
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 127-143 (2020)
DOI: 10.6688/JISE.202001 36(1).0008

A Cooperative Game-Theoretic Model
in Cloud Storage Auditing

CHUNG-YI LIN AND WEN-GUEY TZENG
Department of Computer Science
National Chiao Tung University

Hsinchu, 30010 Taiwan
E-mail: {cylin.cs99g; wgtzeng}@nctu.edu.tw

In the traditional cloud storage auditing, users individually audit the cloud storage
provider (CSP). However, users may pay the redundant auditing cost when they have simi-
lar auditing results. For example, a lot of users may get fail results when the CSP’s service
occurs accidents. In the worst case, the overall auditing cost linearly increases with the
number of users. We propose a cooperative auditing model to let user share their audit-
ing results in a friendship-based social network so that their overall auditing cost can be
reduced. Furthermore, we design an auditing coalition game based on cooperative game
theory, where not only users’ individual interest but their entire benefit is c onsidered. We
present two algorithms to find out an optimal way of forming auditing c oalitions. The first
algorithm determines an optimal coalition in one iteration. In the second algorithm, after
iteratively adjusting users’ trust relationships, users may change to join another coalition if
they receive wrong auditing results. The results of the one-iteration experiment show that
the more number of users, the more auditing cost reduction. Specifically, the auditing cost
can be reduced by 96% with respect to the original non-cooperative auditing model. In the
multi-iteration experiment, the accuracy of users’ auditing results can be improved from
88% to 100%.

Keywords: cloud storage auditing, data integrity, provable data possession, proof of retriev-
ability, cooperative game theory, optimal coalition structure

1. INTRODUCTION

1.1 Problem Statement

Outsourcing computing operations to clouds has many advantages, such as ease of
management, cost-effectiveness, lower impact outages, disaster preparedness, and simpli-
fied planning [1]. In these advantages, the cost reduction is a critical factor in the adoption
of cloud storage. Several studies [2, 3] consider the difference of cost between buying lo-
cal disks and leasing the storage from cloud services in their decision model. According
to their results, users should rent the cloud storage to store their data if they spend lower
cost on it.

A risk of storing data in the cloud storage provider (CSP) is that users may lose
their data. Users’ data may be incomplete if they are not reliably managed and stored
by the CSP. Cloud storage auditing mechanisms, such as provable data possession (PDP)
and proof of retrievability (POR) schemes [4, 5, 6, 7, 8], are proposed to remotely check
integrity of data. To determine whether the risk occurs, a user can periodically verify the

Received April 6, 2019; accepted March 20, 2019.
Communicated by Tony Quek.

127

128 CHUNG-YI LIN AND WEN-GUEY TZENG

service quality of the CSP by using these mechanisms. If the CSP passes the check, the
user can make sure that his data are well stored without corruptions. Otherwise, if errors
occur, the user can request a compensation from the CSP for his loss. For example, in
Amazon S3 service level agreement, if the user finds that the average error rate in a month
is more than 1%, he can request a compensation by 25% of his payment.

However, in the existing auditing protocols, users individually check their own data.
For most users, the cost that they spend on their individual works may be redundant. When
the reliability of CSP’s service is high, almost all users would receive pass results in their
integrity checks. On the other hand, when CSP’s service is corrupted in the foundation
level, which may due to hardware failures, software bugs, configuration problems, and
attacks, many users would get fail results. In a realistic case, a lot of websites and apps
were affected by the outage of Amazon S3 service on February 28, 2017 [9]. Many users
have the high error rates in accessing Amazon S3 at that time. Thus, when some users
finish the auditing processes, the others’ works become redundant because they would
receive similar auditing results.

The problem is significant because the amount of users’ auditing costs would be
considerable. A user may spend cost on communication and computation when he audits.
Furthermore, in order to let the auditing results be credible for the CSP, the user may
authorize a trusted third party to perform the auditing work. In this case, the user must
cover the auditing cost between him and the third party. When the number of users grows
up, the overall auditing cost may become enormous.

1.2 Research Purpose

The purpose of this research is to let users cooperatively audit the CSP so that their
redundant works can be reduced at lower auditing cost on average. In this cooperative
model, some users choose to audit and share their auditing results in a social network.
When the other users receive the auditing results, they can use them and choose to not
audit. For two users, the criteria for using the auditing results from each other are based
on their friend relationship and the strength of trust between them. The trust strength
depends on the difference of users’ opinions about the CSP’s service quality. In particular,
two friends can trust the auditing results from each other if their opinions about the CSP
are similar.

However, in the simple cooperative model, users may face a problem that no one
would like to audit if they consider their self-interest only. For example, there are three
friends a, b, and c in a social network. a would like to use b’s auditing results and chooses
to not audit. Similarly, b and c prefer to request auditing results from c and a, respectively.
As a result, no user would like to audit because their preferences are in a contradiction.

Cooperative game theory [10] is the approach to analyze the overall benefit gained by
all users. Not only users’ individual interest but their entire benefit would be considered
to achieve a situation good for everyone. By using cooperative game theory, we motivate
users to audit for optimizing the entire benefit without getting into conflict with their
self-interest.

1.3 Main Contribution

We design an auditing coalition game to avoid users paying redundant cost on their
auditing works. To our knowledge, our study is the first work to apply cooperative game
theory to reduce overall users’ auditing cost. In the game model, groups of users, who
have the similar opinions about the CSP’s service, form coalitions to cooperatively audit.
In an auditing coalition, a user is elected as an opinion leader to perform the auditing task.

