to reflect the 
possible nested structure of the original query. Such level information together with the 
structural constraints represented by the edges of CanForest, can guide us to compose all 
transformed query fragments into the final correct translated query. 

To summarize, the contributions of this paper are as follows: 
 

 We propose to classify schema representations into units of collections and values. 
Such concepts are used to represent the mappings between two schemas as a set of 
mapping functions. The weight information associated with each correspondence can 
assist us in handling multiple mappings between schema units. 

 We define the CanForest structure. It represents the structural constraints and returned 
values specified in the original query clearly to help producing the transformed query. 

 We have implemented a system which can perform translation between XQuery and 
SQL in either direction. Experimental results show that the transformation process can 
be performed efficiently. 

 
The rest of this paper is organized as follows. Related works are first discussed in 

Section 2, followed by the description of our approach. In Section 3, we present the 
schemas and queries to illustrate the problem to tackle in this paper. In Section 4, we 
illustrate the proposed architecture and discuss the required mapping functions and in-
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formation. The CanForest structure is explained in Section 5, and the procedure of pro-
ducing the complete output query is presented in Section 6. Finally, experimental results 
are shown in Section 7; summaries and future research directions are given in Section 8. 

2. RELATED WORK 

The needs for translating queries exist in many situations. It might happen when an 
XML view is on top of a relational engine or XML data are shredded into the relational 
database, so an XQuery submitted by users needs to be translated to an SQL for execut-
ing in the underlying relational databases. The research issues related to this problem are 
basically about how to execute a more flexible representation of XQuery by SQL ex-
pressions. Particularly, an efficient way to handle wild cards in the path expression [6], 
the technique of performing path expressions on recursive XML schemas [8], and how to 
produce optimal queries [10], have all being investigated. However, these translation 
algorithms usually consider fixed and simple schema mappings. In contrast, we focus on 
handling multiple mappings in our translation system.  

The other type of query translation, or called query rewriting more precisely, relates 
to transforming an input XQuery based on views. The variables in the original XQuery 
can be used to find possible views to rewrite the query [14], and the concept of maximal 
contained rewriting is proposed to use views as much as possible [11]. A tree pattern 
language is designed to describe both the queries and views, and help combine the views 
into the same structure as the input query [4]. The issue caused by multiple views has 
also being discussed [13]. These researches are similar to ours in the way that trees are 
used to describe the complex structure of XQuery, but differ in that our proposed tree 
structure is especially designed to assist in performing query translation in a heteroge-
neous environment. 

Another direction of related researches is about the presentation of complex map-
pings between schemas. Some representation is proposed to handle “composite” map-
pings, such as the object address consisting of many components like street, city and 
state [7]. The tree patterns are used to represent source-to-target dependence, when both 
schemas are represented in DTD [3]. A series of researches utilize languages to represent 
mappings between target and source schemas. For example, the source information is 
represented in the foreach clause, and the target information is represented in the exist 
clause [17]. This language is further extended to include the concept of dynamic element, 
to support the need of exchanging between data and meta-data [9]. Although the above 
representations are useful in certain domains, they are not designed to handle weighted 
schema mappings. The basic idea of our approach is to divide a schema into several 
basic units, and utilize mapping functions to represent the correspondence of each unit 
with weights. Such design is flexible and extendable, and can convey more information 
if required. 

Finally, how to automatically determine the correspondence between schemas is a 
large field and out of the scope of our research. We only list some of the research results 
here and refer the interested readers to the original papers. An early survey can be found 
in literature [16], while the emergence of XML data incurs new problems. Some re-
searchers determine the similarity between two DTDs based on the tree structure [12]. 
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Other researchers propose the conceptual model to represent the semantics of the source 
and target schemas, and then transform the model as graphs, so that the graph algorithms 
can be used to find mappings [2]. Since many mapping tools exist, a benchmark system 
called STMark is constructed to evaluate the interfaces of such tools [1]. A self-config- 
uring matching system is also proposed [15]. 

3. PRELIMINARIES 

In this section, we describe the schema representations and query languages of the 
XML and relational models covered in this research. The sample schemas, which repre-
sent the information about orders, customers, parts, and suppliers, are adopted from the 
TPCH benchmark and are slightly modified for being used as the running example. 

3.1 Schema Representations and Mappings 

The XML schema proposed by W3C consists of many constructs. In this paper, we 
focus on its nested nature, which is the most important characteristic of an XML schema. 
For clear illustration, an XML schema definition is depicted as a schema graph. In the 
sample graph shown in Fig. 1 (a), the root node represents the root element order-ship, 
which defines two nested sub-elements customer and suppliers, and the customer ele-
ment in turn defines two leaf nodes, which are name and ckey. Leaf nodes directly rep-
resent values, which correspond to elements with the type #PCDATA or attributes in the 
DTD definition.    

 

 
(a) Target            (b) Source 

Fig. 1. Sample schemas and schema mapping. 
 

The relational schema considered in this paper follows the traditional definition and 
satisfies the First Normal Form. It is also represented by the graph structure, as depicted 
in Fig. 1 (b). Since nested relations are not allowed as an attribute domain, the graph 
only consists of two levels, where a relation is represented by a root node, and the com-
ponent attributes are represented by leaf nodes. In addition, the primary key is denoted 
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by an underline, and the foreign key is depicted as a dotted arrow pointing to the corre-
sponding primary key. 

