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Experimental programs for conducting related scientific computing or engineering 

simulations often share common steps but differ in their workflows. Although switching 

between different workflows within a single program is possible, those switches prevent 

from understanding the individual experimental workflows. To domain experts, it is usu-

ally tricky to modularize experimental programs for maintenance and comprehension. 

Suppose common steps in these workflows can be wrapped up as components in a tiny 

visual language. The experiments can be expressed as programs written in that language 

and even constructed by drag-and-drop. It not only hides implementation details in each 

step but also improves program comprehension. However, existing domain-specific visual 

languages (DSVLs) are not targeted for full customization so far as we know. We propose 

customizing a user-defined DSVL to represent different experimental workflows and fol-

low Dijkstra’s sequencing discipline in structured programming to develop a proof-of-

concept framework. For discussion, a tiny DSVL for running wind turbine system simula-

tion was then built upon as an example, and a comparison with existing visual frameworks 

was made based on diagram style, component set, and program construction. Our approach 

can help domain experts to express the experimental concern and quickly construct pro-

grams for running related experiments. Supporting complex syntax and parallel computing 

are included in our future work. 

 

Keywords: domain-specific language, visual programming language, code modularity, 

workflow management system, flowchart 

 

 

1. INTRODUCTION 
 

Programming techniques are essential in science and engineering domains, but scien-

tists and engineers might not be experts in programming. Without advanced programming 

techniques or good programming support, they may repeatedly write similar programs for 

conducting scientific computing and engineering simulations. Such programs can be diffi-

cult to understand, modify, and reuse. How to support domain experts in developing these 

programs is a known issue [1] that has been studied for many research activities, including 

domain-specific languages (DSLs) and visual programming languages (VPLs). Many 

DSLs, such as COBOL, SQL, Verilog, and MATLAB, have shown effectiveness in help-
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ing users develop and maintain programs for a particular domain. Their language cons-

tructs are tailored to fit the needs of a specific domain, and therefore, the semantics tend 

to be simpler than those of general-purpose languages (GPLs). The total number and com-

binations of built-in language constructs are small, resulting in a straightforward syntax, 

simple semantics, and a shallow learning curve. For the code written in SQL, for example, 

the use of SELECT-FROM-WHERE has only one meaning. Programmers will not unin-

tentionally misuse the clause and cannot intentionally abuse it. For programmers who read 

and maintain the code, the risk of misunderstanding the code can be reduced. However, 

customizing and extending the language constructs in these DSLs are often tricky. For 

people who are not programming experts, adding or removing language constructs is not 

easy, nor is it realistic in a proprietary standalone DSL. In order to bridge the gap between 

GPLs and DSLs, domain-specific embedded languages (DSELs) were developed [2]. It 

enables the use of various libraries and toolchains for the host language, such as parsers, 

debuggers, and editors. Domain-specific libraries developed for Python, such as the SciPy 

Stack and TensorFlow, can be classified as the DSEL approach since the semantics behind 

their programs are quite different from the ones in plain Python. In those programs, func-

tion calls can be regarded as the language constructs in the DSEL to instantiate objects and 

perform operations. Matrices are represented with array objects instead of native nested 

lists, and assignments/evaluations are done by function calls rather than variable access. 

However, there is still room to help programmers design and understand the relations be-

tween the function calls in these domain-specific libraries. Unfortunately, checking whe-

ther a combination of function calls and language constructs is valid requires advanced 

programming techniques. Although many sophisticated DSL frameworks were developed 

for either shallow embedding or deep embedding, DSL development itself remains diffi-

cult for people who are not programming experts. 

On the other hand, VPLs have been intensively discussed and known for their ability 

to help novice programmers [3, 4]. They provide a visual environment to generate pro-

grams in a multidimensional (basically two-dimensional) fashion rather than one-dimen-

sional text streams. VPL systems usually make the mechanics of programming more man-

ageable, lower the barriers to programming [5], and remove the necessity to remember the 

syntax of programming languages [6]. VPL has been used to build environments for either 

standalone DSLs or GPLs for a long time, and recently, it has attracted interest again be-

cause of the appearance of Scratch [7] and Blockly [8]. Many research activities are de-

voted to developing domain-specific visual languages (DSVLs) for various applications 

[9-13] and discussing the design and modeling of DSVLs [14, 15]. However, existing 

DSVLs focus on implementing programs with a given component set based on existing 

language constructs rather than using a customized component set for hiding implementa-

tion details in individual components. On the other hand, DSVL frameworks [16, 17] are 

usually targeted at programming experts. As a result, nonexperts cannot easily design their 

fully customized DSVLs for writing and running experimental programs. 