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 129

The rest users in the group use the leader’s auditing result as a reference rather than audit
by themselves. After playing the game, all users are assigned into auditing coalitions,
where the overall auditing cost is minimal. Furthermore, every user has no incentive to
leave his assigned coalition because his individual auditing cost would be the lowest. The
set of users’ coalitions in this situation is called an optimal coalition structure.

In our game model, we propose two algorithms to obtain the optimal coalition struc-
ture. The first algorithm finishes and generates an optimal coalition structure in one itera-
tion. However, in an auditing coalition, users may receive wrong auditing results from the
leader. For example, a user may receive a pass auditing result but find errors in his data
when he uses them. The second algorithm is extended from the first in multi-iteration. In
the algorithm, the trust strengths between users are iteratively adjusted. Users may join
another coalition in the next iteration if they receive wrong auditing results.

In the experiments, we consider Erdős-Rényi (ER) random graph model [11] to sim-
ulate loosely-coupled and tightly-coupled friend graphs by p = 0.3 and p = 0.8, re-
spectively. The results of the one-iteration experiment show that the overall auditing cost
can be reduced by 90% for the loosely-coupled friend graph and 96% for tightly-coupled
friend graph, respectively. The more friend relationships users build, the more auditing
cost reduction. In the results of the multi-iteration experiment, the accuracy of users’
auditing works is improved from 88% to 100% in the last iteration.

2. RELATED WORK

Ateniese et al. [4] introduced the provable data possession (PDP) scheme, which
allows users to remotely verify their stored data in an untrusted server without retrieving
them. In their scheme, a user generates a metadata for a file. The metadata is used later
for verification purpose. Barsoum et al. [5] proposed a map-based provable multi-copy
dynamic data possession (MB-PMDDP) scheme in cloud storage auditing. The users
can validate the number and integrity of data replicas to audit whether the CSP meets
the promise of replicas in the service level agreement (SLA). Lin et al. [6] developed a
mobile PDP (MPDP) scheme in mobile cloud computing. The mobile device users shift
the computational burden of the PDP scheme to a trusted third party. The trusted third
party can verify users’ data without accessing contents of the file.

Zhu et al. [12] proposed the cooperative PDP (CPDP) scheme by using hash index
hierarchy. In this scheme, multiple CSPs cooperate to store and maintain user’s data.
When a user performs the auditing work for all CSPs, he uses a single value to verify
the integrity of his data rather than separately audits them many times. The experiment
results show that the user has lower computation and communication overheads when he
audits his data in cooperative CSPs.

Juels et al. [7] explored a proof of retrievability (POR) scheme to let users ensure
the integrity of files when they retrieve them. Due to the encoding of the data file, e.g.,
erasure codes, a user’s entire file can be reconstructed from responses of the CSP.

Wang et al. [13, 14] proposed a privacy-preserving public auditing protocol. A
user can authorize a third party auditor (TPA) to verify the integrity of his data without
revealing any knowledge on the data content. Liu et al. [15] enhanced the TPA scheme
to support variable-size blocks in dynamic data update. Li et al. [16] developed a new
TPA scheme with lightweight computations for the low-performance end device. The
simulation results show that their protocol is about 300 times more efficient than the
original protocol in [13]. Li et al. [8] proposed a novel POR scheme specific to cloud

130 CHUNG-YI LIN AND WEN-GUEY TZENG

Fig. 1. System model of cooperative cloud storage auditing.

computing. Users are able to delegate the TPA to perform the verification if their resource-
constrained devices could not afford the overload of frequent integrity checks.

Numerous research [17, 18, 19] used game theory [20] to analyze the optimal strategy
in cloud storage auditing. Zhou et al. [17] proposed a game-theoretic audit model to
motivate the CSP to follow the SLA. Based on the Nash equilibrium (NE) of their game
model, the CSP has no incentive to cheat if the penalty of being cheating is more than
the payoff of being honest. Ismail et al. [18] provided a game-theoretic analysis to audit
whether the CSP is in compliance with the data replication policy of SLA. According to
their analysis results, if the storage cost of one replica become larger, the CSP has less
incentive to act honestly. In this case, the TPA will spend more resources on the auditing
works. Lin et al. [19] proposed a game-theoretic model to analyze the conflict between
a user and the CSP, where the user prefers less auditing works and the CSP prefers fewer
replications. The evaluation results show that if the user stores the high-value critical data
in the CSP, he should choose to audit for 1.0 ≤ r ≤ 2.1 in the mild punishment and
1.2 ≤ r ≤ 2.2 in the severe punishment, where r is the number of replicas in CSP’s
replication policy.

Niyato et al. [21] presented a hierarchical cooperative game model to improve the
efficiency and utilization of the resource in multiple CSPs. In this model, a group of CSPs
can cooperate to establish a resource sharing coalition. Mashayekhy et al. [22] introduced
a cloud federation formation game, where CSPs cooperatively offer cloud IaaS services
to fulfill users’ requests on virtual machine instances. CSPs can decide to form coalitions
to dynamically allocate their resources, e.g., cores, memories, and storages.

3. SYSTEM MODEL

Overview. Our model consists of three entities, as illustrated in Fig. 1: a set of users
N = {1, 2, ..., n}, a cloud storage provider CSP , and a social networking service SNS .
Users are individual consumers and organizations, who store their data in CSP . CSP is a
service provider of data storage, who offers data access interfaces to let users store and
retrieve their data. Furthermore, CSP allows users remotely verify the integrity of their
data by using the auditing schemes. SNS is a computing platform, where users build
their friend relationships and upload their auditing results, e.g., Facebook, Twitter, and
Google+.