An obvious difference between the two data models is that an XML schema explic-
itly shows the nested relationship between elements, while a relational schema tends to 
be flat. To facilitate later discussion, we additionally define the following terms. A re-
peatable element in an XML schema refers to a node which is allowed to have multiple 
occurrences under the same parent element, and is annotated by the symbol “*” in the 
schema graph, e.g., the customer element in Fig. 1 (a). Relations in a relational schema 
are classified into two types. The E-relation corresponds to a relation which describes 
the information of an entity, e.g., the CUSTOMER relation. The R-relation corresponds 
to a relation which describes the relationship among other entities and has a composite 
primary key, e.g., the LINEITEM relation. 

To uniformly refer to the units represented in different models or schemas but with 
the same functionality, we define the following two terms: 
 
Definition 1: A value is a unit which directly represents data, which corresponds to a 
leaf node in the schema graph. A collection is a unit which represents a set (multi-set) of 
data with homogeneous structures. It will be a relation in the relational databases, or a 
repeatable element in the XML databases. 

 
Between the two sample schema graphs in Fig. 1, we use the dashed line to connect 

two matching values. We consider the case of multiple mappings, and each dashed line is 
annotated with a value to represent its weight as defined in the following: 
 
Definition 2: Given a value vi from the target schema and a corresponding value vo in the 
source schema, the weight of vo denotes its similarity degree to vi , which is obtained by a 
certain similarity function and represents the priority of choosing vo. 

Assume that the XML schema is the target schema and the relational schema is the 
source schema. The name element of the customer element in the target schema corre-
sponds to two NAME attributes in the source schema, with the weights 0.9 and 0.01 re-
spectively. Since larger weights represent higher degrees of similarity, we will prefer the 
attribute defined within the CUSTOMER relation in this case. 

 

XQuery ::= ForClause LetClause? 
WhereClause? RetClause 

ForClause ::= FOR $Var ‘in’ Pi {, $Var ‘in’ Pi} 
LetClause ::= LET {$Var = Pi | XQuery} 
WhereClause ::= WHERE Wi {‘and’ Wi}∗ 
RetClause ::= RETURN Pi , Pi 

Wi ::= Pi CompOP Value | Pi CompOP Pi 
Pi::= PathExpr | $Var Axis PathExpr 
PathExpr ::= NameTest | NameTest Axis PathExpr 
NameTest ::= Element | @Attr 
Axis ::= / | // 
CompOP ::= > = < 

Fig. 2. The scope of the XQuery query language. 

3.2 Query Statements and Problem Definition 

The queries considered in this paper consist of the Selection-Projection-Join (SPJ) ex-
pressions with possibly nested sub-queries. Note that the join expression may be a valued 
join as commonly seen in SQL, or a structural join specified by the path expression of 
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XQuery. The XQuery syntax is formally specified in Fig. 2, while the SQL syntax is similar 
and is omitted. In the following, we provide two sample queries based on SQL and XQuery 
respectively to illustrate their differences. These queries output the identifier of each sup-
plier, and those customers who have posed orders on this company. The SQL query SQ1 
appropriate for the sample relational schema in Fig. 1 (b) is as follows: 

 
  L1: SELECT S.SUPPKEY, A.Name 
  L2: FROM SUPPLIER as S, LINEITEM as L, 
  L3:    (SELECT C.Name, O.ORDERKEY 

  FROM ORDER as O, CUSTOMER as C 
  WHERE O.CUSTKEY=C.CUSTKEY) as A 

  L4: WHERE S.SUPPKEY=L.SUPPKEY and L.ORDERKEY=A.ORDERKEY 
 
In an SQL query, the SELECT clause lists the attributes to output. The FROM 

clause enumerates the consulted relations, within which a nested sub-query, or called a 
derived relation, can be also specified. In SQ1, the statements in L3 are used to derive 
the correspondence between names of customers and identifers of orders. The WHERE 
clause specifies the constraints to be satisfied, and the statements in L4 consist of two 
valued join expressions, which force the equality on two leaf nodes, respectively. Note 
that the consulted relations SUPPLIER and ORDER cannot be directly joined, so the R- 
relation LINEITEM is introduced in L2 and used in L4. 

For comparison, the XQuery statement XQ1 appropriate for the sample schema in 
Fig. 1 (a) is specified as follows, where we assume that ckey and skey are attributes: 

 L1: FOR $s in //supplier 
  L2: LET $a := FOR $o in $s//order, $c in //customer 
  L3:    WHERE $c/@ckey = $o/@ckey 
  L4:    RETURN $c/name 
  L5: RETURN $s/@skey, $a 

An XQuery statement basically uses path expressions to navigate an XML docu-
ment, which might consist of the descendant steps “//” or the child step “/’. For example, 
the expression “//supplier//order” retrieves the order elements which are descendants of 
the supplier elements. Such expression is a form of structural joins. An XQuery also 
consists of several clauses. Particularly, variable bindings are specified in the FOR 
clause; the LET clause, which constructs a collection of XML values to be evaluated 
later, assigns the result of a nested sub-query to a variable (L2-L4 of XQ1); the WHERE 
clause is used to specify conditions on the variables; the RETURN clause specifies what 
to output. Comparing SQ1 and XQ1, we can see the direct correspondence between the 
SELECT and the RETURN clauses, the FROM and the FOR clauses, and the two 
WHERE clauses, respectively. However, they differ in forming join expressions and 
nested subqueries. 