To simplify the development of experimental programs in specific domains, we pro-

pose using a lightweight, user-defined DSVL to modularize code. Our approach is targeted 

at domain-specific experiments described as workflows. Programmers in science and en-

gineering domains can manage their experiment programs by wrapping their code pieces 

as visual components and conduct experiments by arranging them in a visual framework. 

To the best of our knowledge, no research activity has been devoted to supporting people 
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who are not programming experts in designing a customized set of language constructs for 

conducting experiments. Existing DSVLs usually support a given set of language con-

structs to program, and the use of DSL/DSVL frameworks usually needs programming 

skills and requires knowledge about metaprogramming. The contribution of this paper is 

threefold. First, we discuss conducting experiments as a concern whose code needs to be 

modularized and separated from other concerns. Second, we propose using user-defined 

DSVLs to separate the concern of conducting scientific and engineering experiments from 

others. Third, we concretely show how a tiny DSL built atop our proof-of-concept imple-

mentation can modularize experimental programs. 

2. MOTIVATION 

Many scientific computing and engineering simulation programs are programmable 

to conduct a series of related experiments. These experiments often share standard modules 

in the workflows, and conducting an experiment is to select some of them for execution 

[18]. In this case, instead of developing and maintaining a set of programs, writing a con-

figurable program is desirable. For example, researchers in mechanical engineering might 

develop an idea on system controlling logic and want to run simulations to verify their 

hypotheses. They may first implement a draft workflow for system control and find an 

optimized workflow for a given scenario after repeatedly reordering steps or changing con-

ditions. Every step in a workflow is a particular operation, and a workflow represents an 

algorithm for performing proper operations according to system conditions. In order to 

change the order of steps, researchers might use parameter files, preprocessor directives, 

and if-else/goto statements to modify the concatenation of steps for switching between 

different workflows. Furthermore, selections and repetitions are also heavily used for con-

trolling the execution flow inside a workflow. Researchers may experimentally set certain 

combinations of selections and repetitions of these steps to construct a workflow, observe 

the running results, and modify the combinations to rerun the experiment. 

These concatenations (sequences), selections (branches), and repetitions (loops) are 

kinds of switches, and they are exactly the ones discussed in structured programming [19]. 

However, in this case, they are used to configure program execution rather than handle 

data; they are an approach to generate a set of programs for experiments. These programs 

that result from the switches can be considered a software product line [20]. It might re-

mind readers of feature-oriented programming [21], but here we focus on switching be-

tween execution flows inside a single program. The code of these switches, i.e., the con-

figuration for controlling execution flow, is a concern that differs from those in individual 

steps; they are implemented for conducting experiments and need to be separated from 

other implementations [22]. As shown in Fig. 1, we name it “the experimental concern” to 

distinguish it from other concerns. When modifying the code for running experiments, the 

code for other concerns should not be touched. On the other hand, the code for the experi-

mental concern should not be affected by the modification in individual steps. If these 

codes for the experimental concern can be separated from individual step implementations, 

code modularity could be improved. Therefore, the reusability and maintainability would 

be better. In this way, programmers who run experiments can be different from those who 

implement steps. Although many advanced techniques such as metaprogramming are 
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available to modularize the experimental concern, they are too difficult to learn and use 

for people who are not programming experts. A more straightforward approach is to wrap 

up implementation details for individual steps with functions, but there are still two chal-

lenges. First, the code for the experimental concern is still there if programmers use only 

a single program to run various experiments. Writing different programs for individual 

workflows is helpful, but a good development strategy is needed to manage these programs. 

Second, the constraints on the combination of function calls must be carefully considered 

and noted. Suppose a function call can only be followed by specific functions calls [23]. 

This constraint should be well designed in library functions, otherwise it will be repre-

sented within the experimental concern code. If we divide the single program into a set of 

programs, these constraints will be eliminated.  

 

 
Fig. 1. The experimental concern. 

 

This observation led us to combine the concepts of user-defined DSL and VPL for 

experimental programs. DSLs can help separate the experimental concern from other con-

cerns while defining the constraints on the combination of language constructs. Every code 

block in Fig. 1 for implementing a step can be wrapped up as a language construct for 

hiding implementation details and checking the constraints. Experimental programs can 

then be described with these language constructs and contain only the experimental con-

cern. On the other hand, VPLs can help the understanding of workflows. People who are 

not programming experts can write and read experimental programs visually. Although 

research activities have been performed on DSVLs, to the best of our knowledge, no one 

has been devoted to delivering a lightweight framework for conducting experiments with 

user-defined DSVLs. 