In SNS , the friend relationship between two users happens after one accepts another’s
friend establishment request. The friend relationship is symmetric if it exists. That is, for
users i, j ∈ N , if i is j’s friend, it implies that j is i’s friend. According to users’ friend
relationships, a friend graph is constructed in SNS . In the friend graph, two users are
connected if they are friends. We regard the friend graph as an undirected graph because

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 131

Fig. 2. The example of friend graph.

of the symmetric property.
For a user, in order to evaluate his opinion about CSP , a CSP score is calculated in

SNS . A user’s CSP score depends on his auditing results. The user’s CSP score will
increase after he uploads a pass result to SNS . On the contrary, his CSP score gets lower
if he gets a fail result in his auditing.

Furthermore, SNS constructs a trust graph based on the friend graph. In the trust
graph, for every two friends, a trust value is assigned between them according to the
difference of their CSP scores. In general, if two friends’ previous opinions about an item
are similar, they can build a high trust for the same item. For example, if formerly two
friends have similar opinions about the food of a restaurant, one can highly trust another’s
opinion before he goes to the same restaurant. In the trust graph, the trust value between
two friends is high if their CSP scores are close. When the trust value between users is
strong enough, one can refer to another’s opinion. Notice that we do not consider the
friend-of-friend relationship. In the trust graph, every user does not set any trust value
between his friend’s friend.

Notation. Here, we establish notations to denote the components in SNS . Let vi(t)
denote user i’s auditing result at time t. If CSP passes i’s auditing, vi(t) = true; other-
wise, vi(t) = false.

We denote ri(t) as user i’s CSP score at time t. For user i ∈ N , ri(t) is evaluated by
the following equation.

ri(t) =

{
ri(t− 1) + α if vi(t) = true

ri(t− 1)− α if vi(t) = false
(1)

where ri(0) = 0 and α is the reputation parameter.
For example, for t = 5 and α = 0.5, assume that user i’s auditing results are vi(1) =

true, vi(2) = true, vi(3) = true, vi(4) = false, and vi(5) = true. According to
Eq.(1), we have ri(1) = ri(0) + 0.5, ri(2) = ri(1) + 0.5, ri(3) = ri(2) + 0.5, ri(4) =
ri(3)− 0.5, and ri(5) = ri(4) + 0.5. As a result, we get ri(5) = 1.5.

Let FG =< V,E > be the friend graph, where V is the set of users and edges
eij ∈ E if users i and j are friends. For example, for a user set N = {1, 2, 3, 4, 5}, users
1 and 2 are friends. Users 1, 3, 4 are user 2’s friends. Users 4 and 5 are friends. The friend
graph of this example is shown in Fig. 2.

Let T G =< V,E,w > be the trust graph, where V and E are the same as those
defined inFG. For two friends i and j, the weight functionw assigns the opinion distance
between them. The weight of edge eij is defined as w(eij) = u(|ri(t) − rj(t)|), where
u is one of the following three functions u1, u2, and u3. Intuitively, for two friends i and

132 CHUNG-YI LIN AND WEN-GUEY TZENG

j, if the difference of their CSP scores ri(t) and rj(t) is small, w(eij) is close to one.
Otherwise, w(eij) is close to zero.

Definition 1 u1 is the step function, which is defined as follows.

u1(x) =

{
1 if x <= θ

0 otherwise
(2)

where θ is the threshold.

Definition 2 u2 is the logistic function, which is defined as follows.

u2(x) =
1

1 + eγ∗(x−θ)
(3)

where γ is the coefficient of growth and θ is the threshold.

Definition 3 u3 is the Gaussian function, which is defined as follows.

u3(x) = e−
x2

2∗σ2 (4)

where σ is the standard deviation.

For example, we consider the trust graph T G =< V,E,w >, where V and E are
based on the friend graph in Fig. 2 and w is the step function u1 with θ = 1. Assume that
we have r1(t) = 5, r2(t) = 4, r3(t) = 4, r4(t) = 3, and r5(t) = 1 at time t. In this case,
we get w(e12) = 1, w(e23) = 1, w(e24) = 1, and w(e45) = 0.

4. AUDITING COALITION GAME

4.1 Game Model Description

Let K ⊆ N be an auditing coalition of users, where K 6= ∅. The
coalition structure CS = {K1, ...,Km} is the set of auditing coalitions, such
that ∀i ∈ N , i is a member in exactly one of K1, ...,Km. For ex-
ample, for user set N = {1, 2, 3}, there are seven possible auditing coali-
tions: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} and five possible coalition structures:
{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1, 2, 3}}.

Let ε be the opinion adoption threshold. For users i, j ∈ T G, if the weight between
them is higher than ε, i can trust j’s auditing results, and vice versa. We denote degree(i)
as the number of i’s adjacent vertices with w(eij) ≥ ε. In an auditing coalition K, if a
user i satisfies degree(i) = |K|−1, he is elected as an opinion leader. The opinion leader
is qualified to audit CSP because his auditing results can be trusted by the other members.
According to the leader’ auditing results, the others can judge the service quality of CSP
without auditing by themselves.

For an auditing coalition K ⊆ N , if one of the users is elected as the opinion leader,
the auditing cost ofK is estimated to be one unit because only the leader needs to perform
the auditing work. Otherwise, if we can not find any opinion leader, the auditing cost of
K is estimated to be |K| units because the users of K have to individually audit by
themselves. Formally, we define the auditing cost of an auditing coalition as follows.

