
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1089-1108 (2022)

DOI: 10.6688/JISE.202211_38(6).0001

1089

Using User-Defined Domain-Specific Visual Languages

to Modularize Programs for Conducting Experiments*

YUNGYU ZHUANG1,+, JUI-HSIANG KAO2, KUAN-SHANG LIU1 AND CHIA-YU LIN1

1Department of Computer Science and Information Engineering

National Central University

Taoyuan, 32001 Taiwan

E-mail: yungyu@ncu.edu.tw+; {106525011; 106522124}@cc.ncu.edu.tw
2Department of System Engineering and Naval Architecture

National Taiwan Ocean University

Keelung, 202301 Taiwan

E-mail: jhkao@mail.ntou.edu.tw

Experimental programs for conducting related scientific computing or engineering

simulations often share common steps but differ in their workflows. Although switching

between different workflows within a single program is possible, those switches prevent

from understanding the individual experimental workflows. To domain experts, it is usu-

ally tricky to modularize experimental programs for maintenance and comprehension.

Suppose common steps in these workflows can be wrapped up as components in a tiny

visual language. The experiments can be expressed as programs written in that language

and even constructed by drag-and-drop. It not only hides implementation details in each

step but also improves program comprehension. However, existing domain-specific visual

languages (DSVLs) are not targeted for full customization so far as we know. We propose

customizing a user-defined DSVL to represent different experimental workflows and fol-

low Dijkstra’s sequencing discipline in structured programming to develop a proof-of-

concept framework. For discussion, a tiny DSVL for running wind turbine system simula-

tion was then built upon as an example, and a comparison with existing visual frameworks

was made based on diagram style, component set, and program construction. Our approach

can help domain experts to express the experimental concern and quickly construct pro-

grams for running related experiments. Supporting complex syntax and parallel computing

are included in our future work.

Keywords: domain-specific language, visual programming language, code modularity,

workflow management system, flowchart

1. INTRODUCTION

Programming techniques are essential in science and engineering domains, but scien-

tists and engineers might not be experts in programming. Without advanced programming

techniques or good programming support, they may repeatedly write similar programs for

conducting scientific computing and engineering simulations. Such programs can be diffi-

cult to understand, modify, and reuse. How to support domain experts in developing these

programs is a known issue [1] that has been studied for many research activities, including

domain-specific languages (DSLs) and visual programming languages (VPLs). Many

DSLs, such as COBOL, SQL, Verilog, and MATLAB, have shown effectiveness in help-

Received September 29, 2021; revised October 31, 2021; accepted November 13, 2021.

Communicated by Shin-Jie Lee.
* This work was supported in part by the Ministry of Science and Technology (Taiwan) as “Developing guide-

lines and utilities for rewriting scientific computing applications with modern programming languages” [MOST

107-2221-E-008-024-MY3].

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1090

ing users develop and maintain programs for a particular domain. Their language cons-

tructs are tailored to fit the needs of a specific domain, and therefore, the semantics tend

to be simpler than those of general-purpose languages (GPLs). The total number and com-

binations of built-in language constructs are small, resulting in a straightforward syntax,

simple semantics, and a shallow learning curve. For the code written in SQL, for example,

the use of SELECT-FROM-WHERE has only one meaning. Programmers will not unin-

tentionally misuse the clause and cannot intentionally abuse it. For programmers who read

and maintain the code, the risk of misunderstanding the code can be reduced. However,

customizing and extending the language constructs in these DSLs are often tricky. For

people who are not programming experts, adding or removing language constructs is not

easy, nor is it realistic in a proprietary standalone DSL. In order to bridge the gap between

GPLs and DSLs, domain-specific embedded languages (DSELs) were developed [2]. It

enables the use of various libraries and toolchains for the host language, such as parsers,

debuggers, and editors. Domain-specific libraries developed for Python, such as the SciPy

Stack and TensorFlow, can be classified as the DSEL approach since the semantics behind

their programs are quite different from the ones in plain Python. In those programs, func-

tion calls can be regarded as the language constructs in the DSEL to instantiate objects and

perform operations. Matrices are represented with array objects instead of native nested

lists, and assignments/evaluations are done by function calls rather than variable access.

However, there is still room to help programmers design and understand the relations be-

tween the function calls in these domain-specific libraries. Unfortunately, checking whe-

ther a combination of function calls and language constructs is valid requires advanced

programming techniques. Although many sophisticated DSL frameworks were developed

for either shallow embedding or deep embedding, DSL development itself remains diffi-

cult for people who are not programming experts.