3. A VISUAL FRAMEWORK FOR USER-DEFINED DSLS 

We propose representing the steps in workflows with a user-defined DSL and using 

a visual framework to quickly assemble programs for running experiments, as shown in 

Fig. 2. The functions for individual steps can be considered the language constructs of a 

DSL, and every program for running a particular experiment is a program written in this 
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DSL. Because the DSL hides the implementation details for individual steps, programs 

written in this DSL can purely represent workflows, and visualizing these programs can 

help to understand these workflows. Scientists and engineers who know the details of the 

steps are DSL developers, and scientists/engineers who design and run experiments are 

DSL users. 

 
Fig. 2. Representing with a user-defined DSL. 

3.1 The Elements in the Experimental Concern 

As mentioned in Section 2, the experimental concern is implemented for quickly 

switching between execution flows for different experiments. Programmers may want to 

exchange two steps in a workflow, modify the condition for selecting between two steps, 

or change the condition for repeating a step. For example, wind turbine system developers 

may run a series of simulations with different model controlling logics and observe the 

gained energy output under random wind speeds. They may first implement several models 

for working under different wind speed conditions and define a controlling logic to switch 

between these models in order to gain the maximum energy output. According to the sim-

ulation results, they can refine configurations in the controlling logic. Since there are var-

ious design goals such as high efficiency and low noise, developers may design different 

controlling logics and run similar simulations repeatedly. We can concretely consider what 

configurations are involved in the experimental concern with this wind turbine system ex-

ample. Because the experimental concern code is written for setting how to execute the 

steps for workflows, it possibly consists of three things: 
 

Switches for assembling different workflows. They are used for statically generating a set 

of programs. During the execution of the program, these switches are not changed. For 

example, wind turbine system developers might fuse different workflows into a single pro-

gram for convenience, though only one workflow will be selected for program execution. 

They are usually implemented with parameter files and preprocessor directives. We sug-

gest dividing the program into a set of programs rather than switching between the code 

inside a program. Although combining several workflows in a program is a general strat-

egy to avoid copy-and-paste of code, it also decreases the readability of programs. If every 

step can be represented with a DSL language construct, we can simply write programs for 

every workflow without worrying about copying and pasting the details in steps. 
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Configurations within a workflow. These configurations are used to modify the setting 

for a workflow and are usually implemented with if-else and do-while approaches. In the 

wind turbine system example, they are the logic that controls the system to switch between 

models for reacting to wind speeds. Although they also rely on runtime conditions in the 

program, they are different from the conditions used inside each step. They are some sort 

of hyperparameter for configuring the workflow rather than individual steps. This part 

should be maintained in the programs written in a DSL. 

Constraints on the step combination. In a series of experiments, some constraints might 

be placed on how the steps can be set since some step combinations might not be reason-

able. For example, a wind turbine system running on a specific model might only be al-

lowed to switch to certain models. These constraints are similar to API usage rules in li-

brary functions [23]. If we use a DSL to hide the implementation details in steps and write 

different programs for individual workflows, the constraints on arranging the steps must 

be preserved. These constraints are often hidden in the switches for assembling different 

workflows and the configurations within a workflow. After steps are represented with lan-

guage constructs in a DSL, the constraints should be encoded in the usage of these lan-

guage constructs. 

3.2 The Requirements of the Visual Framework Design for User-Defined DSLs 

To support user-defined DSLs with a visual framework for improving the code mod-

ularity of experimental programs, we analyze user scenarios and list the following require-

ments of the design of this visual framework: 

1) The visual framework must support at least the three types of decomposition in struc-

tured programming: concatenation (sequence), selection (branch), and repetition 

(loop). Since the three types of decomposition are the basics of programming languages 

and the experimental concern code heavily relies on them, they must be supported with 

visual programming. Users can design their own DSLs based on them rather than cre-

ating them every time. 

2) Every visual component should be mapped to a single language construct in the user-

defined DSL and vice versa. This one-to-one mapping is to avoid ambiguity in program 

visualization. After programs are implemented with the user-defined DSL, they can 

always be loaded to obtain the same program visualization results, regardless of 

whether they are written in the visual framework or by any other editors. In addition, 

these visual components must be designed for being used with the three types of de-

composition. 

3) A program is a code piece written in the user-defined DSL for representing an individ-

ual workflow. In other words, programs running on this visual framework should con-

tain only the code in the user-defined DSL. It is encouraged to define a program for a 

single workflow statically to avoid mixing multiple workflows. 

