
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 251-270 (2017)
DOI: 10.6688/JISE.2017.33.1.15

251

A Tree-Based Approach to Support Query Translation
for Schema Mappings with Weights

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

Department of Computer Science and Engineering
National Taiwan Ocean University

Keelung City, 202 Taiwan
E-mail: {yahui; jiazhen; 10257031}@ntou.edu.tw

Query translation has been a central task for data integration or information sharing.

In this paper, we assume that the source and target databases may be XML or relational,
with the query languages XQuery and SQL, respectively. Besides, there may exist many
possible mappings with different weights between two schemas, which are usually pro-
duced by automatic schema matching tools. We intend to output the most preferable
query based on weights among all equivalent ones, so we need to properly represent the
weighted schema mappings and input queries. Our approach is to first classify the sche-
ma representation into two basic units, i.e., collections and values, and apply mapping
functions to represent the correspondence for each basic unit with weight information.
We then propose a set of tree structures, collectively called CanForest, which show the
structural constraints and semantics of the input query and assist in producing the output
queries. We have constructed the complete translation system and shown its effectiveness.
Experimental results also demonstrate that the system is very efficient.

Keywords: XQuery, SQL, query translation, schema mapping, query tree

1. INTRODUCTION

Query translation has become an important research issue currently since many
types of data are connected through the World-Wide-Web. For example, XML, with
XQuery as the query language, is the standard for data exchange in the Web. On the oth-
er hand, relational databases with mature techniques are still widely used in enterprises
to support critical business operations. An SQL statement encoded in existing applica-
tions might need to be transformed to an XQuery for retrieving relevant data from the
XML data source, so that the information presented respectively as XML data or in the
relational database could be shared.

Performing query translation needs to utilize the correspondence of the target
schema, i.e., where the query is issued, and the source schema, i.e., where the data are
stored. Previous studies basically considered simple schema mappings, but some re-
searchers [5] started to investigate the problem of uncertainty in schema matching. That
is, a unit represented in the target schema may correspond to several units represented in
the source database, with different similarity scores, or called weights. Such situation
frequently occurs when automatic schema matching tools are used to identify the corre-
spondence of two schemas, and we call it the case of multiple mappings between schema
units, or schema mappings with weights. One way to handle such case is to represent all
possible mappings between two schemas in a compact way and produce all correspond-

Received August 22, 2014; revised December 11, 2015; accepted June 4, 2016.
Communicated by Wen-Chih Peng.

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

252

ing transformed queries [5], but there are cases that users are only interested in the most
possible one, and require only one translated query. Therefore, in this paper, we will
output the most convincible query based on the weights of schema mappings.

To achieve this goal, the major challenges are twofold. The first one is how to
properly represent the correspondence between schemas with weight information. Sche-
ma mappings are usually represented by mapping rules or mapping languages [9, 17],
but it is not easy to represent the weights of mappings by using such approach. Therefore,
we propose to classify the schema representation into several basic units, which are col-
lections and values, such as the relations and attributes in the relational database. We
then utilize mapping functions to represent the correspondence of the basic unit, and de-
note the weight of each correspondence. Such design can be used to easily identify the
most appropriate corresponding unit, i.e., which has the highest weight among all candi-
dates.

The second challenge lies in how to represent the complex structure of a query to
facilitate query translation. In this paper, we focus on the core expressions of SQL and
XQuery, which consist of Selection-Projection-Join (SPJ) expressions with nested sub-
queries. To reflect the structural constraints and semantics of the input query, we adopt
the tree structure to represent a query as a set of collection trees and a set of value trees,
which are collectively called the Canonical Forest, or CanForest in short. Take XQuery
as an example. Each collection tree is used to illustrate the structural constraint imposed
by a binding variable, by representing all the path expressions associated with the partic-
ular variable specified in the FOR, LET, and WHERE clauses. On the other hand, the
path expressions specified in the RETURN clause will be used to construct the value
trees. The purpose of CanForest is to divide a query into different components, and we
can then invoke the corresponding mapping function to identify the appropriate matching
units, and directly represent such information within the node of CanForest for produc-
ing output query fragments. CanForest is also constructed level by level to reflect the
possible nested structure of the original query. Such level information together with the
structural constraints represented by the edges of CanForest, can guide us to compose all
transformed query fragments into the final correct translated query.

To summarize, the contributions of this paper are as follows:

 We propose to classify schema representations into units of collections and values.
Such concepts are used to represent the mappings between two schemas as a set of
mapping functions. The weight information associated with each correspondence can
assist us in handling multiple mappings between schema units.

 We define the CanForest structure. It represents the structural constraints and returned
values specified in the original query clearly to help producing the transformed query.

 We have implemented a system which can perform translation between XQuery and
SQL in either direction. Experimental results show that the transformation process can
be performed efficiently.

The rest of this paper is organized as follows. Related works are first discussed in

Section 2, followed by the description of our approach. In Section 3, we present the
schemas and queries to illustrate the problem to tackle in this paper. In Section 4, we
illustrate the proposed architecture and discuss the required mapping functions and in-

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 253

formation. The CanForest structure is explained in Section 5, and the procedure of pro-
ducing the complete output query is presented in Section 6. Finally, experimental results
are shown in Section 7; summaries and future research directions are given in Section 8.

2. RELATED WORK

The needs for translating queries exist in many situations. It might happen when an
XML view is on top of a relational engine or XML data are shredded into the relational
database, so an XQuery submitted by users needs to be translated to an SQL for execut-
ing in the underlying relational databases. The research issues related to this problem are
basically about how to execute a more flexible representation of XQuery by SQL ex-
pressions. Particularly, an efficient way to handle wild cards in the path expression [6],
the technique of performing path expressions on recursive XML schemas [8], and how to
produce optimal queries [10], have all being investigated. However, these translation
algorithms usually consider fixed and simple schema mappings. In contrast, we focus on
handling multiple mappings in our translation system.