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 133

Definition 4 For K ⊆ N , c(K) is the auditing cost of K, where

c(K) =

{
1 if an opinion leader is found in K

|K| otherwise

For example, given a trust graph in the example of section 3 and set ε = 0.5, we
get c({1, 2, 3, 4}) = 1 since user 2 can be the opinion leader in the auditing coalition
{1, 2, 3, 4}. However, c({2, 4, 5}) = 3 since we can not find any opinion leader in the
auditing coalition {2, 4, 5}.

Furthermore, for a coalition structure CS = {K1, ...,Km}, the overall auditing cost
is the summation of the auditing cost over K1, ...,Km. We define the overall auditing
cost C(CS) as follows.

Definition 5 C(CS) is the overall auditing cost for a coalition structure CS , where

C(CS) =
∑
K∈CS

c(K)

For example, for the coalition structure {{1, 2, 3, 4}, {5}}, C({{1, 2, 3, 4}, {5}}) =
c({1, 2, 3, 4}) + c({5}) = 2.

In the game model, users’ entire benefit is the reduction of the overall auditing cost
after joining the auditing coalitions. Our objective is to find out a coalition structure
with minimal overall auditing cost, which we call an optimal coalition structure CS∗. We
define the optimal coalition structure CS∗ as follows.

Definition 6 An optimal coalition structure CS∗ is a coalition structure, such that

∀CS, C(CS∗) ≤ C(CS)

In summary, the problem of finding optimal coalition structure is that given the user
set N , the objective is to determine a coalition structure CS∗ = {K1, ...,Km}, such that
(a) ∀i ∈ N , i exists in exactly one coalition of K1, ...,Km and (b) the overall auditing
cost of CS∗ is minimal over possible coalition structures.

4.2 One-Iteratioin Algorithm

Algorithm 1 proposes an optimal coalition structure CS∗ in one iteration. The algo-
rithm is executed in SNS at time t = π. We assume that the friend graph FG has been
built, and for user i ∈ N , i’s CSP score ri(π) has been calculated by using his previous
auditing results vi(1), vi(2),...,vi(π).

At the beginning of Algorithm 1, for each friend edge in E, the algorithm assigns
a weight according to users’ CSP scores by using Eqs. (2)-(4) (line 1). After that, the
algorithm constructs an initial trust graph T G (line 2).

In the next phase, the algorithm solves auditing cost minimization problem ACMP
to determine a set of auditing coalitions with the minimal auditing cost (line 3). The
outputs of ACMP are a coalition set P and an auditor set A. Next, Reorganization()
procedure is called to reorganize P such that every user in N exists in only one coalition
(line 4). Finally, the algorithm assigns P as the optimal coalition structure CS∗ (line 5).

134 CHUNG-YI LIN AND WEN-GUEY TZENG

Algorithm 1 One-iteration algorithm
Input: The set of users N ; the friend graph FG; users’ CSP scores

r1(π), r2(π), ..., r|N |(π)
Output: The optimal coalition structure CS∗ and the auditor set A;

// Phase I - Initialize the trust graph
1: For eij ∈ E, w(eij)← u(|ri(π)− rj(π)|);
2: Construct an initial trust graph T G;

// Phase II - Determine the optimal coalition structure
3: P , A← solve ACMP (T G);
4: Reorganization();
5: CS∗ ← P;

4.2.1 Auditing cost minization problem

ACMP is relaxed from the problem of finding optimal coalition structure. In
ACMP , we allow that ∀i ∈ N , i exists in more than one auditing coalition. In our game
model, let Ki be the set that contains user i and i’s adjacent vertices with w(eij) ≥ ε. For
user i ∈ N , Ki will be taken a candidate when we solve ACMP .

The objective of ACMP is to pick auditing coalitions from candidates
K1,K2, ...,Kn, such that the summation of auditing cost is minimal. Let Xi be the indi-
cator variable for Ki, where Xi = 1 if Ki is picked; otherwise, Xi = 0. Furthermore, in
the picked coalitions, we would like to check whether users of N are completely covered.
For user j ∈ N , let pij denote whether the user j exists in the picked coalition Ki, where
pij = 1 and pij = 0 for the true case and the false case, respectively. For user j ∈ N ,
if j exists in the picked coalition Ki, pijXi = 1. Otherwise, pijXi = 0. Thus, if user j
exists in one or more picked coalitions, p1jX1 + p2jX2 + ...+ pnjXn ≥ 1. Otherwise, if
j does not exist in any picked coalition, p1jX1 + p2jX2 + ...+ pnjXn = 0. We transfer
ACMP to the following 0-1 integer linear programming problem (0-1 ILPP).

Minimize
n∑
i=1

c(Ki)Xi (5)

subject to

∀j ∈ N,
n∑
i=1

pijXi ≥ 1, (6)

and

∀i ∈ N,Xi ∈ {0, 1} (7)

The object function (Eq.(5)) is to pick coalitions from K1,K2, ...,Kn to minimize
the sum of auditing cost. The constraints (Eq.(6)) guarantee that for j ∈ N , j exists in
one or more picked coalitions. The constraints (Eq.(7)) indicate whether Ki is picked.

Finally, ACMP generates a set of coalitions P ⊆ {K1,K2, ...,Kn}. In an auditing
coalition of P , we call the opinion leader an auditor. Let aK be the auditor of the auditing
coalition K ∈ P . If Ki is in P , we assign user i as the auditor aKi and put him into the
auditor set A. For example, given the friend graph in Fig. 2 and users’ CSP scores

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 135

r1(π) = 5, r2(π) = 4, r3(π) = 4, r4(π) = 3, r5(π) = 3, ACMP may generate P =
{K2,K4} and A = {2, 4}, where K2 = {1, 2, 3, 4} and K4 = {2, 4, 5}.