4) A visual editor must be provided to visualize, store, and load programs written in the 

user-defined DSL. Supporting only visual programming or program visualization is in-

sufficient. A visual editor for both reading and writing programs must be provided to 

simplify the creation and modification of experiment programs written in the user-de-

fined DSL. 

5) The constraints on the combination of language constructs should be checked when 
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connecting them in the visual editor. Although the usage of language constructs in a 

program will be checked during code generation, immediately performing the check 

on the visual editor can help users see where the problem is. It means that the usage 

check on the user-defined DSL must be visualized, for example, showing errors when 

trying to connect two visual components illegally. 

4. A PROOF-OF-CONCEPT IMPLEMENTATION: MASONPY 

Based on the requirements stated above, we implemented a draft version of this visual 

framework, MasonPy1, to show the feasibility and discuss its usage and benefits. Currently, 

MasonPy supports only restricted topology flowcharts rather than allowing arbitrary con-

nections between any visual component. MasonPy only provides the three types of decom-

position by default: sequence, branch, and loop; it minimizes the set of built-in components 

in user DSVLs. We followed Dijkstra’s sequencing discipline in structured programming 

[19] and flowchart techniques for structured programming [24]. This design decision al-

lows the development and usage of user-defined DSVLs to stay simple for our potential 

users. Compared with other flowchart standards, such as ANSI/ISO symbols, MasonPy 

only has flowline, terminal, process, and decision components. Although flowcharts have 

been studied for a long time and programming experts might recommend UML-like dia-

grams rather than flowcharts for software development, many research results still show 

that flowcharts help understand and discuss uncomplicated cases. Furthermore, the engi-

neering workflow discussed in Section 2 can be naturally described with a flowchart. The 

three types of decomposition are even introduced in computational thinking education [25] 

because they are the basics of programming and are supported in most languages. 

MasonPy users can create their DSLs on top of it and let their users write programs 

with the DSL. Typically, developing DSL components requires domain and programming 

knowledge. However, MasonPy provides necessary built-in components and a component 

template to decrease the difficulty of creating user-defined DSLs. Furthermore, the user-

defined DSL users can generate programs by dragging and dropping the components on 

our visual editor instead of writing textual code directly. Thus, the users of MasonPy need 

little programming knowledge, and the users of these DSLs can even be unaware of the 

implementation details of DSLs. Defining a DSL helps separate the experimental concern 

and modularize the code for different steps in workflows. 

4.1 The Syntax and Interpretation 

MasonPy is built on top of Python. Currently, the syntax of DSLs on MasonPy is 

based on the syntax of Python. Every step in a workflow is represented as a list in Python: 

[Identifier, Type, InputLinks, OutputLinks, Parameters] 

where Identifier is the unique name of the component in the program, and Type is used to 

specify which kind of DSL component it is. The elements in InputLinks and OutputLinks 

are named slots to connect with other components, and Parameters are the parameters for 

                                                 
1 This version is available on our project page: http://psl.csie.ncu.edu.tw/masonpy. 
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this component. For example, a Decision component named isSpeedLargerThanFive is 

written as follows: 

['isSpeedLargerThanFive', 'Decision', 
['beforeCheck'], ['thanDo', 'elseDo'], ['speed', '>', 5]] 

Here, the last element, Parameters, is also a list, which means that this component will 

check whether the speed value is greater than five. If this is true, it will continue to execute 

the component connected by the output link thanDo. Otherwise, it goes to the component 

pointed by the other output link elseDo. The input link beforeCheck specifies that this 

check should be performed after the components whose output links contain beforeCheck. 

Note that MasonPy allows maintaining an environment to store the states of programs, 

such as speed. 

MasonPy will evaluate these lists for representing an experiment to construct the 

workflow and run the experiment. The string specified in Type is used to instantiate the 

corresponding Python object, and the string specified in Identifier is its name. Every list 

then becomes a call to a function object with the given parameters. The implementation of 

MasonPy is similar to the command pattern [26] and relies on the built-in eval function in 

Python. Thanks to Python, little effort is needed to pass these lists and convert between 

values and variable names in MasonPy. Beautifying the syntax, such as removing quota-

tion marks and square brackets, is on our to-do list. 

Users can first implement components for the steps in their workflows with Python. 

In some sense, Python’s syntax has similarities to Fortran and C, which many scientists 

and engineers prefer. Moreover, Python is known for its wide choice of libraries, and it is 

helpful to customize user components. After defining standard components in workflows 

as MasonPy modules, users can simply generate programs by modifying these lists in Py-

thon or even arranging these modules in the visual editor, i.e., creating a workflow by drag-

and-drop. To implement programs for running experiments, we usually divide code into 

several functions in a library and then list function calls in order. With MasonPy, users can 

wrap code in components and visually check the order and conditions in the workflow. 