Observe that SQ1 and XQ1 show two equivalent queries appropriate for databases 
with different schemas. In this paper, we wish to transform a query like SQ1 to a query 
like XQ1, and vice versa. To handle the case of multiple mappings between schema con-
structs, we define the weight of a query as follows: 



A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 257

Definition 3: An expression within a query which outputs or operates on a value, ex-
cluding the one being used to perform valued joins, is called a value literal. The weight 
of a query is the sum of all the weights of its component value literals, which are in turn 
determined by the weights of the values operated by these literals. 

A query with higher weights means higher credibility, and we assume the one with 
the highest weight to be the most preferable query for the users. Therefore, the problem 
definition of this paper can be formally stated as follows: “Consider a target schema t and 
a source schema s, where t and s are either XML or relational. Given the weighted sche-
ma mapping m between t and s and a query q posed against t, produce the query with the 
highest weight among all equivalent ones appropriate for s.” 

4. KNOWLEDGE REPRESENTATIONS 

In this section, we first give an overview of our approach by introducing the trans-
lator architecture, and then discuss the information needed for query translation. 

4.1 The Architecture 

Fig. 3 shows the proposed architecture for performing query translation. Before this 
system starts to function, we need to first off-line provide the definitions and structural 
information of each local schema, and construct the mappings between the target and 
source schema units. The task of online query translation is then supported by the two 
component modules. The functionality of the first module will be explained in Section 5, 
followed by the second module in Section 6. Here we provide a brief description. 

 

 
Fig. 3. The architecture for query translation. 

 

First, the module of Building CanForest parses a given input query and represents 
it as a CanForest, which is designed to distinguish the collection component and value 
component of the input query. For each value component within a query, we then identi-
fy the equivalent value with the highest weight through the mapping functions, which are 
also used to obtain those collections defining the identified value. These equivalent units 
are recorded within the corresponding nodes in CanForest, and are used to produce prim-
itive query fragments.  

Second, the Module of Composing Fragment utilizes the structural constraint and 
level information conveyed by CanForest to retrieve proper structural expressions for 
connecting the identified collections. All the produced query fragments and appropriate 
structural expressions will be combined together based on the source local schema to 
formulate the complete output query. 
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4.2 Representing Value and Collection Mappings 

We propose two mapping functions to represent respectively the correspondence of 
the two basic types of schema units. The functions Value Mapping (VM) and Collection 
Mapping (CM) are defined as follows: 

 
Definition 4: Given a value vi from the target schema, VM(vi) will return the set of tuples 
(vo, weight), where vo represents a corresponding value represented in the source schema, 
and weight denotes its similarity degree to vi, as explained in Definition 2. 
 
Definition 5: Given a collection ci from the target schema, CM(ci) will return the set of 
tuples (co, condition), where co represents the corresponding collection represented in the 
source schema, and condition represents the additional conditional statement which is 
required to make the two collections equivalent. 
 
Example 1: As shown in Fig. 1, VM(/order-ship/suppliers/supplier/@skey) = {(SUPP- 
LIER.SUPKEY, 0.9), (PARTSUPP.SUPPKEY, 0.25), (LINEITEM.SUPPKEY, 0.2)}, and 
CM(/order-ship/suppliers/supplier) = {(SUPPLIER, null), (PARTSUPP, null), (LINEI-
TEM, null)}. Note that the three tuples in CM have the value null for the condition in-
formation. However, sometimes we might need it to make two collections equivalent. 
For example, if there exist two relations VIP-CUSTOMER and OTHER-CUSTOMER, 
which are vertical partitions of the repeatable element /order-ship/customer based on its 
attribute type. We will require a conditional statement such as type = “VIP” to exactly 
identify the corresponding relation VIP-CUSTOMER. 

4.3 Representing Structural Expressions of Local Schemas 

As shown by sample queries SQ1 and XQ1, structural expressions are necessary 
components of a valid query, which are basically valued join statements or structural 
join statements specified by path expressions of XQuery. We list some join expressions 
for the sample relational schema in Table 1 as an example. 

In Table 1, we give each expression an identifier, which shows how this join is 
formed. If the identifier is denoted by the letter R, it represents a join between one 
E-relation and one R-relation. For example, R1 in Table 1 represents a join between an 
E-relation PART and an Rrelation LINEITEM. If the identifier is denoted by the string  

 

Table 1. Some join expressions in the sample relational schema. 
ID Table1 Table2 Join Expression Cost 

R1 PART LINEITEM PART.PARTKEY=LINEITEM.PARTKEY 1 
R2 SUPPLIER LINEITEM SUPPLIER.SUPPKEY=LINEITEM.SUPPKEY 1 
EE3 SUPPLIER PART SUPPLIER.SUPPKEY=PARTSUPP.SUPPKEY.SUPPKEY; 

PARTSUPP.PARTKEY=PART.PARTKEY
2 

R4 ORDER CUSTOMER ORDER.CUSTKEY=CUSTOMER.CUSTKEY 1 
R5 ORDER LINEITEM ORDER.ORDERKEY=LINEITEM.ORDERKEY 1 
EE6 ORDER PART PART.PARTKEY=LINEITEM.PARTKEY; 

ORDER.ORDERKEY=LINEITEM.ORDERKEY
2 

RR7 PARTSUPP LINEITEM PARTSUPP.SUPPKEY=LINEITEM.SUPPKEY; 
PARTSUPP.PARTKEY=LINEITEM.PARTKEY

2 
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Fig. 4. The sample one-level CanForest for query XQ2. 