The other type of query translation, or called query rewriting more precisely, relates
to transforming an input XQuery based on views. The variables in the original XQuery
can be used to find possible views to rewrite the query [14], and the concept of maximal
contained rewriting is proposed to use views as much as possible [11]. A tree pattern
language is designed to describe both the queries and views, and help combine the views
into the same structure as the input query [4]. The issue caused by multiple views has
also being discussed [13]. These researches are similar to ours in the way that trees are
used to describe the complex structure of XQuery, but differ in that our proposed tree
structure is especially designed to assist in performing query translation in a heteroge-
neous environment.

Another direction of related researches is about the presentation of complex map-
pings between schemas. Some representation is proposed to handle “composite” map-
pings, such as the object address consisting of many components like street, city and
state [7]. The tree patterns are used to represent source-to-target dependence, when both
schemas are represented in DTD [3]. A series of researches utilize languages to represent
mappings between target and source schemas. For example, the source information is
represented in the foreach clause, and the target information is represented in the exist
clause [17]. This language is further extended to include the concept of dynamic element,
to support the need of exchanging between data and meta-data [9]. Although the above
representations are useful in certain domains, they are not designed to handle weighted
schema mappings. The basic idea of our approach is to divide a schema into several
basic units, and utilize mapping functions to represent the correspondence of each unit
with weights. Such design is flexible and extendable, and can convey more information
if required.

Finally, how to automatically determine the correspondence between schemas is a
large field and out of the scope of our research. We only list some of the research results
here and refer the interested readers to the original papers. An early survey can be found
in literature [16], while the emergence of XML data incurs new problems. Some re-
searchers determine the similarity between two DTDs based on the tree structure [12].

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

254

Other researchers propose the conceptual model to represent the semantics of the source
and target schemas, and then transform the model as graphs, so that the graph algorithms
can be used to find mappings [2]. Since many mapping tools exist, a benchmark system
called STMark is constructed to evaluate the interfaces of such tools [1]. A self-config-
uring matching system is also proposed [15].

3. PRELIMINARIES

In this section, we describe the schema representations and query languages of the
XML and relational models covered in this research. The sample schemas, which repre-
sent the information about orders, customers, parts, and suppliers, are adopted from the
TPCH benchmark and are slightly modified for being used as the running example.

3.1 Schema Representations and Mappings

The XML schema proposed by W3C consists of many constructs. In this paper, we
focus on its nested nature, which is the most important characteristic of an XML schema.
For clear illustration, an XML schema definition is depicted as a schema graph. In the
sample graph shown in Fig. 1 (a), the root node represents the root element order-ship,
which defines two nested sub-elements customer and suppliers, and the customer ele-
ment in turn defines two leaf nodes, which are name and ckey. Leaf nodes directly rep-
resent values, which correspond to elements with the type #PCDATA or attributes in the
DTD definition.

(a) Target (b) Source

Fig. 1. Sample schemas and schema mapping.

The relational schema considered in this paper follows the traditional definition and
satisfies the First Normal Form. It is also represented by the graph structure, as depicted
in Fig. 1 (b). Since nested relations are not allowed as an attribute domain, the graph
only consists of two levels, where a relation is represented by a root node, and the com-
ponent attributes are represented by leaf nodes. In addition, the primary key is denoted

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 255

by an underline, and the foreign key is depicted as a dotted arrow pointing to the corre-
sponding primary key.

An obvious difference between the two data models is that an XML schema explic-
itly shows the nested relationship between elements, while a relational schema tends to
be flat. To facilitate later discussion, we additionally define the following terms. A re-
peatable element in an XML schema refers to a node which is allowed to have multiple
occurrences under the same parent element, and is annotated by the symbol “*” in the
schema graph, e.g., the customer element in Fig. 1 (a). Relations in a relational schema
are classified into two types. The E-relation corresponds to a relation which describes
the information of an entity, e.g., the CUSTOMER relation. The R-relation corresponds
to a relation which describes the relationship among other entities and has a composite
primary key, e.g., the LINEITEM relation.

To uniformly refer to the units represented in different models or schemas but with
the same functionality, we define the following two terms:

Definition 1: A value is a unit which directly represents data, which corresponds to a
leaf node in the schema graph. A collection is a unit which represents a set (multi-set) of
data with homogeneous structures. It will be a relation in the relational databases, or a
repeatable element in the XML databases.

Between the two sample schema graphs in Fig. 1, we use the dashed line to connect

two matching values. We consider the case of multiple mappings, and each dashed line is
annotated with a value to represent its weight as defined in the following:

Definition 2: Given a value vi from the target schema and a corresponding value vo in the
source schema, the weight of vo denotes its similarity degree to vi , which is obtained by a
certain similarity function and represents the priority of choosing vo.

Assume that the XML schema is the target schema and the relational schema is the
source schema. The name element of the customer element in the target schema corre-
sponds to two NAME attributes in the source schema, with the weights 0.9 and 0.01 re-
spectively. Since larger weights represent higher degrees of similarity, we will prefer the
attribute defined within the CUSTOMER relation in this case.

XQuery ::= ForClause LetClause?
WhereClause? RetClause

ForClause ::= FOR $Var ‘in’ Pi {, $Var ‘in’ Pi}
LetClause ::= LET {$Var = Pi | XQuery}
WhereClause ::= WHERE Wi {‘and’ Wi}∗
RetClause ::= RETURN Pi , Pi

Wi ::= Pi CompOP Value | Pi CompOP Pi
Pi::= PathExpr | $Var Axis PathExpr
PathExpr ::= NameTest | NameTest Axis PathExpr
NameTest ::= Element | @Attr
Axis ::= / | //
CompOP ::= > = <

Fig. 2. The scope of the XQuery query language.