Furthermore, similar to other DSL frameworks, MasonPy can separate the roles of DSL 

developers and DSL users: the creators of components are DSL developers, and the users 

of components are DSL users. However, because MasonPy is targeted at simple usage, 

people who are not programming experts can be either DSL developers or DSL users. 

4.2 The Built-in Components and Recognized Errors 

MasonPy provides a minimal component set containing Start, End, Decision, Loop, 

and Process, so users only have to define the components used in their specific domain. 

The list representation of the five built-in components is shown in Table 1, and the errors 

visually recognized by MasonPy are summarized in Table 2. Start and End represent the 

start point and the endpoint of a workflow and have only one output link or input link, 

respectively. The remainders, namely Process, Decision, and Loop, represent sequence, 

branch, and loop, respectively. The Process is the prototype of user processes–users can 

generate their processes by copying and customizing this component. Decision accepts 

conditions, one input link, and two output links, where the conditions are used to decide 

which output link should be selected. An example of using Decision is shown in Fig. 3 (a). 

Loop allows one input link and two output links along with counter or stop conditions to 
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select a specified output link repeatedly; it is a special kind of Decision. Note that because 

the loops in workflows are actually represented by decisions, the Loop in MasonPy is given 

for convenience; it is close to do-while in other programming languages. The difference 

from Decision is that Loop owns a counter. Fig. 3 (b) shows an example of using Loop. 

 

 Table 1. The five built-in components. 

 

 Table 2. Recognized errors. 

 

 
(a)                        (b) 

Fig. 3. Using Decision (a) and Loop (b). 

Start
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Fig. 4. Screenshot of a simulation program running on the visual editor. 

4.3 Wrapping up Steps as Components 

Users can modularize the code for common steps in their workflows with a Process 

and then generate their program by composing these Process components. This approach 

can help programmers divide their programs into several modules based on the steps and 

let their users quickly assemble their programs with these modules. Every kind of Process 

is a language element in the DSL, and the workflows are programs written in this DSL. 

We realized that creating a DSL from scratch is trivial to people who are not programming 

experts. In our current implementation, users need to create subclasses of Process to cus-

tomize their Process − this task might ask users to understand the mechanism in object-

oriented programming. Therefore, MasonPy comes with a component template to create a 

Process by filling in the given template to simplify the usage. With the provided template, 

MasonPy users can be unaware of MasonPy implementation details. Users are also encour-

aged to fill in docstrings for their processes as component description. Once users copy 

and modify the template, corresponding components will be created in the visual editor.  

4.4 A Visual Editor 

Steps in a workflow can be wrapped as a component in the visual editor, and then the 

visual editor can be used to arrange and control the components. By connecting the com-

ponents and setting the conditions in components, the DSL users can avoid directly han-

dling parameter passing and arbitrarily setting parameters. The parameters are written in-

side components and hidden from DSL users. MasonPy reads the parameters in the com-

ponents and lists them in the visual editor; only the listed parameters can be set, and their 

types will be checked. An illegal link connection will also result in errors. MasonPy also 

benefits from the libraries for visualization in Python, such as Matplotlib [27], to show the 

simulation results with plotting. Fig. 4 is the screenshot of a simulation program running 

in the visual editor. The programs are stored as the code in the user-defined DSL and can 

be loaded later for modification. In our current implementation, the programs are stored as 

Python lists. Although it is not far from readable, making the syntax more elegant is our 

future work. We also plan to add more visual supports, including highlighting the present 

executed component in the workflow, grouping components to reuse as a bundle, and 

showing a pane for global variables. 
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5. DISCUSSION: A TINY DSL FOR WIND TURBINE SYSTEMS 

Many research activities have been conducted to develop strategies for controlling a 

wind turbine system's rotating speed to attain high stability and high performance [28-32]. 

The manufacturing process of wind turbine systems usually starts with a design stage, fol-

lowed by a farm test for verification. The farm test items include power performance, life 

cycle, duration, and electronic control, and the process of the farm test needs at least two 

years. If the test results are not satisfying, engineers must return to the design stage. We 

developed Hybrilog, a tiny DSL for describing hybrid controlling logic for wind turbine 

systems [33]. It is built on top of MasonPy and has only six components, including an 

initial step and five control models based on maximum power point tracking, three-phase 

short circuit, and maximum torque loading current. Engineers can write Hybrilog programs 

to simulate farm tests at the design stage to shorten product development time. Below we 

discuss how Hybrilog modularizes experimental programs and hide implementation details. 