EE, it will represent a join between two E-relations. In such case, it usually needs other 
R-relations to construct the relationship, and therefore requires more than one join 
statements. For example, as specified by EE6, the two E-relations ORDER and PART 
cannot be directly joined, so the R-relation LINEITEM is required. Finally, the identifier 
RR represents a join between two R-relations. Since an R-relation usually has a compo-
site primary key, we need to let the join statements involve all component keys to make 
the query uniquely identify the correct tuples. 

In the last column of this table, we denote the cost of each structural expression. It 
is calculated based on the join distance, i.e., the number of statements required to 
properly join the two tables. For example, as shown in the first row, we can directly join 
tables PART and LINEITEM through the join statement “PART.PARTKEY = LINEI-
TEM. PARTKEY”, so the cost is “1”. In contrast, since tables SUPPLIER and PART 
cannot be directly joined and another table PARTSUPP is required to form the two join 
statements properly, the cost is “2”. We will show how to use this table later in Section 6. 

5. CONSTRUCTING QUERY FORESTS 

In this section, we discuss how the query forest, i.e., CanForest, represents the se-
mantics and structural constraints of the input query as a canonical form. We will also 
present the construction algorithm. 

5.1 The CanForest Structure for an Un-nested Query 

CanForest consists of a set of collection trees, denoted as ColForest, and a set of 
value trees, denoted as ValForest. Basically, a collection tree represents how a variable 
imposes the selection condition and structural constraint in the query. It is rooted by a 
binding variable specified in the FOR clause or the LET clause. For this particular varia-
ble, all the related path expressions specified in the FOR clause, the LET clause or the 
WHERE clause will be used to construct the remaining nodes of the tree. In contrast, the 
Value tree represents how a variable is going to project data. It is constructed based on 
the path expressions specified in the RETURN clause in a similar manner. The CanFor-
est structure corresponding to the following query is shown in Fig. 4: 

 
HTColForest

ckey

(s, //supplier)

(o, //order)

(name, _ )

(c)

HTValForest

(skey, = '001')

(c, //customer)

(ckey, _ )
(ckey, _ )

(M_p, //part)

s

label

o

c

node

        {(c_1, NAME, T)}c/namec

labelnode

level=1

{(s_1, SUPPKEY=  '001', T)}

MDtuples

       {(o_1, CUSTKEY, T)}

       {(c_1, CUSTKEY, T)}

s/skey

var / label

o/ckey

c/ckey

MTtuples

MDtuplesvar / label

MTtuples

s

o

c

M_P

       {(s_1, SUPPLIER, T),
(s_2, PARTSUPP, F),

(s_3, LINEITEM, F)}
       {(o_1, ORDER, T),

(o_2, LINEITEM, F)}

       {(c_1, CUSTKEY, T)}
       {(M_P_1, PART, F),

(M_P_2, PARTSUPP, F)}
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XQ2: 
FOR $s in //supplier, $o in $s//order, $c in //customer 
WHERE $s/@skey = ‘001’ and $c/@ckey = $o@ckey RETURN $c/name 
 
Before formally defining CanForest, we first define MDtuple as follows: 

 
Definition 6: Each MDtuple associated with a node N is a 3-tuple (var, equi-unit, used-
flag). equi-unit is the unit in the source schema equivalent to the target unit represented 
by the node N. var is the variable assigned to the collection defining the equi-unit. used-
flag will have the value “T” if this unit is chosen, and “F” otherwise. 

MDtuples represent the mapping information associated with each node. For easy 
representation, they are listed in separate tables in Fig. 4. In the upper table, the first 
three rows correspond to the three leaf nodes in ColForest, while the remaining four 
rows correspond to the four non-leaf nodes in ColForest. We then define each node in 
CanForest as follows: 
 
Definition 7: A CVnode n is defined as follows: (1) If n is a non-leaf node, it will be 
associated with a triple information: (label, path, MDset), where label corresponds to a 
binding variable in the input query, path denotes the location of the associated collection 
in the target schema, and MDset consists of a set of corresponding MDtuples. (2) If n is a 
leaf node, it will be associated with a quadruple information: (label, path, condition, 
MDset), where label is an element or attribute name, and condition represents a selection 
predicate, which might be null and denoted by “ ”. 

The path information in a CVnode is used as an input to the mapping functions to 
get the mapping information. In Fig. 4, it is omitted for leaf nodes in ColForest and all 
nodes in ValForest. For non-leaf nodes in ColForest, it is only denoted by descendant 
steps for simplification. Besides, since the leaf node in ValForest is used only for output, 
its condition will be null. 