3.2 Query Statements and Problem Definition

The queries considered in this paper consist of the Selection-Projection-Join (SPJ) ex-
pressions with possibly nested sub-queries. Note that the join expression may be a valued
join as commonly seen in SQL, or a structural join specified by the path expression of

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

256

XQuery. The XQuery syntax is formally specified in Fig. 2, while the SQL syntax is similar
and is omitted. In the following, we provide two sample queries based on SQL and XQuery
respectively to illustrate their differences. These queries output the identifier of each sup-
plier, and those customers who have posed orders on this company. The SQL query SQ1
appropriate for the sample relational schema in Fig. 1 (b) is as follows:

 L1: SELECT S.SUPPKEY, A.Name
 L2: FROM SUPPLIER as S, LINEITEM as L,
 L3: (SELECT C.Name, O.ORDERKEY

 FROM ORDER as O, CUSTOMER as C
 WHERE O.CUSTKEY=C.CUSTKEY) as A

 L4: WHERE S.SUPPKEY=L.SUPPKEY and L.ORDERKEY=A.ORDERKEY

In an SQL query, the SELECT clause lists the attributes to output. The FROM

clause enumerates the consulted relations, within which a nested sub-query, or called a
derived relation, can be also specified. In SQ1, the statements in L3 are used to derive
the correspondence between names of customers and identifers of orders. The WHERE
clause specifies the constraints to be satisfied, and the statements in L4 consist of two
valued join expressions, which force the equality on two leaf nodes, respectively. Note
that the consulted relations SUPPLIER and ORDER cannot be directly joined, so the R-
relation LINEITEM is introduced in L2 and used in L4.

For comparison, the XQuery statement XQ1 appropriate for the sample schema in
Fig. 1 (a) is specified as follows, where we assume that ckey and skey are attributes:

 L1: FOR $s in //supplier
 L2: LET $a := FOR $o in $s//order, $c in //customer
 L3: WHERE $c/@ckey = $o/@ckey
 L4: RETURN $c/name
 L5: RETURN $s/@skey, $a

An XQuery statement basically uses path expressions to navigate an XML docu-
ment, which might consist of the descendant steps “//” or the child step “/’. For example,
the expression “//supplier//order” retrieves the order elements which are descendants of
the supplier elements. Such expression is a form of structural joins. An XQuery also
consists of several clauses. Particularly, variable bindings are specified in the FOR
clause; the LET clause, which constructs a collection of XML values to be evaluated
later, assigns the result of a nested sub-query to a variable (L2-L4 of XQ1); the WHERE
clause is used to specify conditions on the variables; the RETURN clause specifies what
to output. Comparing SQ1 and XQ1, we can see the direct correspondence between the
SELECT and the RETURN clauses, the FROM and the FOR clauses, and the two
WHERE clauses, respectively. However, they differ in forming join expressions and
nested subqueries.

Observe that SQ1 and XQ1 show two equivalent queries appropriate for databases
with different schemas. In this paper, we wish to transform a query like SQ1 to a query
like XQ1, and vice versa. To handle the case of multiple mappings between schema con-
structs, we define the weight of a query as follows:

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 257

Definition 3: An expression within a query which outputs or operates on a value, ex-
cluding the one being used to perform valued joins, is called a value literal. The weight
of a query is the sum of all the weights of its component value literals, which are in turn
determined by the weights of the values operated by these literals.

A query with higher weights means higher credibility, and we assume the one with
the highest weight to be the most preferable query for the users. Therefore, the problem
definition of this paper can be formally stated as follows: “Consider a target schema t and
a source schema s, where t and s are either XML or relational. Given the weighted sche-
ma mapping m between t and s and a query q posed against t, produce the query with the
highest weight among all equivalent ones appropriate for s.”

4. KNOWLEDGE REPRESENTATIONS

In this section, we first give an overview of our approach by introducing the trans-
lator architecture, and then discuss the information needed for query translation.

4.1 The Architecture

Fig. 3 shows the proposed architecture for performing query translation. Before this
system starts to function, we need to first off-line provide the definitions and structural
information of each local schema, and construct the mappings between the target and
source schema units. The task of online query translation is then supported by the two
component modules. The functionality of the first module will be explained in Section 5,
followed by the second module in Section 6. Here we provide a brief description.

Fig. 3. The architecture for query translation.

First, the module of Building CanForest parses a given input query and represents
it as a CanForest, which is designed to distinguish the collection component and value
component of the input query. For each value component within a query, we then identi-
fy the equivalent value with the highest weight through the mapping functions, which are
also used to obtain those collections defining the identified value. These equivalent units
are recorded within the corresponding nodes in CanForest, and are used to produce prim-
itive query fragments.

Second, the Module of Composing Fragment utilizes the structural constraint and
level information conveyed by CanForest to retrieve proper structural expressions for
connecting the identified collections. All the produced query fragments and appropriate
structural expressions will be combined together based on the source local schema to
formulate the complete output query.

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

258

4.2 Representing Value and Collection Mappings

We propose two mapping functions to represent respectively the correspondence of
the two basic types of schema units. The functions Value Mapping (VM) and Collection
Mapping (CM) are defined as follows:

Definition 4: Given a value vi from the target schema, VM(vi) will return the set of tuples
(vo, weight), where vo represents a corresponding value represented in the source schema,
and weight denotes its similarity degree to vi, as explained in Definition 2.

Definition 5: Given a collection ci from the target schema, CM(ci) will return the set of
tuples (co, condition), where co represents the corresponding collection represented in the
source schema, and condition represents the additional conditional statement which is
required to make the two collections equivalent.

Example 1: As shown in Fig. 1, VM(/order-ship/suppliers/supplier/@skey) = {(SUPP-
LIER.SUPKEY, 0.9), (PARTSUPP.SUPPKEY, 0.25), (LINEITEM.SUPPKEY, 0.2)}, and
CM(/order-ship/suppliers/supplier) = {(SUPPLIER, null), (PARTSUPP, null), (LINEI-
TEM, null)}. Note that the three tuples in CM have the value null for the condition in-
formation. However, sometimes we might need it to make two collections equivalent.
For example, if there exist two relations VIP-CUSTOMER and OTHER-CUSTOMER,
which are vertical partitions of the repeatable element /order-ship/customer based on its
attribute type. We will require a conditional statement such as type = “VIP” to exactly
identify the corresponding relation VIP-CUSTOMER.