5.1 A Preliminary Survey on the Usability 

To understand the usability of Hybrilog and obtain initial feedback on user experience, 

we invited five subjects in the engineering domain to develop programs for simulating 

hybrid controlling logic. Note that this is not an assessment but a very preliminary survey. 

They are either engineers who graduated from the engineering domain or master’s students 

in the engineering department who have basic knowledge of wind turbine systems. After 

we explained the design problem of control logic for wind turbine systems, we asked them 

to use Fortran, Hybrilog, and MasonPy visual editor to write simulation programs based 

on given control logics. The time they spent implementing three given logics is shown in 

Table 3. Note that to fairly compare the effort of implementing Hybrilog and Fortran, we 

did not ask the subjects to write down all the Fortran code. Instead, the subjects only needed 

to write subroutine calls for different models, for example, “CALL maxpower(...)”. In other 

words, we compared the effort of exchanging steps and configuring workflows. The results 

show that Hybrilog did help users quickly write and modify the control logic, and using 

the visual editor can further save time. Regarding user experience, all the subjects thought 

the visual editor provided a better debugging experience, especially in modifying programs. 

Compared with Fortran, the implementation details of control models can be hidden better. 

 

Table 3. The average time to develop with Fortran, Hybrilog, and the visual editor. 

 
in minutes 

5.2 Comparing with the Original Fortran Code 

To discuss how MasonPy can help code modularization of experimental programs, 

we compared the code written in Hybrilog with the original Fortran code. We analyzed the 

Fortran implementation for logic 2, as shown in Fig. 5. The five models used in the logic 
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are wrapped as subroutines placed at the file end. The main function starts with an initial-

ization followed by five code blocks for the checks. In every code block, the conditions 

such as wind speed and RPM are used to determine which model to switch to and call the 

corresponding subroutines. This code is not complicated, and honestly speaking, it is well 

structured with Fortran’s mechanism in some sense. However, it has many conditional 

jumps and goto statements for switching between models. When engineers want to rear-

range the components in the workflow or configure the check conditions, the modification 

might be error-prone. Because these simulations are exactly workflows, representing them 

with the three types of compositions is better than using code blocks. 

 

 
Fig. 5. The original implementation for logic 2. 

 

Regarding the lines of code of implementations, we compared the original Fortran 

implementation we have, the ones implemented by the subjects in our preliminary survey, 

and the ones written in Hybrilog, as shown in Table 4. Note that initially, we did not have 

the implementations for logic 1 and logic 3; they were directly implemented in Hybrilog 

after we developed Hybrilog/MasonPy. The column of subjects’ code shows the numbers 

of lines of code implemented by the subjects mentioned above, which vary in a wide range 

because of the differences in using branch statements, goto statements, and variables. Un-

surprisingly, the code written in Hybrilog can be much shorter than the Fortran code be-

cause every line of Hybrilog code is longer and contains branch information. Note that 

here, the numbers of lines of code do not include the initialization part and subroutines but 

only contain the check and workflow. However, it is interesting that using Hybrilog and 

the visual editor can avoid the difference caused by programmers. All the subjects have 

the same Hybrilog implementation for a given logic, and it is identical to what we imple-

mented. The results show that using MasonPy to draw these workflows can avoid confu-

sion about the equivalence between different implementations. 

Table 4. Lines of code of the implementations.
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6. THE POSITION OF MASONPY AND RELATED WORK 

Since the code written in a user-defined DSL atop MasonPy is essentially a diagram. 

Here, we discuss the similarities and differences between MasonPy and existing visual 

frameworks for drawing/showing program diagrams. The diagrams supported in existing 

works are kinds of directed graphs, especially flowcharts in a broad sense, emphasizing 

the structure of program code, the execution flow of control, the flow of data propagation, 

or the software design models. Note that several remarkable works are already discussed 

in the taxonomies of visual frameworks [4, 34-39], and we are not going to give an in-

depth review of existing visual frameworks here. Instead, we focus on how MasonPy is 

different from related work to clarify the position of MasonPy. Below we consider from 

the viewpoint of diagram style, component set, and program construction. 

6.1 Diagram Style 

According to the connection in diagrams, we can broadly classify visual frameworks 

into four categories: nested blocks, control flow diagrams, data flow diagrams, and mod-

eling diagrams. Nested blocks are the representation used in block programming [40], al-

lowing users to snap graphical pieces together as working on a jigsaw puzzle. Every block 

corresponds to a language construct in conventional textual programming languages. For 

example, get/set, if-else, and repeat-until, and blocks like repeat-until can further contain 

other blocks. The style was developed by Logo Blocks at the MIT Media Lab and inherited 

by Scratch [7], Snap! (formerly BYOB) [41], MIT App Inventor [42], Blockly [8], etc. 