On the other hand, VPLs have been intensively discussed and known for their ability

to help novice programmers [3, 4]. They provide a visual environment to generate pro-

grams in a multidimensional (basically two-dimensional) fashion rather than one-dimen-

sional text streams. VPL systems usually make the mechanics of programming more man-

ageable, lower the barriers to programming [5], and remove the necessity to remember the

syntax of programming languages [6]. VPL has been used to build environments for either

standalone DSLs or GPLs for a long time, and recently, it has attracted interest again be-

cause of the appearance of Scratch [7] and Blockly [8]. Many research activities are de-

voted to developing domain-specific visual languages (DSVLs) for various applications

[9-13] and discussing the design and modeling of DSVLs [14, 15]. However, existing

DSVLs focus on implementing programs with a given component set based on existing

language constructs rather than using a customized component set for hiding implementa-

tion details in individual components. On the other hand, DSVL frameworks [16, 17] are

usually targeted at programming experts. As a result, nonexperts cannot easily design their

fully customized DSVLs for writing and running experimental programs.

To simplify the development of experimental programs in specific domains, we pro-

pose using a lightweight, user-defined DSVL to modularize code. Our approach is targeted

at domain-specific experiments described as workflows. Programmers in science and en-

gineering domains can manage their experiment programs by wrapping their code pieces

as visual components and conduct experiments by arranging them in a visual framework.

To the best of our knowledge, no research activity has been devoted to supporting people

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1091

who are not programming experts in designing a customized set of language constructs for

conducting experiments. Existing DSVLs usually support a given set of language con-

structs to program, and the use of DSL/DSVL frameworks usually needs programming

skills and requires knowledge about metaprogramming. The contribution of this paper is

threefold. First, we discuss conducting experiments as a concern whose code needs to be

modularized and separated from other concerns. Second, we propose using user-defined

DSVLs to separate the concern of conducting scientific and engineering experiments from

others. Third, we concretely show how a tiny DSL built atop our proof-of-concept imple-

mentation can modularize experimental programs.

2. MOTIVATION

Many scientific computing and engineering simulation programs are programmable

to conduct a series of related experiments. These experiments often share standard modules

in the workflows, and conducting an experiment is to select some of them for execution

[18]. In this case, instead of developing and maintaining a set of programs, writing a con-

figurable program is desirable. For example, researchers in mechanical engineering might

develop an idea on system controlling logic and want to run simulations to verify their

hypotheses. They may first implement a draft workflow for system control and find an

optimized workflow for a given scenario after repeatedly reordering steps or changing con-

ditions. Every step in a workflow is a particular operation, and a workflow represents an

algorithm for performing proper operations according to system conditions. In order to

change the order of steps, researchers might use parameter files, preprocessor directives,

and if-else/goto statements to modify the concatenation of steps for switching between

different workflows. Furthermore, selections and repetitions are also heavily used for con-

trolling the execution flow inside a workflow. Researchers may experimentally set certain

combinations of selections and repetitions of these steps to construct a workflow, observe

the running results, and modify the combinations to rerun the experiment.

These concatenations (sequences), selections (branches), and repetitions (loops) are

kinds of switches, and they are exactly the ones discussed in structured programming [19].

However, in this case, they are used to configure program execution rather than handle

data; they are an approach to generate a set of programs for experiments. These programs

that result from the switches can be considered a software product line [20]. It might re-

mind readers of feature-oriented programming [21], but here we focus on switching be-

tween execution flows inside a single program. The code of these switches, i.e., the con-

figuration for controlling execution flow, is a concern that differs from those in individual

steps; they are implemented for conducting experiments and need to be separated from

other implementations [22]. As shown in Fig. 1, we name it “the experimental concern” to

distinguish it from other concerns. When modifying the code for running experiments, the

code for other concerns should not be touched. On the other hand, the code for the experi-

mental concern should not be affected by the modification in individual steps. If these

codes for the experimental concern can be separated from individual step implementations,

code modularity could be improved. Therefore, the reusability and maintainability would

be better. In this way, programmers who run experiments can be different from those who

implement steps. Although many advanced techniques such as metaprogramming are

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1092

available to modularize the experimental concern, they are too difficult to learn and use

for people who are not programming experts. A more straightforward approach is to wrap

up implementation details for individual steps with functions, but there are still two chal-

lenges. First, the code for the experimental concern is still there if programmers use only

a single program to run various experiments. Writing different programs for individual

workflows is helpful, but a good development strategy is needed to manage these programs.

Second, the constraints on the combination of function calls must be carefully considered

and noted. Suppose a function call can only be followed by specific functions calls [23].

This constraint should be well designed in library functions, otherwise it will be repre-

sented within the experimental concern code. If we divide the single program into a set of

programs, these constraints will be eliminated.

Fig. 1. The experimental concern.