The tree structure and the forest structure can be defined as follows: 
 
Definition 8: A collection tree or a value tree is a pair of (N, E), where each node in N is 
a CVnode, and each edge in E, called an Axis edge, will connect two nodes if their cor-
respondences in the original schema graph have the parent/child relationship. 
 
Definition 9: A CanForest for an un-nested query is a set of collection trees and value 
trees, which might be connected by the following two types of edges: (1) FlatJoin: rep-
resenting a join statement between two leaf nodes of two collections trees; (2) BoundJoin: 
pointing from the root node of a value tree to the root node of the corresponding binding 
collection tree, so that the root node of the bound value tree can share the same MDset 
with the root node of the binding collection tree. 

Note that there are totally three types of edges in CanForest. In Fig. 4, an Axis edge 
is represented by a solid line, a FlatJoin edge is represented by a dashed line, and a 
BoundJoin edge is represented by a dotted arrow. For example, a FlatJoin edge exists 
between the two leaf nodes with the label ckey. A BoundJoin edge pointing from the root 
node “c” in ValForest to the root node “c” in ColForest. 
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5.2 Construction Algorithm 

We explain how to construct CanForest in this subsection. Note that there are two 
hash tables in Fig. 4, which are HTColForest and HTValForest. Their input is a label and 
the output is a pointer to the corresponding node in CanForest. This design is to let a 
non-root node efficiently identify the tree which it belongs to. 

In our system, individual algorithms are designed to process the different syntaxes 
of XQuery and SQL. Instead of giving the complete detailed algorithm, we discuss the 
major steps of processing XQuery as an example. As listed in Fig. 2, this paper considers 
four clauses of XQuery. In the following, we discuss how to process each individual 
clause to build the corresponding structure of CanForest, and please note that the de-
scendant steps in each path expression will be expanded by consulting the local schema 
and additional nodes will be created if necessary: 
 
 the FOR clause: 

Extract the defined binding variable and create a corresponding internal node in the 
ColForest. Record an entry in HTColForest to represent the correspondence of this 
variable and its location in ColForest. 

 the LET clause: 
For an un-nested query, the expression associated with the variable will be a path ex-
pression. Process it in the way similar to the variable binding in the FOR clause.  

 the WHERE clause: 
Use HTColForest to identify the collection tree under which the leaf node correspond-
ing to the component path expression should be created. Create a FlatJoin edge if a 
valued join expression is detected. 

 the RETURN clause: 
Process it as processing the FOR clause, except that a value tree is created, the 
HTValForest structure is used, and a BoundJoin edge is created to point to its binding 
counterpart. 

 
Example 2: Consider XQ2. When processing the FOR clause, the three internal nodes 
labeled “s”, “o”, and “c” are created for the three binding variables, and three corre-
sponding entries are inserted into HTColForest. An additional node with the label “M_p” 
is created when expanding the descendant step, which corresponds to an intermediate 
element named “part” in Fig. 1 (a). Then, for the WHERE clause, a leaf node is created 
and labeled with “ckey” according to the path expression “$c/@ckey”. Besides, two leaf 
nodes both denoted as “ckey” will be created under the internal nodes “o” and “c”, for 
the join statement. A FlatJoin edge will be also created to link these two nodes. Finally, 
based on the RETURN clause, the root node of a value tree along with a BoundJoin edge 
will be first created, and followed by the leaf node “name”. 

During the construction process, our algorithm also needs to represent the mapping 
information in CanForest. The process differs for different types of nodes. For internal 
nodes, we get all the matching collections from the mapping function CM using the path 
information associated with this node, and represent them as the MDset structure. If it 
consists of several MDtuples, each of which will be associated with the usedflag with the 
initial value “F”. For leaf nodes, we identify the equivalent value from the mapping 
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function VM, similarly based on the path information associated with this node. In con-
trast, only the one with the highest weight will be obtained, since it represents the most 
relevant information. Such information will be also used to update the usedflag of the 
MDtuple which represents the collection defining the chosen value, and to obtain the 
variable name assigned to that collection. 
 
Example 3: Consider the leftmost leaf node in Fig. 4, which is labeled by “skey”. As 
discussed in Example 1, it has three equivalent values defined by the mapping function 
VM. We choose the one with the highest weight, which is SUPPLIER.SUPPKEY, and 
represent it in the MDtuple, as shown in the first row of the upper MTtuples table. In 
contrast, the leftmost root node, which is denoted by “s”, has three equivalent collections 
in CM. We will create three MDtuples for each of them, but only mark the usedflag of 
the first one as “T”, to show that this one defines the chosen value. 

5.3 The CanForest for a General Query 

We now discuss the CanForest for a general query. The sample CanForest corre-
sponding to XQ1 in Section 3 is illustrated in Fig. 5. A major difference between this 
example with the previous one is that the CanForest is divided into several level blocks, 
which is denoted by the darker dashed line. In this example, there are two level blocks, 
and each level block will produce a corresponding sub-query. 
 

 
Fig. 5. The sample CanForest for query XQ1. 