Strictly speaking, they are not a diagram because the components are fit together rather 

than connected by lines. Nested blocks are very close to code because they naturally rep-

resent the scope of code blocks in programs. In some sense, it is a kind of indent represen-

tation to help users understand the program code structure and can be transformed to code 

without complicated handling. Recently, it has been widely adopted by programming en-

vironments for education and has attracted many users. Although some are essentially tar-

geted at encouraging invention and innovation [7, 43], this graphical representation greatly 

helps novice programmers and children try programming without much programming 

knowledge. From the viewpoint of program generation, this design also simplifies the im-

plementation of underlayer frameworks. On the other hand, the grain size of components 

tends to be smaller because they are mapped to general language constructs, making it 

difficult to understand programs at a higher level. As in textual languages, we need to 

compose code blocks using language constructs in functions and modules to consider the 

workflow steps. Even though many frameworks support customizing blocks for wrapping 

a set of blocks, such customization usually needs a certain programming skill level. 

Control flow diagrams, which use visual components to describe the process of han-

dling, might be the most intuitive representation of program code because programs are 

composed of a set of control operations. It exactly corresponds to the control flow graph 

used in static code analysis [44]. Although the structure of the control flow diagrams is 

essentially the same as nested blocks, components are connected by arrow lines rather than 

snapped. Every component denotes the operation to perform, i.e., how to handle the data 

in this step. Control flow diagrams are usually referred to as flowcharts in a narrow sense 

[24, 45] and are supported by many frameworks, such as GRAIL [46], DRAKON [47], 
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and RAPTOR [48]. Generating programs from these diagrams is relatively easy because 

program code structure is directly reflected in the diagrams. 

On the other hand, in data flow diagrams, we are concerned about variables instead 

of tasks, although they may also be considered a kind of flowchart. It means that programs 

are modeled as a set of operator nodes interconnected by data-carrying arcs [49]. Tech-

niques are needed to translate the code written in non-dataflow languages to data flow 

diagrams, for example, the side effects resulting from assignments to a global variable [50]. 

Each component in the data flow diagrams represents a function, and each line connecting 

components indicates the flow of data [51]. Thinking and describing operations in the form 

of data is considered a better approach because spliced data flow diagrams can represent 

all needed information and indicate what crosses from one component to the next. Alt-

hough the meaning of computation is usually defined as acts and every expression in a 

program is an operation, the subjects to address are eventually data. Proprietary commer-

cial software, such as LabVIEW and Keysight VEE and the JavaScript visual framework 

Rete.js, can be classified into this category. 

Modeling diagrams consider programs on a higher level than control flow diagrams 

and data flow diagrams. They are used to describe the design of software but not the com-

putation. In other words, what we think in modeling diagrams is a whole picture of static 

system architecture rather than the program states at a specific timing. Several famous 

modeling and description languages, such as unified modeling language (UML) and spec-

ification and description language (SDL), were proposed for software development. They 

support a set of diagrams to cover different aspects of programs, and some of them might 

use control flow or data flow to describe the design, for example, the activity diagram in 

UML. These modeling diagrams are often encouraged in software development because 

they provide a higher-level abstraction on system behavior and provide a better under-

standing of software architecture. In contrast, generating code from these modeling dia-

grams is not as easy as the other three kinds of diagrams. Many research activities work 

on program generation from modeling diagrams, for example, generating code according 

to the state diagram [52, 53] or the sequence diagrams [54] in UML. 

MasonPy is in the category of control flow diagrams and a flowchart in a narrow 

sense. Although there has been much discussion of the weakness of flowcharts [45], it has 

also been shown that structured flowcharts outperform pseudocode [55] and help novice 

programmers write programs [6]. The comparison is summarized in Table 5. 

 

Table 5. The classification of related work and MasonPy. 

 
* Developing DSLs in MasonPy is top-down construction, while writing programs with the DSLs is bottom-up 
construction. 
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6.2 Component Set 

We can also compare MasonPy with other frameworks in terms of the component set. 

Flowcharts come from the engineering domain and have a long history. The flowchart was 

first mentioned as a flow process chart by Frank and Lillian Gilbreth at the ASME (Amer-

ican Society of Mechanical Engineers) Annual Meeting in 1921. It later became a standard 

of the ASME in 1947 [56]. In computer programming, Goldstine and Von Neumann pre-

sented how to draw a flowchart for a given problem and write code based on them [57]. 