This observation led us to combine the concepts of user-defined DSL and VPL for

experimental programs. DSLs can help separate the experimental concern from other con-

cerns while defining the constraints on the combination of language constructs. Every code

block in Fig. 1 for implementing a step can be wrapped up as a language construct for

hiding implementation details and checking the constraints. Experimental programs can

then be described with these language constructs and contain only the experimental con-

cern. On the other hand, VPLs can help the understanding of workflows. People who are

not programming experts can write and read experimental programs visually. Although

research activities have been performed on DSVLs, to the best of our knowledge, no one

has been devoted to delivering a lightweight framework for conducting experiments with

user-defined DSVLs.

3. A VISUAL FRAMEWORK FOR USER-DEFINED DSLS

We propose representing the steps in workflows with a user-defined DSL and using

a visual framework to quickly assemble programs for running experiments, as shown in

Fig. 2. The functions for individual steps can be considered the language constructs of a

DSL, and every program for running a particular experiment is a program written in this

o
th

e
r

co
n
ce

rn
s

e
x
p

e
ri

m
e
n
ta

l
co

n
ce

rn

steps in workflows

configuration for controlling

execution flow

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1093

DSL. Because the DSL hides the implementation details for individual steps, programs

written in this DSL can purely represent workflows, and visualizing these programs can

help to understand these workflows. Scientists and engineers who know the details of the

steps are DSL developers, and scientists/engineers who design and run experiments are

DSL users.

Fig. 2. Representing with a user-defined DSL.

3.1 The Elements in the Experimental Concern

As mentioned in Section 2, the experimental concern is implemented for quickly

switching between execution flows for different experiments. Programmers may want to

exchange two steps in a workflow, modify the condition for selecting between two steps,

or change the condition for repeating a step. For example, wind turbine system developers

may run a series of simulations with different model controlling logics and observe the

gained energy output under random wind speeds. They may first implement several models

for working under different wind speed conditions and define a controlling logic to switch

between these models in order to gain the maximum energy output. According to the sim-

ulation results, they can refine configurations in the controlling logic. Since there are var-

ious design goals such as high efficiency and low noise, developers may design different

controlling logics and run similar simulations repeatedly. We can concretely consider what

configurations are involved in the experimental concern with this wind turbine system ex-

ample. Because the experimental concern code is written for setting how to execute the

steps for workflows, it possibly consists of three things:

Switches for assembling different workflows. They are used for statically generating a set

of programs. During the execution of the program, these switches are not changed. For

example, wind turbine system developers might fuse different workflows into a single pro-

gram for convenience, though only one workflow will be selected for program execution.

They are usually implemented with parameter files and preprocessor directives. We sug-

gest dividing the program into a set of programs rather than switching between the code

inside a program. Although combining several workflows in a program is a general strat-

egy to avoid copy-and-paste of code, it also decreases the readability of programs. If every

step can be represented with a DSL language construct, we can simply write programs for

every workflow without worrying about copying and pasting the details in steps.

Programming

with a Visual

Framework

la
ng

ua
g
e
 c

o
ns

tr
uc

ts
 i
n

th
e
 D

S
L

p
ro

g
ra

m
s

w
ri

tt
e
n

in
 t

he
 D

S
L

DSL developerDSL user

A
 U

se
r-

D
e
fi
n
ed

 D
S
L

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1094

Configurations within a workflow. These configurations are used to modify the setting

for a workflow and are usually implemented with if-else and do-while approaches. In the

wind turbine system example, they are the logic that controls the system to switch between

models for reacting to wind speeds. Although they also rely on runtime conditions in the

program, they are different from the conditions used inside each step. They are some sort

of hyperparameter for configuring the workflow rather than individual steps. This part

should be maintained in the programs written in a DSL.

Constraints on the step combination. In a series of experiments, some constraints might

be placed on how the steps can be set since some step combinations might not be reason-

able. For example, a wind turbine system running on a specific model might only be al-

lowed to switch to certain models. These constraints are similar to API usage rules in li-

brary functions [23]. If we use a DSL to hide the implementation details in steps and write

different programs for individual workflows, the constraints on arranging the steps must

be preserved. These constraints are often hidden in the switches for assembling different

workflows and the configurations within a workflow. After steps are represented with lan-

guage constructs in a DSL, the constraints should be encoded in the usage of these lan-

guage constructs.

3.2 The Requirements of the Visual Framework Design for User-Defined DSLs

To support user-defined DSLs with a visual framework for improving the code mod-

ularity of experimental programs, we analyze user scenarios and list the following require-

ments of the design of this visual framework:

1) The visual framework must support at least the three types of decomposition in struc-

tured programming: concatenation (sequence), selection (branch), and repetition

(loop). Since the three types of decomposition are the basics of programming languages

and the experimental concern code heavily relies on them, they must be supported with

visual programming. Users can design their own DSLs based on them rather than cre-

ating them every time.