In the original problem of finding the optimal coalition structure, the search space of
exhaustive approach is O(|N ||N |) [23]. It grows exponentially with the number of users
|N |. However, in ACMP , we search the optimal solution over K1,K2, ...,Kn. The
search space of ACMP can be downsized to O(|N |).

Notice that the optimum solution of ACMP may not be the coalition structure. For
example, for P = {{1, 2, 3, 4}, {2, 4, 5}}, users 2 and 4 exist in two coalitions. P is not
the coalition structure if any user exists in more than one coalition.

4.2.2 Reorganizing coalition set

In Reorganization() procedure, we would like to reorganize the coalition set P , such
that for user i ∈ N , i exists in exactly one coalition. We consider users’ individual
auditing cost in this procedure. In an auditing coalition K, the auditing cost c(K) is
divided among its members. Let f(i,K) be member i’s divided cost in the auditing
coalition K. If i is an auditor, we set his divided cost be 0 as an incentive for his auditing
task. Otherwise, f(i,K) = c(K)

|K|−1 .
The detail steps of Reorganization() procedure are presented in Algorithm 2. First,

for i ∈ N , it determines a coalition K∗ with the minimal divided cost over P (line 2).
Notice that if i is not a member ofK, we set f(i,K) = 1. Then, exceptK∗, the algorithm
removes i from rest coalitions K ∈ P if K owns i (line 3).

Algorithm 2 Reorganization()
1: for all i ∈ N do
2: K∗ ← argmin∀K∈P f(i,K)
3: ∀K ∈ P , except K∗, remove i from K if i ∈ K;
4: end for

After reorganizing, the coalition set P can be an optimal coalition structure. For
example, assume that ACMP generates a coalition set P = {{1, 2, 3, 4}, {2, 4, 5}}.
Users 1, 3, and 5 will not be moved because the minimal divided cost happens in their
staying coalitions. We would like to move users 2 and 4 such that they do not exist in
more than one coalition. For user 2, we have f(2, {1, 2, 3, 4}) = 0 and f(2, {2, 4, 5}) =
1

3−1 = 1
2 . Thus, for user 2, K∗ is {1, 2, 3, 4}. The coalition {2, 4, 5} becomes {4, 5}

after 2 is removed. Next, for user 4, we have f(4, {1, 2, 3, 4}) = 1
3 and f(4, {4, 5}) = 0.

The coalition {1, 2, 3, 4} becomes {1, 2, 3} after 4 is removed. Finally, the coalition set P
becomes {{1, 2, 3}, {4, 5}}. Because {{1, 2, 3}, {4, 5}} is a coalition structure with the
minimal auditing cost, we can take it as an optimal coalition structure.

In one iteration, if an optimal coalition structure CS∗ is determined, for K ∈ CS∗,
any user of K does not have incentive to leave K and join another coalition K ′. Here, we
describe the reason. Let CS ′ be a coalition structure that contains the auditing coalitions
after a user i leftK and joinedK ′. According to the definition of CS∗, we haveC(CS ′) ≥
C(CS∗). If C(CS ′) > C(CS∗), for all users, they will pay more overall auditing cost .
On the other hand, if C(CS ′) = C(CS∗), users can not get less overall auditing cost on
forming K ′. For above two cases, if users’ entire benefit is considered, the user i prefers
to stay in K rather than to leave because the overall auditing cost does not be reduced.
On the other hand, if we consider i’s individual interest, he will still not leave from the
assigned coalition K because the divided cost is already the lowest.

136 CHUNG-YI LIN AND WEN-GUEY TZENG

4.3 Multi-Iteration Algorithm

Algorithm 3 is extended from Algorithm 1 to multi-iterations. The algorithm is per-
formed iteratively to change auditing coalitions. With the iteration going on, users con-
tinually inspect the auditing result received from their auditors. If a user finds that he
receives wrong auditing results, he may join another auditing coalition in the next itera-
tion. In each iteration, the algorithm may generate a new optimal coalition structure. Let
m be the termination parameter. If the optimal coalition structure is not changed in m
rounds, the algorithm terminates.

First, Algorithm 3 similarly constructs an initial trust graph T G (lines 1-2). Next, the
algorithm iteratively adjusts the optimal coalition structure and the trust graph (lines 3-9).
In each iteration, the algorithm follows the lines 3-5 of Algorithm 1 to determine a new
optimal coalition structure according to the current trust graph (line 4-6). After that, the
algorithm calls AdjustTrustGraph() procedure to adjust the trust graph T G (line 7). In the
end of each iteration, t is set as t + 1 (line 8). The iteration terminates until the optimal
coalition structure CS∗ has no change in m rounds (line 9).

Algorithm 3 Multi-iteration algorithm.
Input: The set of users N ; the friend graph FG; users’ CSP scores

r1(π), r2(π), ..., r|N |(π)
Output: The optimal coalition structure CS∗ and the auditor set A;

// Phase I - Initialize the trust graph
1: For eij ∈ E, w(eij)← u(|ri(π)− rj(π)|);
2: Construct an initial trust graph T G;

// Phase II - Determine the optimal coalition structure
3: repeat
4: P , A← solve ACMP (T G);
5: P ← Reorganization();
6: CS∗ ← P;
7: T G ← AdjustTrustGraph();
8: t← t+ 1;
9: until CS∗ has no change in m rounds

4.3.1 Adjusting trust graph

We denote vaK (t) as the auditor aK’s auditing result at time t. For user i ∈ N ,
if i receives vaK (t) = true and finds that there are errors in his data after retrieving
them, he may miss the errors in the auditing work. In this case, we call that i receives a
false-negative auditing result. If i receives vaK (t) = false and gets correct data, vaK (t)
becomes a false alarm for him. This case is a false-positive auditing result. On the other
hand, i may have true-positive and true-negative auditing results if vaK (t) is correct for
him. In summary, as in Table 1, users’ auditing results fall into four cases.