There are two common complaints about using flowcharts in software development 

[45, 58], but they are not the issues in separating the experimental concern with DSVLs. 

First, considering the mismatch between flowcharts and actual code. Programmers often 

face a situation in which it is difficult to maintain an accurate flowchart for their programs. 

When flowcharts are used as a blueprint, programmers need to update them to reflect the 

changes in a rapidly evolving software system. However, DSVL frameworks, such as Ma-

sonPy, provide an environment to automatically generate code by design, which means no 

overhead in maintaining the consistency between the code and design. Second, flowcharts 

tend to be too complicated to read. Programmers usually have different concerns for code 

to mix together and code to modify because of constraints. If the flowcharts are too specific 

and detailed, reading the code will be cumbersome and difficult. To address this issue, we 

suggest using a fully user-defined DSVL that has a minimal number of components to 

describe the workflow. In this case, the flowcharts for running experiments can represent 

only the experimental concern and remain simple. 

The standards of flowcharts and their symbols, i.e., components, were set by ANSI in 

approximately 1970 [59] and adopted by ISO in 1973 [60]. The current version was revised 

in 1985 and confirmed again in 2019 [61]. It supports many kinds of flowcharts, such as 

data flowcharts, program flowcharts, system flowcharts, program network charts, and sys-

tem resources charts. If we ignore the symbols for connecting components and pages, at 

least eight basic symbols are supported in most flowcharts: terminal, process, decision, 

database, document, input/output, preparation, and predefined process. DRAKON can be 

considered an extended variant of ISO flowcharts. It defines 26 visual signs, including title, 

end, formal parameters, question, choice, case, and begin/end of the FOR loop [62]. These 

visual alphabets are named “DRAKON letters” and can be used to compose “DRAKON 

words.” On the other hand, UML activity diagrams have a reduced set of components since 

they focus on the representation of activities. Standard components include Start/End, Ac-

tivity, Decision, Note, Option Loop, Join, and Fork. MasonPy supports only a reduced set 

of flowcharts. It is similar to the activity diagrams without the support of parallel activities, 

i.e., no Fork/Join node. 

6.3 Program construction 

MasonPy is different from other frameworks regarding how to construct programs. 

We can consider program construction in two forms: top-down modularization and bot-

tom-up modularization [63]. Top-down modularization considers and specifies a global 

program code structure for a given task, i.e., designing components at the top level first 

and implementing component details later. In contrast, bottom-up modularization means 

specifying common elements of a fine structure to construct a program, i.e., implementing 

standard low-level components first and building programs with them. Most flowcharts in 
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the broad sense, including nested blocks, control flow diagrams, and data flow diagrams, 

are bottom-up modularization. Users are asked to construct their programs based on a 

given set of components at a low level. On the other hand, modeling languages, such as 

UML and SDL, are top-down modularizations. Users can design with nodes and objects at 

a high level and then concretely implement them. MasonPy uses the concept of user-de-

fined DSLs to divide the thinking of code modularization since DSLs can separate the roles 

of developers and users. Programmers who develop a tiny DSL on top of MasonPy design 

coarse-grained components to model workflows for experimental scenarios. It is similar to 

drawing elements in UML diagrams with top-down modularization. On the other hand, 

programmers who use the tiny DSL use the components provided by the tiny DSL to con-

struct their experimental programs with bottom-up modularization. It is the same as how 

they use fine-grained components in other flowchart frameworks. 

7. CONCLUSIONS AND FUTURE WORK 

To conduct related experiments for scientific computing and engineering simulation, 

programmers need to manage program codes with a good strategy, which requires pro-

gramming skills. However, domain experts might not be masters of programming. We 

proposed a simple and lightweight framework, MasonPy, to help domain experts design 

user-defined DSVLs for separating the experimental concern from other concerns. With a 

fully customized DSVL, implementation details in individual components can be hidden 

from the programmers who conduct the experiments. We demonstrated a tiny DSL named 

Hybrilog for wind turbine systems built on MasonPy to show the feasibility and discuss its 

benefits. People who are not programming experts can design and run experiments with 

Hybrilog. To clarify the position of MasonPy, we discussed related work and compared 

them from the viewpoint of diagram style, component set, and program construction. The 

discussion and comparison show that users can use MasonPy to quickly modularize exper-

imental programs with a customized DSVL and quickly generate programs for different 

workflows. In the future, we plan to make the syntax independent from Python syntax and 

add the support of parallel computing representation. 
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