2) Every visual component should be mapped to a single language construct in the user-

defined DSL and vice versa. This one-to-one mapping is to avoid ambiguity in program

visualization. After programs are implemented with the user-defined DSL, they can

always be loaded to obtain the same program visualization results, regardless of

whether they are written in the visual framework or by any other editors. In addition,

these visual components must be designed for being used with the three types of de-

composition.

3) A program is a code piece written in the user-defined DSL for representing an individ-

ual workflow. In other words, programs running on this visual framework should con-

tain only the code in the user-defined DSL. It is encouraged to define a program for a

single workflow statically to avoid mixing multiple workflows.

4) A visual editor must be provided to visualize, store, and load programs written in the

user-defined DSL. Supporting only visual programming or program visualization is in-

sufficient. A visual editor for both reading and writing programs must be provided to

simplify the creation and modification of experiment programs written in the user-de-

fined DSL.

5) The constraints on the combination of language constructs should be checked when

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1095

connecting them in the visual editor. Although the usage of language constructs in a

program will be checked during code generation, immediately performing the check

on the visual editor can help users see where the problem is. It means that the usage

check on the user-defined DSL must be visualized, for example, showing errors when

trying to connect two visual components illegally.

4. A PROOF-OF-CONCEPT IMPLEMENTATION: MASONPY

Based on the requirements stated above, we implemented a draft version of this visual

framework, MasonPy1, to show the feasibility and discuss its usage and benefits. Currently,

MasonPy supports only restricted topology flowcharts rather than allowing arbitrary con-

nections between any visual component. MasonPy only provides the three types of decom-

position by default: sequence, branch, and loop; it minimizes the set of built-in components

in user DSVLs. We followed Dijkstra’s sequencing discipline in structured programming

[19] and flowchart techniques for structured programming [24]. This design decision al-

lows the development and usage of user-defined DSVLs to stay simple for our potential

users. Compared with other flowchart standards, such as ANSI/ISO symbols, MasonPy

only has flowline, terminal, process, and decision components. Although flowcharts have

been studied for a long time and programming experts might recommend UML-like dia-

grams rather than flowcharts for software development, many research results still show

that flowcharts help understand and discuss uncomplicated cases. Furthermore, the engi-

neering workflow discussed in Section 2 can be naturally described with a flowchart. The

three types of decomposition are even introduced in computational thinking education [25]

because they are the basics of programming and are supported in most languages.

MasonPy users can create their DSLs on top of it and let their users write programs

with the DSL. Typically, developing DSL components requires domain and programming

knowledge. However, MasonPy provides necessary built-in components and a component

template to decrease the difficulty of creating user-defined DSLs. Furthermore, the user-

defined DSL users can generate programs by dragging and dropping the components on

our visual editor instead of writing textual code directly. Thus, the users of MasonPy need

little programming knowledge, and the users of these DSLs can even be unaware of the

implementation details of DSLs. Defining a DSL helps separate the experimental concern

and modularize the code for different steps in workflows.

4.1 The Syntax and Interpretation

MasonPy is built on top of Python. Currently, the syntax of DSLs on MasonPy is

based on the syntax of Python. Every step in a workflow is represented as a list in Python:

[Identifier, Type, InputLinks, OutputLinks, Parameters]

where Identifier is the unique name of the component in the program, and Type is used to

specify which kind of DSL component it is. The elements in InputLinks and OutputLinks

are named slots to connect with other components, and Parameters are the parameters for

1 This version is available on our project page: http://psl.csie.ncu.edu.tw/masonpy.

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1096

this component. For example, a Decision component named isSpeedLargerThanFive is

written as follows:

['isSpeedLargerThanFive', 'Decision',
['beforeCheck'], ['thanDo', 'elseDo'], ['speed', '>', 5]]

Here, the last element, Parameters, is also a list, which means that this component will

check whether the speed value is greater than five. If this is true, it will continue to execute

the component connected by the output link thanDo. Otherwise, it goes to the component

pointed by the other output link elseDo. The input link beforeCheck specifies that this

check should be performed after the components whose output links contain beforeCheck.

Note that MasonPy allows maintaining an environment to store the states of programs,

such as speed.

MasonPy will evaluate these lists for representing an experiment to construct the

workflow and run the experiment. The string specified in Type is used to instantiate the

corresponding Python object, and the string specified in Identifier is its name. Every list

then becomes a call to a function object with the given parameters. The implementation of

MasonPy is similar to the command pattern [26] and relies on the built-in eval function in

Python. Thanks to Python, little effort is needed to pass these lists and convert between

values and variable names in MasonPy. Beautifying the syntax, such as removing quota-

tion marks and square brackets, is on our to-do list.