 

Note that each level block is denoted by a level number, which is a sequence of pos-
itive integers separated by the period. It is used to reflect the nested structure represented 
in the original query. We briefly describe the procedure of assigning level numbers here. 
The outermost level has the initial number 1. Whenever a nested structure is encountered 
in a LET clause, the period will be added to the current level number to show the nested 
structure. For each level block, we may also denote its nested name, which is used as the 
alias of the output derived relation if applicable. We now provide the formal definition of 
CanForest for a general query as follows: 
 
Definition 10: A CanForest for a general query is a set of collection trees and value 
trees, which can be connected by FlatJoin and BoundJoin as before. In addition, all 
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CVnodes corresponding to the same sub-query are represented in the same level block. 
Each level block is assigned a level number and possibly with a nested name. 

Note that each level block has its own HTColForest and HTValForest. We only 
represent part of its contents in Fig. 5, and also let the MDtuples be represented in the 
hash tables to save space. The algorithm to process a general query will be the one dis-
cussed in Section 5.2 but extending the step of processing the LET clause as follows: 

If the expression associated with the variable is a nested XQuery expression, encode 
the level number properly and assign the nested name as discussed above. Then, invoke 
the construction algorithm recursively to process the nested sub-query. 

6. FORMULATING THE OUTPUT QUERY  

Based on CanForest, we can identify the proper values and those collections which 
define them in the source schema. In this section, we discuss how to choose the proper 
structural expressions to connect those collections, and how to formulate the final output 
query. Query XQ1 and its corresponding CanForest structure in Fig. 5 will be used as the 
examples for explanation. 

6.1 Identifying Structural Expressions 

The Axis edges and FlatJoin edges in ColForest show the structural constraint im-
posed by the input query. The main issue is how to identify the proper corresponding 
structural expressions in the source schema. To achieve this task, we first create a join 
graph based on the internal nodes in ColForest, as defined in the following: 
 
Definition 11: A join graph is a pair of (N, E). Each node in N corresponds to an MDtu-
ple with the form (var, equi-unit, usedflag), and is identified by var. An edge in E will be 
created between two nodes, if there is a proper structural expression between the two 
associated equi-units. Each edge will be annotated by the pair (ID, cost), where the ID 
and cost information correspond to the first and the last columns of Table 1. 

To construct the join graph, we examine each internal node of ColForest as follows. 
If a certain MDtuple associated with that node has the usedflag with the value “T”, we 
will only use that MDtuple to create a corresponding node in the join graph. Otherwise, 
all the associated MDtuples will be used to create nodes. Fig. 6 (a) shows the initial join 
graph built based on Fig. 5. Note that the two MDtuples associated with node M_p both 
have the value “F” for usedflag, so we create two corresponding nodes in the join graph, 
and especially denote them by double circles. Besides, recall that the original cost is 
based on the number of the join expressions required to construct the structural relation-
ship. In the join graph, if the associated node has the false value for the flag usedflag, we 
further increase the cost by 10 to represent that this edge is less preferred. As depicted in 
Fig. 6 (a), the edge with the ID “EE6” has the cost 12, which is calculated by adding 10 
to 2. 

Note that the join graph is also classified into several level blocks the same as in 
CanForest. Besides, the sub-query in each level needs to be joined properly, and the out-
er and the nested levels also need correlated join expressions. Therefore, we will identify 
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the join expressions level by level from the inner to the outer. Besides, we apply the al-
gorithm of finding the minimum spanning tree to reduce the number of outputted join 
expressions, since the cost denoted with each edge corresponds to the number of join 
expressions. For Fig. 6 (a), we first process the join graph with the level number “1.1”. It 
is trivial since there is only one edge. We then process the join graph “1”, and the re-
sultant minimum spanning tree is shown by the solid edge in Fig. 6 (b). However, we 
consider a node to be necessary, if it either consists of an attribute to output, or it is re-
quired to construct the structural relationship between two other collections. Therefore, if 
a node has the false value for usedflag, and only has one associated edge, we will delete 
it along with the associated edge. To conclude, the final output for this example will be 
edge R4 for level 1.1, edge R2 for level 1, and edge R5 for correlating the two levels. 
 

  
(a) The initial state.        (b) The minimum spanning tree. 

Fig. 6. Examples of the join graphs. 
 
6.2 Formulating the Query 

 
At this stage, all the required mapping data are identified. We will insert the proper 

keywords, and combine those intermediate query fragments as a syntactically correct 
statement with the proper nesting level. It is basically straightforward and we will only 
use examples to illustrate the major idea. 