4.3 Representing Structural Expressions of Local Schemas

As shown by sample queries SQ1 and XQ1, structural expressions are necessary
components of a valid query, which are basically valued join statements or structural
join statements specified by path expressions of XQuery. We list some join expressions
for the sample relational schema in Table 1 as an example.

In Table 1, we give each expression an identifier, which shows how this join is
formed. If the identifier is denoted by the letter R, it represents a join between one
E-relation and one R-relation. For example, R1 in Table 1 represents a join between an
E-relation PART and an Rrelation LINEITEM. If the identifier is denoted by the string

Table 1. Some join expressions in the sample relational schema.
ID Table1 Table2 Join Expression Cost

R1 PART LINEITEM PART.PARTKEY=LINEITEM.PARTKEY 1
R2 SUPPLIER LINEITEM SUPPLIER.SUPPKEY=LINEITEM.SUPPKEY 1
EE3 SUPPLIER PART SUPPLIER.SUPPKEY=PARTSUPP.SUPPKEY.SUPPKEY;

PARTSUPP.PARTKEY=PART.PARTKEY
2

R4 ORDER CUSTOMER ORDER.CUSTKEY=CUSTOMER.CUSTKEY 1
R5 ORDER LINEITEM ORDER.ORDERKEY=LINEITEM.ORDERKEY 1
EE6 ORDER PART PART.PARTKEY=LINEITEM.PARTKEY;

ORDER.ORDERKEY=LINEITEM.ORDERKEY
2

RR7 PARTSUPP LINEITEM PARTSUPP.SUPPKEY=LINEITEM.SUPPKEY;
PARTSUPP.PARTKEY=LINEITEM.PARTKEY

2

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 259

Fig. 4. The sample one-level CanForest for query XQ2.

EE, it will represent a join between two E-relations. In such case, it usually needs other
R-relations to construct the relationship, and therefore requires more than one join
statements. For example, as specified by EE6, the two E-relations ORDER and PART
cannot be directly joined, so the R-relation LINEITEM is required. Finally, the identifier
RR represents a join between two R-relations. Since an R-relation usually has a compo-
site primary key, we need to let the join statements involve all component keys to make
the query uniquely identify the correct tuples.

In the last column of this table, we denote the cost of each structural expression. It
is calculated based on the join distance, i.e., the number of statements required to
properly join the two tables. For example, as shown in the first row, we can directly join
tables PART and LINEITEM through the join statement “PART.PARTKEY = LINEI-
TEM. PARTKEY”, so the cost is “1”. In contrast, since tables SUPPLIER and PART
cannot be directly joined and another table PARTSUPP is required to form the two join
statements properly, the cost is “2”. We will show how to use this table later in Section 6.

5. CONSTRUCTING QUERY FORESTS

In this section, we discuss how the query forest, i.e., CanForest, represents the se-
mantics and structural constraints of the input query as a canonical form. We will also
present the construction algorithm.

5.1 The CanForest Structure for an Un-nested Query

CanForest consists of a set of collection trees, denoted as ColForest, and a set of
value trees, denoted as ValForest. Basically, a collection tree represents how a variable
imposes the selection condition and structural constraint in the query. It is rooted by a
binding variable specified in the FOR clause or the LET clause. For this particular varia-
ble, all the related path expressions specified in the FOR clause, the LET clause or the
WHERE clause will be used to construct the remaining nodes of the tree. In contrast, the
Value tree represents how a variable is going to project data. It is constructed based on
the path expressions specified in the RETURN clause in a similar manner. The CanFor-
est structure corresponding to the following query is shown in Fig. 4:

HTColForest

ckey

(s, //supplier)

(o, //order)

(name, _)

(c)

HTValForest

(skey, = '001')

(c, //customer)

(ckey, _)
(ckey, _)

(M_p, //part)

s

label

o

c

node

 {(c_1, NAME, T)}c/namec

labelnode

level=1

{(s_1, SUPPKEY= '001', T)}

MDtuples

 {(o_1, CUSTKEY, T)}

 {(c_1, CUSTKEY, T)}

s/skey

var / label

o/ckey

c/ckey

MTtuples

MDtuplesvar / label

MTtuples

s

o

c

M_P

 {(s_1, SUPPLIER, T),
(s_2, PARTSUPP, F),

(s_3, LINEITEM, F)}
 {(o_1, ORDER, T),

(o_2, LINEITEM, F)}

 {(c_1, CUSTKEY, T)}
 {(M_P_1, PART, F),

(M_P_2, PARTSUPP, F)}

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

260

XQ2:
FOR $s in //supplier, $o in $s//order, $c in //customer
WHERE $s/@skey = ‘001’ and $c/@ckey = $o@ckey RETURN $c/name

Before formally defining CanForest, we first define MDtuple as follows:

Definition 6: Each MDtuple associated with a node N is a 3-tuple (var, equi-unit, used-
flag). equi-unit is the unit in the source schema equivalent to the target unit represented
by the node N. var is the variable assigned to the collection defining the equi-unit. used-
flag will have the value “T” if this unit is chosen, and “F” otherwise.

MDtuples represent the mapping information associated with each node. For easy
representation, they are listed in separate tables in Fig. 4. In the upper table, the first
three rows correspond to the three leaf nodes in ColForest, while the remaining four
rows correspond to the four non-leaf nodes in ColForest. We then define each node in
CanForest as follows:

Definition 7: A CVnode n is defined as follows: (1) If n is a non-leaf node, it will be
associated with a triple information: (label, path, MDset), where label corresponds to a
binding variable in the input query, path denotes the location of the associated collection
in the target schema, and MDset consists of a set of corresponding MDtuples. (2) If n is a
leaf node, it will be associated with a quadruple information: (label, path, condition,
MDset), where label is an element or attribute name, and condition represents a selection
predicate, which might be null and denoted by “ ”.

The path information in a CVnode is used as an input to the mapping functions to
get the mapping information. In Fig. 4, it is omitted for leaf nodes in ColForest and all
nodes in ValForest. For non-leaf nodes in ColForest, it is only denoted by descendant
steps for simplification. Besides, since the leaf node in ValForest is used only for output,
its condition will be null.