Users can first implement components for the steps in their workflows with Python.

In some sense, Python’s syntax has similarities to Fortran and C, which many scientists

and engineers prefer. Moreover, Python is known for its wide choice of libraries, and it is

helpful to customize user components. After defining standard components in workflows

as MasonPy modules, users can simply generate programs by modifying these lists in Py-

thon or even arranging these modules in the visual editor, i.e., creating a workflow by drag-

and-drop. To implement programs for running experiments, we usually divide code into

several functions in a library and then list function calls in order. With MasonPy, users can

wrap code in components and visually check the order and conditions in the workflow.

Furthermore, similar to other DSL frameworks, MasonPy can separate the roles of DSL

developers and DSL users: the creators of components are DSL developers, and the users

of components are DSL users. However, because MasonPy is targeted at simple usage,

people who are not programming experts can be either DSL developers or DSL users.

4.2 The Built-in Components and Recognized Errors

MasonPy provides a minimal component set containing Start, End, Decision, Loop,

and Process, so users only have to define the components used in their specific domain.

The list representation of the five built-in components is shown in Table 1, and the errors

visually recognized by MasonPy are summarized in Table 2. Start and End represent the

start point and the endpoint of a workflow and have only one output link or input link,

respectively. The remainders, namely Process, Decision, and Loop, represent sequence,

branch, and loop, respectively. The Process is the prototype of user processes–users can

generate their processes by copying and customizing this component. Decision accepts

conditions, one input link, and two output links, where the conditions are used to decide

which output link should be selected. An example of using Decision is shown in Fig. 3 (a).

Loop allows one input link and two output links along with counter or stop conditions to

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1097

select a specified output link repeatedly; it is a special kind of Decision. Note that because

the loops in workflows are actually represented by decisions, the Loop in MasonPy is given

for convenience; it is close to do-while in other programming languages. The difference

from Decision is that Loop owns a counter. Fig. 3 (b) shows an example of using Loop.

 Table 1. The five built-in components.

 Table 2. Recognized errors.

(a) (b)

Fig. 3. Using Decision (a) and Loop (b).

Start

End

Process

Decision

Process

Start

End

Process

Loop

(a) (b)

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1098

Fig. 4. Screenshot of a simulation program running on the visual editor.

4.3 Wrapping up Steps as Components

Users can modularize the code for common steps in their workflows with a Process

and then generate their program by composing these Process components. This approach

can help programmers divide their programs into several modules based on the steps and

let their users quickly assemble their programs with these modules. Every kind of Process

is a language element in the DSL, and the workflows are programs written in this DSL.

We realized that creating a DSL from scratch is trivial to people who are not programming

experts. In our current implementation, users need to create subclasses of Process to cus-

tomize their Process − this task might ask users to understand the mechanism in object-

oriented programming. Therefore, MasonPy comes with a component template to create a

Process by filling in the given template to simplify the usage. With the provided template,

MasonPy users can be unaware of MasonPy implementation details. Users are also encour-

aged to fill in docstrings for their processes as component description. Once users copy

and modify the template, corresponding components will be created in the visual editor.

4.4 A Visual Editor

Steps in a workflow can be wrapped as a component in the visual editor, and then the

visual editor can be used to arrange and control the components. By connecting the com-

ponents and setting the conditions in components, the DSL users can avoid directly han-

dling parameter passing and arbitrarily setting parameters. The parameters are written in-

side components and hidden from DSL users. MasonPy reads the parameters in the com-

ponents and lists them in the visual editor; only the listed parameters can be set, and their

types will be checked. An illegal link connection will also result in errors. MasonPy also

benefits from the libraries for visualization in Python, such as Matplotlib [27], to show the

simulation results with plotting. Fig. 4 is the screenshot of a simulation program running

in the visual editor. The programs are stored as the code in the user-defined DSL and can

be loaded later for modification. In our current implementation, the programs are stored as

Python lists. Although it is not far from readable, making the syntax more elegant is our

future work. We also plan to add more visual supports, including highlighting the present

executed component in the workflow, grouping components to reuse as a bundle, and

showing a pane for global variables.

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1099

5. DISCUSSION: A TINY DSL FOR WIND TURBINE SYSTEMS

Many research activities have been conducted to develop strategies for controlling a

wind turbine system's rotating speed to attain high stability and high performance [28-32].