 

Table 2. The process of transforming XQ1. 
Sub-query Step 1 Step 2 

Outer 

SELECT s1.SUPPKEY, a 
FROM  SUPPLIER as s1 

SELECT s1.SUPPKEY, a 
FROM SUPPLIER as s1, LINEITEM as Mp2 
WHERE s1.SUPPKEY =Mp2.SUPPKEY (R2) and 

ORDER.ORDERKEY = Mp2.ORDERKEY (R5) 

Nested 
SELECT c1.NAME  
FROM ORDER as o1, 

CUSTOMER as c1 

SELECT c1.NAME 
FROM ORDER as o1, CUSTOMER as c1 
WHERE o1.CUSTKEY = c1.CUSTKEY (R4) 

 

Consider the running example. Table 2 summarizes the process of forming and 
composing query fragments for XQ1. In Step 1, we produce the query fragment based on 
CanForest, where the nodes in ColForest will be used to construct the FOR clause and 
the WHERE clause, and the nodes in ValForest are used for the SELECT clause. The 
query fragments formulated respectively for the outer level and the nested level are listed 
in the second column of Table 2. Note that at this stage, the node M_p has no corre-
sponding output statements since both of its associated MDtuples have the usedflag as 
“F”. In Step 2, we utilize those structural expressions outputted by the minimum span-
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ning tree of the join graph, and insert them into the previous query fragments. The result 
is shown in the third column of Table 2. Note that R2 introduces a new relation LINEI-
TEM, which is added into the FROM clause. Besides, R5 shows that the correlated value 
is ORDER.ORDERKEY. Recall that the sub-query statement for the nested level is ali-
ased as “a”, as shown in Fig. 5. By properly using the information for correlation, we get 
the final SQL statement as SQ1 different only in variable naming. 

7. EVALUATION 

In this section, we will first show the effectiveness of our system by proving that it 
can produce the required query. We then evaluate the efficiency of our translator system. 
All experiments are performed on a P4-2.4GHz machine, with 2 GB of DDR2-RAM.  

7.1 Effectiveness 

We prove that our system can produce the required query based on the problem 
definition specified in Section 3. Specifically, the following two things have to be satis-
fied: (1) the output query should be appropriate for the source schema and equivalent to 
the input query; (2) the weight of the output query should be the highest among all can-
didates. 

For the first requirement, recall that when constructing CanForest, we identify a 
single equivalent counterpart for each value construct, and then identify those equivalent 
collection constructs which define the chosen values. Then, in the composition stage, we 
choose proper structural expressions for joining the collections in the same level of sub- 
queries, and also those for correlating the outer and nested sub-queries. Therefore, our 
transformed query is equivalent to the input query and appropriate for the source schema. 

For the second requirement, recall that the weight of a query is determined by its 
operated value constructs. As discussed in Section 5, when determining the equivalent 
counterpart for each value construct, we choose the one with the highest weight. There-
fore, it is guaranteed that the sum of all weights will be the highest among all equivalent 
transformed queries. 

7.2 The Effect of Multiple Mappings on Efficiencies 

We study the impact of multiple mappings on the transformation time in this set of 
experiments. We will measure the total execution time and the time required by the two 
major component modules of our system as shown in Fig. 3. Since we cannot find a set 
of equivalent schemas in the real world which can meet our needs, we design the sche-
mas by ourselves. The target XML schema is shown in Fig. 7 (a), where square nodes 
represent internal nodes, rounded square nodes represent value elements, and dashed 
circles represent attributes. The source relational schema is shown in Fig. 7 (b), where 
primary keys are denoted by the underline. In this pair of schemas, the value with the 
same name is equivalent. Therefore, the repeatable element “/root/flat/a” corresponds to 
relation A1; “/root/flat/b” corresponds to relations B1 and B2; “/root/flat/c” corresponds 
to relations C1, C2, and C3; “/root/flat/d” corresponds to relations D1, D2, D3, and D4. 
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A1（AKEY,AE1, AE2, AE3, AE4）
B1（ BKEY , BE1 ）
B2（ BKEY,BE2, BE3）
C1（CKEY , CE1）
C2（CKEY , CE2 , CE3）
C3（CKEY , CE4 , CE5 , CE6）
D1（DKEY , DE1）
D2（DKEY , DE2 , DE3）
D3（DKEY , DE4, DE5 , DE6）
D4（DKEY , DE7 , DE8, DE9 , DE10）  

(a) Target schema            (b) Source schema 
Fig. 7. Test schemas. 

 

Table 3. Sample Input and Output Queries for Schemas I. 
Type Input Query Output Query 

value 1-1 FOR $a in /flat/a 
RETURN $a/@akey 

SELECT a1.AKEY
FROM A1 as a1

value 1-2 FOR $b in /flat/b 
RETURN $b/@bkey 

SELECT b2.BKEY
FROM B2 as b2

collection 
1-1 

FOR $a in /flat/a  
RETURN $a/@akey,$a/ae1,$a/ae2, $a/ae3

SELECT a1.AKEY, a1.AE1, a1.AE2, a1.AE3 
FROM A1 as a1

collection 
1-2 

FOR $b in /flat/b  
RETURN $b/@bkey, $b/be1,  $b/be2, 

$b/be3  

SELECT b1.BKEY, b1.BE1, b2.BE2, b2.BE3 
FROM B1 as b1, B2 as b2 
WHERE b1.BKEY = b2.BKEY

 

We consider the following two cases: multiple mapping between values and multi-
ple mapping between collections. Table 3 lists the input and output queries for some of 
the cases. Compare the two input queries specified in the first two rows of the table, 
which only return one value from one collection. Observe the value bkey used in the 
second row. It is represented by one unit in the target schema, but two units in the source 
schema, so this constitutes a 1-2 value mapping. In contrast, compare the two input que-
ries represented in the last two rows of the table. They both return four values from the 
same element. However, since the equivalent value counterparts used in the last query 
are represented respectively in two relations B1 and B2, the output queries will need to 
include both of them and connect them by a join statement. Therefore, we name it a 1-2 
collection mapping. 