The tree structure and the forest structure can be defined as follows:

Definition 8: A collection tree or a value tree is a pair of (N, E), where each node in N is
a CVnode, and each edge in E, called an Axis edge, will connect two nodes if their cor-
respondences in the original schema graph have the parent/child relationship.

Definition 9: A CanForest for an un-nested query is a set of collection trees and value
trees, which might be connected by the following two types of edges: (1) FlatJoin: rep-
resenting a join statement between two leaf nodes of two collections trees; (2) BoundJoin:
pointing from the root node of a value tree to the root node of the corresponding binding
collection tree, so that the root node of the bound value tree can share the same MDset
with the root node of the binding collection tree.

Note that there are totally three types of edges in CanForest. In Fig. 4, an Axis edge
is represented by a solid line, a FlatJoin edge is represented by a dashed line, and a
BoundJoin edge is represented by a dotted arrow. For example, a FlatJoin edge exists
between the two leaf nodes with the label ckey. A BoundJoin edge pointing from the root
node “c” in ValForest to the root node “c” in ColForest.

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 261

5.2 Construction Algorithm

We explain how to construct CanForest in this subsection. Note that there are two
hash tables in Fig. 4, which are HTColForest and HTValForest. Their input is a label and
the output is a pointer to the corresponding node in CanForest. This design is to let a
non-root node efficiently identify the tree which it belongs to.

In our system, individual algorithms are designed to process the different syntaxes
of XQuery and SQL. Instead of giving the complete detailed algorithm, we discuss the
major steps of processing XQuery as an example. As listed in Fig. 2, this paper considers
four clauses of XQuery. In the following, we discuss how to process each individual
clause to build the corresponding structure of CanForest, and please note that the de-
scendant steps in each path expression will be expanded by consulting the local schema
and additional nodes will be created if necessary:

 the FOR clause:

Extract the defined binding variable and create a corresponding internal node in the
ColForest. Record an entry in HTColForest to represent the correspondence of this
variable and its location in ColForest.

 the LET clause:
For an un-nested query, the expression associated with the variable will be a path ex-
pression. Process it in the way similar to the variable binding in the FOR clause.

 the WHERE clause:
Use HTColForest to identify the collection tree under which the leaf node correspond-
ing to the component path expression should be created. Create a FlatJoin edge if a
valued join expression is detected.

 the RETURN clause:
Process it as processing the FOR clause, except that a value tree is created, the
HTValForest structure is used, and a BoundJoin edge is created to point to its binding
counterpart.

Example 2: Consider XQ2. When processing the FOR clause, the three internal nodes
labeled “s”, “o”, and “c” are created for the three binding variables, and three corre-
sponding entries are inserted into HTColForest. An additional node with the label “M_p”
is created when expanding the descendant step, which corresponds to an intermediate
element named “part” in Fig. 1 (a). Then, for the WHERE clause, a leaf node is created
and labeled with “ckey” according to the path expression “$c/@ckey”. Besides, two leaf
nodes both denoted as “ckey” will be created under the internal nodes “o” and “c”, for
the join statement. A FlatJoin edge will be also created to link these two nodes. Finally,
based on the RETURN clause, the root node of a value tree along with a BoundJoin edge
will be first created, and followed by the leaf node “name”.

During the construction process, our algorithm also needs to represent the mapping
information in CanForest. The process differs for different types of nodes. For internal
nodes, we get all the matching collections from the mapping function CM using the path
information associated with this node, and represent them as the MDset structure. If it
consists of several MDtuples, each of which will be associated with the usedflag with the
initial value “F”. For leaf nodes, we identify the equivalent value from the mapping

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

262

function VM, similarly based on the path information associated with this node. In con-
trast, only the one with the highest weight will be obtained, since it represents the most
relevant information. Such information will be also used to update the usedflag of the
MDtuple which represents the collection defining the chosen value, and to obtain the
variable name assigned to that collection.

Example 3: Consider the leftmost leaf node in Fig. 4, which is labeled by “skey”. As
discussed in Example 1, it has three equivalent values defined by the mapping function
VM. We choose the one with the highest weight, which is SUPPLIER.SUPPKEY, and
represent it in the MDtuple, as shown in the first row of the upper MTtuples table. In
contrast, the leftmost root node, which is denoted by “s”, has three equivalent collections
in CM. We will create three MDtuples for each of them, but only mark the usedflag of
the first one as “T”, to show that this one defines the chosen value.

5.3 The CanForest for a General Query

We now discuss the CanForest for a general query. The sample CanForest corre-
sponding to XQ1 in Section 3 is illustrated in Fig. 5. A major difference between this
example with the previous one is that the CanForest is divided into several level blocks,
which is denoted by the darker dashed line. In this example, there are two level blocks,
and each level block will produce a corresponding sub-query.

Fig. 5. The sample CanForest for query XQ1.

Note that each level block is denoted by a level number, which is a sequence of pos-
itive integers separated by the period. It is used to reflect the nested structure represented
in the original query. We briefly describe the procedure of assigning level numbers here.
The outermost level has the initial number 1. Whenever a nested structure is encountered
in a LET clause, the period will be added to the current level number to show the nested
structure. For each level block, we may also denote its nested name, which is used as the
alias of the output derived relation if applicable. We now provide the formal definition of
CanForest for a general query as follows:

Definition 10: A CanForest for a general query is a set of collection trees and value
trees, which can be connected by FlatJoin and BoundJoin as before. In addition, all

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 263

CVnodes corresponding to the same sub-query are represented in the same level block.
Each level block is assigned a level number and possibly with a nested name.

Note that each level block has its own HTColForest and HTValForest. We only
represent part of its contents in Fig. 5, and also let the MDtuples be represented in the
hash tables to save space. The algorithm to process a general query will be the one dis-
cussed in Section 5.2 but extending the step of processing the LET clause as follows:

If the expression associated with the variable is a nested XQuery expression, encode
the level number properly and assign the nested name as discussed above. Then, invoke
the construction algorithm recursively to process the nested sub-query.