The manufacturing process of wind turbine systems usually starts with a design stage, fol-

lowed by a farm test for verification. The farm test items include power performance, life

cycle, duration, and electronic control, and the process of the farm test needs at least two

years. If the test results are not satisfying, engineers must return to the design stage. We

developed Hybrilog, a tiny DSL for describing hybrid controlling logic for wind turbine

systems [33]. It is built on top of MasonPy and has only six components, including an

initial step and five control models based on maximum power point tracking, three-phase

short circuit, and maximum torque loading current. Engineers can write Hybrilog programs

to simulate farm tests at the design stage to shorten product development time. Below we

discuss how Hybrilog modularizes experimental programs and hide implementation details.

5.1 A Preliminary Survey on the Usability

To understand the usability of Hybrilog and obtain initial feedback on user experience,

we invited five subjects in the engineering domain to develop programs for simulating

hybrid controlling logic. Note that this is not an assessment but a very preliminary survey.

They are either engineers who graduated from the engineering domain or master’s students

in the engineering department who have basic knowledge of wind turbine systems. After

we explained the design problem of control logic for wind turbine systems, we asked them

to use Fortran, Hybrilog, and MasonPy visual editor to write simulation programs based

on given control logics. The time they spent implementing three given logics is shown in

Table 3. Note that to fairly compare the effort of implementing Hybrilog and Fortran, we

did not ask the subjects to write down all the Fortran code. Instead, the subjects only needed

to write subroutine calls for different models, for example, “CALL maxpower(...)”. In other

words, we compared the effort of exchanging steps and configuring workflows. The results

show that Hybrilog did help users quickly write and modify the control logic, and using

the visual editor can further save time. Regarding user experience, all the subjects thought

the visual editor provided a better debugging experience, especially in modifying programs.

Compared with Fortran, the implementation details of control models can be hidden better.

Table 3. The average time to develop with Fortran, Hybrilog, and the visual editor.

in minutes

5.2 Comparing with the Original Fortran Code

To discuss how MasonPy can help code modularization of experimental programs,

we compared the code written in Hybrilog with the original Fortran code. We analyzed the

Fortran implementation for logic 2, as shown in Fig. 5. The five models used in the logic

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1100

are wrapped as subroutines placed at the file end. The main function starts with an initial-

ization followed by five code blocks for the checks. In every code block, the conditions

such as wind speed and RPM are used to determine which model to switch to and call the

corresponding subroutines. This code is not complicated, and honestly speaking, it is well

structured with Fortran’s mechanism in some sense. However, it has many conditional

jumps and goto statements for switching between models. When engineers want to rear-

range the components in the workflow or configure the check conditions, the modification

might be error-prone. Because these simulations are exactly workflows, representing them

with the three types of compositions is better than using code blocks.

Fig. 5. The original implementation for logic 2.

Regarding the lines of code of implementations, we compared the original Fortran

implementation we have, the ones implemented by the subjects in our preliminary survey,

and the ones written in Hybrilog, as shown in Table 4. Note that initially, we did not have

the implementations for logic 1 and logic 3; they were directly implemented in Hybrilog

after we developed Hybrilog/MasonPy. The column of subjects’ code shows the numbers

of lines of code implemented by the subjects mentioned above, which vary in a wide range

because of the differences in using branch statements, goto statements, and variables. Un-

surprisingly, the code written in Hybrilog can be much shorter than the Fortran code be-

cause every line of Hybrilog code is longer and contains branch information. Note that

here, the numbers of lines of code do not include the initialization part and subroutines but

only contain the check and workflow. However, it is interesting that using Hybrilog and

the visual editor can avoid the difference caused by programmers. All the subjects have

the same Hybrilog implementation for a given logic, and it is identical to what we imple-

mented. The results show that using MasonPy to draw these workflows can avoid confu-

sion about the equivalence between different implementations.

Table 4. Lines of code of the implementations.

A

E

C

D

B

1

2

3

4

5

init

model E

model D

model C

model B

model A

check 1

check 2

check 3

check 4

check 5

check modelcode block subroutine call

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1101

6. THE POSITION OF MASONPY AND RELATED WORK

Since the code written in a user-defined DSL atop MasonPy is essentially a diagram.

Here, we discuss the similarities and differences between MasonPy and existing visual

frameworks for drawing/showing program diagrams. The diagrams supported in existing

works are kinds of directed graphs, especially flowcharts in a broad sense, emphasizing

the structure of program code, the execution flow of control, the flow of data propagation,

or the software design models. Note that several remarkable works are already discussed

in the taxonomies of visual frameworks [4, 34-39], and we are not going to give an in-

depth review of existing visual frameworks here. Instead, we focus on how MasonPy is

different from related work to clarify the position of MasonPy. Below we consider from

the viewpoint of diagram style, component set, and program construction.