Table 1. Cases of users’ auditing results.
retrieving wrong data retrieving correct data

vaK (t) = false true-positive false-positive

vaK (t) = true false-negative true-negative

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 137

For user i ∈ N , after determining the case of his auditing result, he uploads his
feedback to SNS . In SNS , according to i’s feedback at time t, ri(t) is updated by using
the following equation.

ri(t) =


ri(t− 1) + α if i’s feedback at time t is true-negative

ri(t− 1)− α if i’s feedback at time t is true-positive

ri(t− 1) if i’s feedback at time t is false-negative

ri(t− 1)− 2α if i’s feedback at time t is false-positive

(8)

Here, we describe the procedure to adjust the trust graph T G, which is presented in
Algorithm 4. First, for i ∈ N , the algorithm updates i’s CSP score at time t according to
Eq.(8) (line 1). Next, for eij ∈ E, a new weight is assigned (line 2). Finally, the algorithm
adjusts T G by using the new weights (line 3).

Algorithm 4 AdjustTrustGraph().
1: For i ∈ N , update i’s CSP score ri(t) according to Eq.(8);
2: For eij ∈ E, w(eij)← u(|ri(t)− rj(t)|);
3: Adjust the trust graph T G;

5. EXPERIMENTAL RESULT

We set the weight function of trust graph to be a logistic function, where γ = 10
and θ = 4. Furthermore, we set the opinion adoption threshold by ε = 0.5. In the
multi-iteration experiment, termination parameter m is set as three.

5.1 Experimental Data Generation

WikiLens dataset is the records of feedback from users. The users’ feedback records
can be used for evaluating a recommendation system. In WikiLens dataset, 408 users give
26937 ratings for 5650 items.

In our experiment, we use the ratings in WikiLens dataset to simulate users’ CSP
scores at time t = π. First, we group users by their rated items. The users who
rate the same item will be put into the same group. Next, we pick five user sets with
|N | = 10, 20, 30, 40, 50. Our simulated user sets are shown in Table 2, where rmax,
rmin, rmean, and rsd are the maximum, minimum, mean, standard deviation of the rating
value, respectively. In a user set N , for user i ∈ N , we take the rating value of i as i’s
CSP score ri(π) at time π.

ER random graph [11] G(V, p) is a graph, where the vertices are the elements of V
and the edges are generated by the probability p. For user set N = N10, N20, ..., N50, we
set V = N and generate loosely-coupled and tightly-coupled friend graphs with p = 0.3
and p = 0.8, respectively.

5.2 Result Analysis

We use the auditing cost reduction ratio ACRR to analyze the efficiency of auditing
cost reduction at time t. Let UCoriginal be the summation of the original auditing cost,
where users individually audit by themselves. UCoriginal increases with the number of

138 CHUNG-YI LIN AND WEN-GUEY TZENG

Table 2. Simulated user set.
ID # of users rmax rmin rmean rsd

N10 10 5 -3 2.35 3.7

N20 20 5 -3 2.45 3.27

N30 30 5 -3 2.93 2.86

N40 40 5 -3 3.24 2.53

N50 50 5 -3 3.25 2.4

users. Let UCreduced be the summation of the reduced auditing cost at time t, where
users cooperatively audit. ACRR is defined by the following equation.

ACRR =
UCoriginal − UCreduced

UCoriginal
(9)

Furthermore, we use the accuracy ratio AR to evaluate the accuracy of overall users’
auditing works at time t. AR is the proportion of users who receive correct auditing
results at time t. Let TP and TN be the number of users who have true-positive and true-
negative auditing works at time t, respectively. AR is determined by using the following
equation.

AR =
TP + TN

|N |
(10)

5.2.1 One-iteration experiment

In the experiment of one-iteration algorithm, we consider loosely-coupled and
tightly-coupled friend graphs for user set N = N10, N20, ..., N50. Table 3 shows the
number of auditing coalitions for the loosely-coupled and tightly-coupled friend graphs
in the one-iteration experiment. The results show that for user setN = N10, N20, ..., N50,
the number of auditing coalitions in the tightly-coupled friend graph is less than that in
the loosely-coupled friend graph. It indicates that users are easier to join the auditing
coalition with others if they like to make friends.

Fig. 3 shows ACRR of the one-iteration experiment for user set N =
N10, N20, ..., N50. In Fig. 3, with the number of users increasing from 10 to 50, ACRR
is enhanced from 60% to 90% and from 80% to 96% for the loosely-coupled and tightly-
coupled friend graphs, respectively. The result illustrates that more users in our coopera-
tive auditing model, the more auditing cost reduction. Furthermore, in Fig. 3, for user set
N = N10, N20, ..., N50,ACRR is larger if the friend graph is tightly-coupled. Compared
to the loosely-coupled friend graph, because users have more choices of forming the au-
diting coalition in the tightly-coupled friend graph, they can find out an optimal coalition
structure with less overall auditing cost.

Fig. 4 shows AR of the one-iteration experiment for user setN = N10, N20, ..., N50.
Firstly, with the number of users growing from 10 to 50, AR drops from 100% to 88%
and from 100% to 90% for the loosely-coupled and tightly-coupled friend graphs, respec-
tively. The result demonstrates that when the number of users grows, the proportion of
receiving correct auditing results becomes less. Secondly, for user set N = N30, ..., N50,
AR of the tightly-coupled friend graph is higher than that of the loosely-coupled friend
graph. In the tightly-coupled friend graph, because users have more friends, the probabil-
ity of choosing the correct one is higher.