6. FORMULATING THE OUTPUT QUERY

Based on CanForest, we can identify the proper values and those collections which
define them in the source schema. In this section, we discuss how to choose the proper
structural expressions to connect those collections, and how to formulate the final output
query. Query XQ1 and its corresponding CanForest structure in Fig. 5 will be used as the
examples for explanation.

6.1 Identifying Structural Expressions

The Axis edges and FlatJoin edges in ColForest show the structural constraint im-
posed by the input query. The main issue is how to identify the proper corresponding
structural expressions in the source schema. To achieve this task, we first create a join
graph based on the internal nodes in ColForest, as defined in the following:

Definition 11: A join graph is a pair of (N, E). Each node in N corresponds to an MDtu-
ple with the form (var, equi-unit, usedflag), and is identified by var. An edge in E will be
created between two nodes, if there is a proper structural expression between the two
associated equi-units. Each edge will be annotated by the pair (ID, cost), where the ID
and cost information correspond to the first and the last columns of Table 1.

To construct the join graph, we examine each internal node of ColForest as follows.
If a certain MDtuple associated with that node has the usedflag with the value “T”, we
will only use that MDtuple to create a corresponding node in the join graph. Otherwise,
all the associated MDtuples will be used to create nodes. Fig. 6 (a) shows the initial join
graph built based on Fig. 5. Note that the two MDtuples associated with node M_p both
have the value “F” for usedflag, so we create two corresponding nodes in the join graph,
and especially denote them by double circles. Besides, recall that the original cost is
based on the number of the join expressions required to construct the structural relation-
ship. In the join graph, if the associated node has the false value for the flag usedflag, we
further increase the cost by 10 to represent that this edge is less preferred. As depicted in
Fig. 6 (a), the edge with the ID “EE6” has the cost 12, which is calculated by adding 10
to 2.

Note that the join graph is also classified into several level blocks the same as in
CanForest. Besides, the sub-query in each level needs to be joined properly, and the out-
er and the nested levels also need correlated join expressions. Therefore, we will identify

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

264

the join expressions level by level from the inner to the outer. Besides, we apply the al-
gorithm of finding the minimum spanning tree to reduce the number of outputted join
expressions, since the cost denoted with each edge corresponds to the number of join
expressions. For Fig. 6 (a), we first process the join graph with the level number “1.1”. It
is trivial since there is only one edge. We then process the join graph “1”, and the re-
sultant minimum spanning tree is shown by the solid edge in Fig. 6 (b). However, we
consider a node to be necessary, if it either consists of an attribute to output, or it is re-
quired to construct the structural relationship between two other collections. Therefore, if
a node has the false value for usedflag, and only has one associated edge, we will delete
it along with the associated edge. To conclude, the final output for this example will be
edge R4 for level 1.1, edge R2 for level 1, and edge R5 for correlating the two levels.

(a) The initial state. (b) The minimum spanning tree.

Fig. 6. Examples of the join graphs.

6.2 Formulating the Query

At this stage, all the required mapping data are identified. We will insert the proper

keywords, and combine those intermediate query fragments as a syntactically correct
statement with the proper nesting level. It is basically straightforward and we will only
use examples to illustrate the major idea.

Table 2. The process of transforming XQ1.
Sub-query Step 1 Step 2

Outer

SELECT s1.SUPPKEY, a
FROM SUPPLIER as s1

SELECT s1.SUPPKEY, a
FROM SUPPLIER as s1, LINEITEM as Mp2
WHERE s1.SUPPKEY =Mp2.SUPPKEY (R2) and

ORDER.ORDERKEY = Mp2.ORDERKEY (R5)

Nested
SELECT c1.NAME
FROM ORDER as o1,

CUSTOMER as c1

SELECT c1.NAME
FROM ORDER as o1, CUSTOMER as c1
WHERE o1.CUSTKEY = c1.CUSTKEY (R4)

Consider the running example. Table 2 summarizes the process of forming and
composing query fragments for XQ1. In Step 1, we produce the query fragment based on
CanForest, where the nodes in ColForest will be used to construct the FOR clause and
the WHERE clause, and the nodes in ValForest are used for the SELECT clause. The
query fragments formulated respectively for the outer level and the nested level are listed
in the second column of Table 2. Note that at this stage, the node M_p has no corre-
sponding output statements since both of its associated MDtuples have the usedflag as
“F”. In Step 2, we utilize those structural expressions outputted by the minimum span-

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 265

ning tree of the join graph, and insert them into the previous query fragments. The result
is shown in the third column of Table 2. Note that R2 introduces a new relation LINEI-
TEM, which is added into the FROM clause. Besides, R5 shows that the correlated value
is ORDER.ORDERKEY. Recall that the sub-query statement for the nested level is ali-
ased as “a”, as shown in Fig. 5. By properly using the information for correlation, we get
the final SQL statement as SQ1 different only in variable naming.

7. EVALUATION

In this section, we will first show the effectiveness of our system by proving that it
can produce the required query. We then evaluate the efficiency of our translator system.
All experiments are performed on a P4-2.4GHz machine, with 2 GB of DDR2-RAM.

7.1 Effectiveness

We prove that our system can produce the required query based on the problem
definition specified in Section 3. Specifically, the following two things have to be satis-
fied: (1) the output query should be appropriate for the source schema and equivalent to
the input query; (2) the weight of the output query should be the highest among all can-
didates.

For the first requirement, recall that when constructing CanForest, we identify a
single equivalent counterpart for each value construct, and then identify those equivalent
collection constructs which define the chosen values. Then, in the composition stage, we
choose proper structural expressions for joining the collections in the same level of sub-
queries, and also those for correlating the outer and nested sub-queries. Therefore, our
transformed query is equivalent to the input query and appropriate for the source schema.

For the second requirement, recall that the weight of a query is determined by its
operated value constructs. As discussed in Section 5, when determining the equivalent
counterpart for each value construct, we choose the one with the highest weight. There-
fore, it is guaranteed that the sum of all weights will be the highest among all equivalent
transformed queries.