6.1 Diagram Style

According to the connection in diagrams, we can broadly classify visual frameworks

into four categories: nested blocks, control flow diagrams, data flow diagrams, and mod-

eling diagrams. Nested blocks are the representation used in block programming [40], al-

lowing users to snap graphical pieces together as working on a jigsaw puzzle. Every block

corresponds to a language construct in conventional textual programming languages. For

example, get/set, if-else, and repeat-until, and blocks like repeat-until can further contain

other blocks. The style was developed by Logo Blocks at the MIT Media Lab and inherited

by Scratch [7], Snap! (formerly BYOB) [41], MIT App Inventor [42], Blockly [8], etc.

Strictly speaking, they are not a diagram because the components are fit together rather

than connected by lines. Nested blocks are very close to code because they naturally rep-

resent the scope of code blocks in programs. In some sense, it is a kind of indent represen-

tation to help users understand the program code structure and can be transformed to code

without complicated handling. Recently, it has been widely adopted by programming en-

vironments for education and has attracted many users. Although some are essentially tar-

geted at encouraging invention and innovation [7, 43], this graphical representation greatly

helps novice programmers and children try programming without much programming

knowledge. From the viewpoint of program generation, this design also simplifies the im-

plementation of underlayer frameworks. On the other hand, the grain size of components

tends to be smaller because they are mapped to general language constructs, making it

difficult to understand programs at a higher level. As in textual languages, we need to

compose code blocks using language constructs in functions and modules to consider the

workflow steps. Even though many frameworks support customizing blocks for wrapping

a set of blocks, such customization usually needs a certain programming skill level.

Control flow diagrams, which use visual components to describe the process of han-

dling, might be the most intuitive representation of program code because programs are

composed of a set of control operations. It exactly corresponds to the control flow graph

used in static code analysis [44]. Although the structure of the control flow diagrams is

essentially the same as nested blocks, components are connected by arrow lines rather than

snapped. Every component denotes the operation to perform, i.e., how to handle the data

in this step. Control flow diagrams are usually referred to as flowcharts in a narrow sense

[24, 45] and are supported by many frameworks, such as GRAIL [46], DRAKON [47],

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1102

and RAPTOR [48]. Generating programs from these diagrams is relatively easy because

program code structure is directly reflected in the diagrams.

On the other hand, in data flow diagrams, we are concerned about variables instead

of tasks, although they may also be considered a kind of flowchart. It means that programs

are modeled as a set of operator nodes interconnected by data-carrying arcs [49]. Tech-

niques are needed to translate the code written in non-dataflow languages to data flow

diagrams, for example, the side effects resulting from assignments to a global variable [50].

Each component in the data flow diagrams represents a function, and each line connecting

components indicates the flow of data [51]. Thinking and describing operations in the form

of data is considered a better approach because spliced data flow diagrams can represent

all needed information and indicate what crosses from one component to the next. Alt-

hough the meaning of computation is usually defined as acts and every expression in a

program is an operation, the subjects to address are eventually data. Proprietary commer-

cial software, such as LabVIEW and Keysight VEE and the JavaScript visual framework

Rete.js, can be classified into this category.

Modeling diagrams consider programs on a higher level than control flow diagrams

and data flow diagrams. They are used to describe the design of software but not the com-

putation. In other words, what we think in modeling diagrams is a whole picture of static

system architecture rather than the program states at a specific timing. Several famous

modeling and description languages, such as unified modeling language (UML) and spec-

ification and description language (SDL), were proposed for software development. They

support a set of diagrams to cover different aspects of programs, and some of them might

use control flow or data flow to describe the design, for example, the activity diagram in

UML. These modeling diagrams are often encouraged in software development because

they provide a higher-level abstraction on system behavior and provide a better under-

standing of software architecture. In contrast, generating code from these modeling dia-

grams is not as easy as the other three kinds of diagrams. Many research activities work

on program generation from modeling diagrams, for example, generating code according

to the state diagram [52, 53] or the sequence diagrams [54] in UML.

MasonPy is in the category of control flow diagrams and a flowchart in a narrow

sense. Although there has been much discussion of the weakness of flowcharts [45], it has

also been shown that structured flowcharts outperform pseudocode [55] and help novice

programmers write programs [6]. The comparison is summarized in Table 5.

Table 5. The classification of related work and MasonPy.

* Developing DSLs in MasonPy is top-down construction, while writing programs with the DSLs is bottom-up
construction.

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1103

6.2 Component Set

We can also compare MasonPy with other frameworks in terms of the component set.

Flowcharts come from the engineering domain and have a long history. The flowchart was

first mentioned as a flow process chart by Frank and Lillian Gilbreth at the ASME (Amer-

ican Society of Mechanical Engineers) Annual Meeting in 1921. It later became a standard

of the ASME in 1947 [56]. In computer programming, Goldstine and Von Neumann pre-

sented how to draw a flowchart for a given problem and write code based on them [57].