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 139

Table 3. The number of auditing coalitions in the one-iteration experiment.
if FG is loosely-coupled if FG is tightly-coupled

N10 4 2

N20 3 2

N30 3 2

N40 5 2

N50 5 2

60.0%

85.0%

90.0%

87.5%

90.0%

80.0%

90.0%

93.3%
95.0%

96.0%

50%

60%

70%

80%

90%

100%

N₁₀ N₂₀ N₃₀ N₄₀ N₅₀

A
C

R
R

Users set

loosely-coupled friend graph tightly-coupled friend graph

Fig. 3. ACRR of the one-iteration experiment for user set N = N10, N20, ..., N50.

5.2.2 Multi-iteration experiment

We consider that multi-iteration algorithm would terminate if CS∗ is not changed in
three rounds (m = 3). Fig. 5 displays ACRR of the multi-iteration experiment for user
set N50. The results show that if the friend graph is loosely-coupled, ACRR drops from
90% to 88% at time t = 17. A user forms a new auditing coalition by himself because
he can not find any friend whose opinion is close to his. That leads more auditing cost
and trims the reduction. On the other hand, in Fig. 5, for the tightly-coupled friend graph,
ACRR does not change from start to end of the iteration. If a user has many friends, he
could have many auditing coalitions to choose after he left the original one. The overall
auditing cost is not changed if the user can join another auditing coalition.

Fig. 6 presents AR of the multi-iteration experiment for the user set N50. The results
show that for the loosely-coupled friend graph, AR rises from 88% to 98% at time t =
13. It indicates that five users’ auditing results become correct after they moved to other
auditing coalitions. At time t = 16, AR drops to 94%. Totally, there are three users

100.0%

95.0%
93.3% 92.5%

88.0%

100.0%

95.0%
96.7% 97.5%

90.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

N₁₀ N₂₀ N₃₀ N₄₀ N₅₀

A
R

Users set

loosely-coupled friend graph tightly-coupled friend graph

Fig. 4. AR of the one-iteration experiment for user set N = N10, N20, ..., N50.

140 CHUNG-YI LIN AND WEN-GUEY TZENG

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

10 11 12 13 14 15 16 17 18 19 20

A
C
R
R

t

loosely-coupled friend graph tightly-coupled friend graph

Fig. 5. ACRR of the multi-iteration experiment for user set N50.

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

10 11 12 13 14 15 16 17 18 19 20

A
R

t

loosely-coupled friend graph tightly-coupled friend graph

Fig. 6. AR of the multi-iteration experiment for user set N50.

who receive wrong auditing result at that moment. At time t = 17, AR increases by 2%.
One of the three users receives correct auditing results because he forms a new auditing
coalition by himself and becomes an auditor. AR peaks at 100% when the algorithm
terminates at time t = 20. All users receive correct auditing results at the end of the
iteration. On the other hand, in Fig. 6, AR of the tightly-coupled friend graph rises from
90% to 100% at time t = 14. It indicates that users spend less time to find correct auditing
coalitions if they have more auditing coalitions to choose in each iteration.

Furthermore, the results of Fig. 5 and Fig. 6 indicate that users may lose the reduction
in their auditing cost, but they can improve the accuracy of their auditing works in the end
of iteration. For example, for the loosely-coupled friend graph, ACRR falls by 2%, but
AR grows by 12% in the end of iteration. In this case, one user’s extra auditing cost leads
to entire auditing results become more precise.

6. CONCLUSION

In this paper, we propose a cooperative model in cloud storage auditing to reduce
overall users’ auditing cost. In this model, users can utilize their friends’ auditing results
and avoid paying redundant cost on their auditing works. To motivate users to involve the
cooperative auditing model, we design an auditing coalition game by using cooperative
game theory. The purpose of auditing coalition game is to assign users into an optimal
auditing structure. We present two algorithms to get the optimal auditing structure. In the
first algorithm, the optimal auditing structure is determined in one iteration. The second
algorithm iteratively adjusts the trust graph. In each iteration, users can change to another
auditing coalition to get correct auditing results.

The results of the one-iteration experiment show that if users make more friends,

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 141

they can form less auditing coalitions to cover their auditing works. Furthermore, our
game model has more reductions in auditing cost with the number of users growing.
The maximum of auditing cost reduction peaks at 96% for the user set N50 with the
tightly-coupled friend graph. In the multi-iteration experiment, some users may bear
extra auditing cost, but entire auditing results become more precise. All users can receive
correct auditing results in the end of iteration.

According to this work, users can adopt the cooperative model into the existing cloud
storage audit mechanisms. For users, if the cost on their auditing works becomes large,
they can use one-iteration algorithm to reduce their overall auditing cost. On the other
hand, users can apply multi-iteration algorithm to improve the accuracy of auditing results
if they store high-value critical data in CSP , e.g., the high-value transaction logs and their
family photos. Furthermore, if there is CSP ′ in the market, users can omit the process for
collecting the auditing history of CSP ′. Based on users’ existing trust graph, their auditing
results for CSP can be taken as a reference when they play the auditing coalition game for
CSP ′.

For the future work, we plan to further reduce users’ auditing cost by considering
the friend-of-friend relationship. Users can utilize the auditing results from their friends’
friends. In other words, an auditor could offer more users his auditing results. If two
auditors are friends, their auditing coalitions could merge into a big one. Because the
number of auditing coalitions becomes less, we expect to get an advanced reduction in
auditing cost.