7.2 The Effect of Multiple Mappings on Efficiencies

We study the impact of multiple mappings on the transformation time in this set of
experiments. We will measure the total execution time and the time required by the two
major component modules of our system as shown in Fig. 3. Since we cannot find a set
of equivalent schemas in the real world which can meet our needs, we design the sche-
mas by ourselves. The target XML schema is shown in Fig. 7 (a), where square nodes
represent internal nodes, rounded square nodes represent value elements, and dashed
circles represent attributes. The source relational schema is shown in Fig. 7 (b), where
primary keys are denoted by the underline. In this pair of schemas, the value with the
same name is equivalent. Therefore, the repeatable element “/root/flat/a” corresponds to
relation A1; “/root/flat/b” corresponds to relations B1 and B2; “/root/flat/c” corresponds
to relations C1, C2, and C3; “/root/flat/d” corresponds to relations D1, D2, D3, and D4.

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

266

A1（AKEY,AE1, AE2, AE3, AE4）
B1（ BKEY , BE1 ）
B2（ BKEY,BE2, BE3）
C1（CKEY , CE1）
C2（CKEY , CE2 , CE3）
C3（CKEY , CE4 , CE5 , CE6）
D1（DKEY , DE1）
D2（DKEY , DE2 , DE3）
D3（DKEY , DE4, DE5 , DE6）
D4（DKEY , DE7 , DE8, DE9 , DE10）

(a) Target schema (b) Source schema
Fig. 7. Test schemas.

Table 3. Sample Input and Output Queries for Schemas I.
Type Input Query Output Query

value 1-1 FOR $a in /flat/a
RETURN $a/@akey

SELECT a1.AKEY
FROM A1 as a1

value 1-2 FOR $b in /flat/b
RETURN $b/@bkey

SELECT b2.BKEY
FROM B2 as b2

collection
1-1

FOR $a in /flat/a
RETURN $a/@akey,$a/ae1,$a/ae2, $a/ae3

SELECT a1.AKEY, a1.AE1, a1.AE2, a1.AE3
FROM A1 as a1

collection
1-2

FOR $b in /flat/b
RETURN $b/@bkey, $b/be1, $b/be2,

$b/be3

SELECT b1.BKEY, b1.BE1, b2.BE2, b2.BE3
FROM B1 as b1, B2 as b2
WHERE b1.BKEY = b2.BKEY

We consider the following two cases: multiple mapping between values and multi-
ple mapping between collections. Table 3 lists the input and output queries for some of
the cases. Compare the two input queries specified in the first two rows of the table,
which only return one value from one collection. Observe the value bkey used in the
second row. It is represented by one unit in the target schema, but two units in the source
schema, so this constitutes a 1-2 value mapping. In contrast, compare the two input que-
ries represented in the last two rows of the table. They both return four values from the
same element. However, since the equivalent value counterparts used in the last query
are represented respectively in two relations B1 and B2, the output queries will need to
include both of them and connect them by a join statement. Therefore, we name it a 1-2
collection mapping.

We design five queries with increasing numbers of mappings between values. The
experimental result is shown in Fig. 8 (a). We can see that the transformation time re-
mains almost constant, since only one value is outputted, and we use the hash function to
directly identify the value with the highest weight. We then design five queries with in-
creasing numbers of mappings between collections. From Fig. 8 (b), we can see that the
time for constructing CanForest is almost the same for all queries, since they are basical-
ly in the same format. In contrast, the time for composition increases linearly slightly,
since the number of output collection and structure expressions will increase along. Spe-
cifically, if a collection in a target schema maps to n collections in the source schema, the
output query will consist of n collections in the FROM clause and n−1 join statements in
the WHERE clause. However, our system is efficient enough so that the increased time
is pretty minor.

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 267

(a) Multiple values (b) Multiple collections

Fig. 8. Analysis of the effect caused by the number of mapping units.

7.3 The Effect of Nested Depths on Efficiencies

In this set of experiments, we study the impact of the nesting depths of sub-queries.
The test schemas consist of one relational schema and two XML schemas, which are
called “Nested” and “Flat”, respectively. The two XML schemas are depicted in Figs. 9
(a)-(b), and differ in that the repeatable elements, denoted by the asterisk, are in a nested
structure in Fig. 9 (a), but in a flat structure in Fig. 9 (b). The relational schema is listed
in Fig. 9 (c), where the adjacent tables have common attributes for performing joins.

(a) Nested XML schema (b) Flat XML schema (c) RDB

Fig. 9. Test schemas II.

Table 4. Sample input queries for schemas II.

We create four queries with increasing nested depths of sub-queries for each sche-
ma. We only list the query with the nested level “two” in Table 4 to illustrate the idea.
For comparison, we give the number of nodes in CanForest for each query here. For the
nested XML schema, the number of nodes are 10, 15, 20, and 25, respectively; for the

XQuery (for Nested DTD) XQuery (for Flat DTD) SQL
for $a in /nested/a
let $leta ::= for $b in $a/b

let $letb ::= for $c in $b/c
return $c/c1, $c/@cid

return $b/b1, $letb/c1
return $a/a1, $leta/b1

for $a in /flat/a
let $leta ::= for $b in /flat/b
 let $letb ::= for $c in /flat/c

where $b/@bid = $c/@aid
return $c/c1, $c/@cid

 where $a/@aid = $b/@aid
return $b/b1, $letb/c1

return $a/a1, $leta/b1

SELECT A.A1, SUB.CID
FROM A,

(SELECT SUBC.cid, B.aid
FROM B,
(SELECT C.C1, C.BID
FROM C) as SUBC
WHERE B.bid=SUBC.bid) as SUBB

WHERE A.aid=SUBB.aid

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

268

flat schema, the number of nodes are 13, 20, 27, and 32, respectively; for the relational
schema, the number of nodes are 11, 18, 25, and 30, respectively. We then design the
following three scenarios: (1) the target schema is relational and the source schema is the
nested XML schema; (2) the target schema is the nested XML schema and the source
schema is relational; (3) the target schema is the nested XML schema and the source
schema is relational.