We design five queries with increasing numbers of mappings between values. The 
experimental result is shown in Fig. 8 (a). We can see that the transformation time re-
mains almost constant, since only one value is outputted, and we use the hash function to 
directly identify the value with the highest weight. We then design five queries with in-
creasing numbers of mappings between collections. From Fig. 8 (b), we can see that the 
time for constructing CanForest is almost the same for all queries, since they are basical-
ly in the same format. In contrast, the time for composition increases linearly slightly, 
since the number of output collection and structure expressions will increase along. Spe-
cifically, if a collection in a target schema maps to n collections in the source schema, the 
output query will consist of n collections in the FROM clause and n−1 join statements in 
the WHERE clause. However, our system is efficient enough so that the increased time 
is pretty minor. 
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(a) Multiple values          (b) Multiple collections 

Fig. 8. Analysis of the effect caused by the number of mapping units. 
 

7.3 The Effect of Nested Depths on Efficiencies 

In this set of experiments, we study the impact of the nesting depths of sub-queries. 
The test schemas consist of one relational schema and two XML schemas, which are 
called “Nested” and “Flat”, respectively. The two XML schemas are depicted in Figs. 9 
(a)-(b), and differ in that the repeatable elements, denoted by the asterisk, are in a nested 
structure in Fig. 9 (a), but in a flat structure in Fig. 9 (b). The relational schema is listed 
in Fig. 9 (c), where the adjacent tables have common attributes for performing joins. 

 

 
(a) Nested XML schema             (b) Flat XML schema       (c) RDB 

Fig. 9. Test schemas II. 
 

Table 4. Sample input queries for schemas II. 

 

We create four queries with increasing nested depths of sub-queries for each sche-
ma. We only list the query with the nested level “two” in Table 4 to illustrate the idea. 
For comparison, we give the number of nodes in CanForest for each query here. For the 
nested XML schema, the number of nodes are 10, 15, 20, and 25, respectively; for the 

XQuery (for Nested DTD) XQuery (for Flat DTD) SQL 
for $a in /nested/a
let $leta ::= for $b in $a/b 

let $letb ::= for $c in $b/c 
return $c/c1, $c/@cid 

return $b/b1, $letb/c1 
return $a/a1, $leta/b1 
 

for $a in /flat/a
let $leta ::= for $b in /flat/b 
 let $letb ::= for $c in /flat/c 

where $b/@bid = $c/@aid 
return $c/c1, $c/@cid  

 where $a/@aid = $b/@aid 
return $b/b1, $letb/c1 

return $a/a1, $leta/b1

SELECT A.A1, SUB.CID 
FROM A, 

(SELECT SUBC.cid, B.aid 
FROM B, 
(SELECT C.C1, C.BID 
FROM C) as SUBC 
WHERE B.bid=SUBC.bid) as SUBB 

WHERE A.aid=SUBB.aid 
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flat schema, the number of nodes are 13, 20, 27, and 32, respectively; for the relational 
schema, the number of nodes are 11, 18, 25, and 30, respectively. We then design the 
following three scenarios: (1) the target schema is relational and the source schema is the 
nested XML schema; (2) the target schema is the nested XML schema and the source 
schema is relational; (3) the target schema is the nested XML schema and the source 
schema is relational. 

From the experimental results shown in Fig. 10, we can see that the transformation 
time mainly increases linearly along with the depth of the sub-query, no matter which is 
the input schema. It is reasonable since the nodes in CanForest increase along with the 
nested depths of sub-queries in each case, as stated previously. In other words, the for-
mat of nested sub-queries does not incur extra overhead for computation. The main rea-
son is that our system processes nested queries or un-nested queries in a uniform way, so 
it can achieve the same performance when processing both types of queries. Another 
thing to note is that the major portion of execution time is on building the CVForest, and 
the flat and the relational schema require more time, since the corresponding queries tend 
to use valued join expressions, and have more nodes and edges in CanForest. 

 

 
  (a) Relational-nested    (b) Nested-relational    (c) Flat-relational 

Fig. 10. Analysis of the effect caused by the nesting depths of subqueries. 
 

To conclude, the performance of our translator system is satisfiable since the trans-
formation process is very efficient. Moreover, the cases of multiple mappings and nested 
depths of queries only affect the performance to a limited extent. 

8. CONCLUSIONS 

In this paper, we discuss the issue of translating an input query against the target 
schema to an output query appropriate for the source schema. The queries considered are 
XQuery or SQL with SPJ expressions and nested sub-queries, and there might exist mul-
tiple possible mappings between the values of two schemas denoted with weights. We 
propose to use mapping functions to represent the weighted correspondence between 
schema units, and design the tree-based structure, i.e., CanForest, to clearly represent the 
semantics and nesting levels of an input query. Accordingly, a translation system is con-
structed to produce the most preferable query under such environment. The experimental 
results show its efficiency. In the future, we plan to extend our system to efficiently pro-
duce Top-K preferable queries. We will also investigate the techniques of processing 
more complex queries and schema expressions. 
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