REFERENCES

1. J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the infrastructure of
cloud computing,” in Proceedings of International Conference on Intelligent Com-
puting and Cognitive Informatics, 2010, pp. 380–383.

2. E. Walker, W. Brisken, and J. Romney, “To lease or not to lease from storage clouds,”
Computer, Vol. 43, 2010, pp. 44–50.

3. L. Mastroeni and M. Naldi, “Storage buy-or-lease decisions in cloud computing un-
der price uncertainty,” in Proceedings of the 7th EURO-NGI Conference on Next
Generation Internet Networks, 2011, pp. 1–8.

4. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,
“Provable data possession at untrusted stores,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2007, pp. 598–610.

5. A. F. Barsoum and M. A. Hasan, “Provable multicopy dynamic data possession in
cloud computing systems,” IEEE Transactions on Information Forensics and Secu-
rity, Vol. 10, 2015, pp. 485–497.

6. C. Lin, Z. Shen, Q. Chen, and F. T. Sheldon, “A data integrity verification scheme in
mobile cloud computing,” Journal of Network and Computer Applications, Vol. 77,
2017, pp. 146–151.

7. A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large files,” in Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security,
2007, pp. 584–597.

8. J. Li, X. Tan, X. Chen, D. S. Wong, and F. Xhafa, “Opor: Enabling proof of retriev-
ability in cloud computing with resource-constrained devices,” IEEE Transactions on
Cloud Computing, Vol. 3, 2015, pp. 195–205.

142 CHUNG-YI LIN AND WEN-GUEY TZENG

9. D. Etheringto, “Amazon aws s3 outage is breaking things for a lot of websites
and apps,” https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-
things-for-a-lot-of-websites-and-apps/, 2017.

10. G. Chalkiadakis, E. Elkind, and M. Wooldridge, “Computational aspects of cooper-
ative game theory,” Synthesis Lectures on Artificial Intelligence and Machine
Learn-ing, Vol. 5, 2011, pp. 1–168.

11. P. Erdős and A. Rényi, “On random graphs i,” Publicationes Mathematicae (Debre-
cen), Vol. 6, 1959, pp. 290–297.

12. Y. Zhu, H. Hu, G. J. Ahn, and M. Yu, “Cooperative provable data possession for
integrity verification in multicloud storage,” IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 23, 2012, pp. 2231–2244.

13. C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for data
storage security in cloud computing,” in Proceedings of IEEE INFOCOM, 2010, pp.
1–9.

14. C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public audit-
ing for secure cloud storage,” IEEE Transactions on Computers, Vol. 62, 2013, pp.
362–375.

15. C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and R. Kotagiri, “Au-
thorized public auditing of dynamic big data storage on cloud with efficient verifi-
able fine-grained updates,” IEEE Transactions on Parallel and Distributed Systems,
Vol. 25, 2014, pp. 2234–2244.

16. J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong, “Privacy-preserving public auditing
protocol for low-performance end devices in cloud,” IEEE Transactions on Informa-
tion Forensics and Security, Vol. 11, 2016, pp. 2572–2583.

17. Z. Zhou, H. Zhang, X. Yu, and J. Guo, “Audit meets game theory: Verifying reliable
execution of sla for compute-intensive program in cloud,” in Proceedings of IEEE
International Conference on Communications, 2015, pp. 7456–7461.

18. Z. Ismail, C. Kiennert, J. Leneutre, and L. Chen, “Auditing a cloud provider’s com-
pliance with data backup requirements: A game theoretical analysis,” IEEE Transac-
tions on Information Forensics and Security, Vol. 11, 2016, pp. 1685–1699.

19. C.-Y. Lin and W.-G. Tzeng, “Strategy analysis for cloud storage reliability manage-
ment based on game theory,” Journal of Computer Security, Vol. 25, 2017, pp. 1–19.

20. D. Fudenberg and J. Tirole, Game Theory, MIT Press, MA, 1991.
21. D. Niyato, A. Vasilakos, and Z. Kun, “Resource and revenue sharing with coalition

formation of cloud providers: Game theoretic approach,” in Proceedings of the 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2011,
pp. 215–224.

22. L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in the sky: Forma-
tion game and mechanism,” IEEE Transactions on Cloud Computing, Vol. 3, 2015,
pp. 14–27.

23. T. Rahwan, T. P. Michalak, M. Wooldridge, and N. R. Jennings, “Coalition structure
generation: A survey,” Artificial Intelligence, Vol. 229, 2015, pp. 139–174.

A COOPERATIVE GAME IN CLOUD STORAGE AUDITING 143

Chung-Yi Lin (林林林崇崇崇頤頤頤) received his B.S. degree in Com-
puter Science and Engineering from Yuan Ze University, Tai-
wan, in 2001; and M.S. degree in Information and Computer
Engineering from Chung Yuan Christian University, Taiwan, in
2003. He is currently a Ph.D. student in the Department of Com-
puter Science at National Chiao Tung University, Taiwan, and
under the supervision of Prof. Wen-Guey Tzeng. His current
research interests include Information Security and Network Se-
curity.

Wen-Guey Tzeng (曾曾曾文文文貴貴貴) received his B.S. degree in
Computer Science and Information Engineering from National
Taiwan University, Taiwan, in 1985; and M.S. and Ph.D. degrees
in Computer Science from the State University of New York at
Stony Brook, USA, in 1987 and 1991, respectively. He joined
the Department of Computer Science, National Chiao Tung Uni-
versity, Taiwan, in 1991. His current research interests include
Cryptology, Information Security and Network Security.