From the experimental results shown in Fig. 10, we can see that the transformation
time mainly increases linearly along with the depth of the sub-query, no matter which is
the input schema. It is reasonable since the nodes in CanForest increase along with the
nested depths of sub-queries in each case, as stated previously. In other words, the for-
mat of nested sub-queries does not incur extra overhead for computation. The main rea-
son is that our system processes nested queries or un-nested queries in a uniform way, so
it can achieve the same performance when processing both types of queries. Another
thing to note is that the major portion of execution time is on building the CVForest, and
the flat and the relational schema require more time, since the corresponding queries tend
to use valued join expressions, and have more nodes and edges in CanForest.

 (a) Relational-nested (b) Nested-relational (c) Flat-relational

Fig. 10. Analysis of the effect caused by the nesting depths of subqueries.

To conclude, the performance of our translator system is satisfiable since the trans-
formation process is very efficient. Moreover, the cases of multiple mappings and nested
depths of queries only affect the performance to a limited extent.

8. CONCLUSIONS

In this paper, we discuss the issue of translating an input query against the target
schema to an output query appropriate for the source schema. The queries considered are
XQuery or SQL with SPJ expressions and nested sub-queries, and there might exist mul-
tiple possible mappings between the values of two schemas denoted with weights. We
propose to use mapping functions to represent the weighted correspondence between
schema units, and design the tree-based structure, i.e., CanForest, to clearly represent the
semantics and nesting levels of an input query. Accordingly, a translation system is con-
structed to produce the most preferable query under such environment. The experimental
results show its efficiency. In the future, we plan to extend our system to efficiently pro-
duce Top-K preferable queries. We will also investigate the techniques of processing
more complex queries and schema expressions.

A TREE-BASED APPROACH FOR SUPPORTING QUERY TRANSLATION 269

REFERENCES

1. B. Alexe, W. C. Tan, and Y. Velegrakis, “Stbenchmark: Towards a benchmark for
mapping systems,” in Proceedings of International Conference on Very Large Da-
tabases, 2008, pp. 230-244.

2. Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos, “A semantic approach to dis-
covering schema mapping expressions,” in Proceedings of International Conference
on Data Engineering, 2007, pp. 206-215.

3. M. Arenas and L. Libkin, “Xml data exchange: Consistency and query answering,”
in Proceedings of International Conference on Principles of Database System, 2005,
pp. 13-24.

4. A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou, “Structured materi-
alized views for xml queries,” in Proceedings of International Conference on Very
Large Databases, 2007, pp. 87-98.

5. R. Cheng, J. Gong, and D. W. Cheung, “Managing uncertainty of xml schema
matching,” in Proceedings of International Conference on Data Engineering, 2010,
pp. 297-308.

6. D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu, “A comprehensive xquery
to sql translation using dynamic interval encoding,” in Proceedings of International
Conference on Management of Data, 2003, pp. 623-634.

7. D. W. Embley, L. Xu, and Y. Ding, “Automatic direct and indirect schema mapping:
experiences and lessons learned,” SIGMOD Record, Vol. 33, 2004, pp. 14-19.

8. W. Fan, J. X. Yu, J. Li, B. Ding, and L. Qin, “Query translation from XPath to SQL
in the presence of recursive DTDs,” The VLDB Journal, Vol. 18, 2009. pp. 857-883.

9. M. A. Hernandez, P. Papotti, and W.-C. Tan, “Data exchange with data-metadata
translations,” in Proceedings of International Conference on Very Large Databases,
2008, pp. 260-273.

10. R. Krishnamurthy, R. Kaushik, and J. F. Naughton, “Efficient XML-to-SQL query
translation: Where to add the intelligence?” in Proceedings of International Confer-
ence on Very Large Databases, 2004, pp. 144-155.

11. L. V. S. Lakshmanan, H. Wang, and Z. J. Zhao, “Answering tree pattern queries
using views,” in Proceedings of International Conference on Very Large Databases,
2006, pp. 571-582.

12. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang, “Xclust: Clustering xml schemas for
effective integration,” in Proceedings of International Conference on Information
and Knowledge Management, 2002, pp. 292-299.

13. I. Manolescu, K. Karanasos, V. Vassalos, and S. Zoupanos, “Efficient xquery re-
writing using multiple views,” in Proceedings of International Conference on Data
Engineering, 2011, pp. 972-983.

14. N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola, “Rewriting nested
xml queries using nested views,” in Proceedings of International Conference on Ma-
nagement of Data, 2006, pp. 443-454.

15. E. Peukert, J. Eberius, and E. Rahm, “A self-configuring schema matching system,”
in Proceedings of International Conference on Data Engineering, 2012, pp. 306-317.

16. E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema match-
ing,” The VLDB Journal, Vol. 10, 2001, pp. 334-350.

YA-HUI CHANG, CHIA-ZHEN LEE AND SI-YEN ZHUANG

270

17. Y. Velegrakis, R. J. Miller, and J. Mylopoulos, “Representing and querying data
transformations,” in Proceedings of International Conference on Data Engineering,
2005, pp. 81-92.

Ya-Hui Chang (張雅惠) is a Professor of Computer Science
and Engineering Department at National Taiwan Ocean University.
She received the B.S. degree in Computer Science and Information
Engineering from National Taiwan University, and the M.S. and
Ph.D. degree in Computer Science from University of Maryland at
College Park, U.S.A. Her research interests include database query
processing, XML techniques, graph databases and spatial data-
bases.

Jia-Zhen Li (李佳臻) received the B.S. and M.S. degrees in

Computer Science Department from National Taiwan Ocean Uni-
versity, Taiwan, in 2006 and 2009, respectively. Her research in-
terests include XML query optimization, XML query processing
and database management.

Si-Yen Zhuang (莊思彥) is a graduate student of Computer
Science and Engineering Department at National Taiwan Ocean
University. He received the BS degree in Department of Computer
Science and Information Engineering from Chinese Culture Uni-
versity, Taiwan, in 2013. His research interests include database
management, SQL query processing and Web applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