There are two common complaints about using flowcharts in software development

[45, 58], but they are not the issues in separating the experimental concern with DSVLs.

First, considering the mismatch between flowcharts and actual code. Programmers often

face a situation in which it is difficult to maintain an accurate flowchart for their programs.

When flowcharts are used as a blueprint, programmers need to update them to reflect the

changes in a rapidly evolving software system. However, DSVL frameworks, such as Ma-

sonPy, provide an environment to automatically generate code by design, which means no

overhead in maintaining the consistency between the code and design. Second, flowcharts

tend to be too complicated to read. Programmers usually have different concerns for code

to mix together and code to modify because of constraints. If the flowcharts are too specific

and detailed, reading the code will be cumbersome and difficult. To address this issue, we

suggest using a fully user-defined DSVL that has a minimal number of components to

describe the workflow. In this case, the flowcharts for running experiments can represent

only the experimental concern and remain simple.

The standards of flowcharts and their symbols, i.e., components, were set by ANSI in

approximately 1970 [59] and adopted by ISO in 1973 [60]. The current version was revised

in 1985 and confirmed again in 2019 [61]. It supports many kinds of flowcharts, such as

data flowcharts, program flowcharts, system flowcharts, program network charts, and sys-

tem resources charts. If we ignore the symbols for connecting components and pages, at

least eight basic symbols are supported in most flowcharts: terminal, process, decision,

database, document, input/output, preparation, and predefined process. DRAKON can be

considered an extended variant of ISO flowcharts. It defines 26 visual signs, including title,

end, formal parameters, question, choice, case, and begin/end of the FOR loop [62]. These

visual alphabets are named “DRAKON letters” and can be used to compose “DRAKON

words.” On the other hand, UML activity diagrams have a reduced set of components since

they focus on the representation of activities. Standard components include Start/End, Ac-

tivity, Decision, Note, Option Loop, Join, and Fork. MasonPy supports only a reduced set

of flowcharts. It is similar to the activity diagrams without the support of parallel activities,

i.e., no Fork/Join node.

6.3 Program construction

MasonPy is different from other frameworks regarding how to construct programs.

We can consider program construction in two forms: top-down modularization and bot-

tom-up modularization [63]. Top-down modularization considers and specifies a global

program code structure for a given task, i.e., designing components at the top level first

and implementing component details later. In contrast, bottom-up modularization means

specifying common elements of a fine structure to construct a program, i.e., implementing

standard low-level components first and building programs with them. Most flowcharts in

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1104

the broad sense, including nested blocks, control flow diagrams, and data flow diagrams,

are bottom-up modularization. Users are asked to construct their programs based on a

given set of components at a low level. On the other hand, modeling languages, such as

UML and SDL, are top-down modularizations. Users can design with nodes and objects at

a high level and then concretely implement them. MasonPy uses the concept of user-de-

fined DSLs to divide the thinking of code modularization since DSLs can separate the roles

of developers and users. Programmers who develop a tiny DSL on top of MasonPy design

coarse-grained components to model workflows for experimental scenarios. It is similar to

drawing elements in UML diagrams with top-down modularization. On the other hand,

programmers who use the tiny DSL use the components provided by the tiny DSL to con-

struct their experimental programs with bottom-up modularization. It is the same as how

they use fine-grained components in other flowchart frameworks.

7. CONCLUSIONS AND FUTURE WORK

To conduct related experiments for scientific computing and engineering simulation,

programmers need to manage program codes with a good strategy, which requires pro-

gramming skills. However, domain experts might not be masters of programming. We

proposed a simple and lightweight framework, MasonPy, to help domain experts design

user-defined DSVLs for separating the experimental concern from other concerns. With a

fully customized DSVL, implementation details in individual components can be hidden

from the programmers who conduct the experiments. We demonstrated a tiny DSL named

Hybrilog for wind turbine systems built on MasonPy to show the feasibility and discuss its

benefits. People who are not programming experts can design and run experiments with

Hybrilog. To clarify the position of MasonPy, we discussed related work and compared

them from the viewpoint of diagram style, component set, and program construction. The

discussion and comparison show that users can use MasonPy to quickly modularize exper-

imental programs with a customized DSVL and quickly generate programs for different

workflows. In the future, we plan to make the syntax independent from Python syntax and

add the support of parallel computing representation.

REFERENCES

1. G. Fischer, K. Nakakoji, and Y. Ye, “Metadesign: Guidelines for supporting domain

experts in software development,” IEEE Software, Vol. 26, 2009, pp. 37-44.

2. P. Hudak, “Building domain-specific embedded languages,” ACM Computing Surveys,

Vol. 28, 1996, pp. 196-es.

3. M. M. Burnett, “Visual object-oriented programming,” ACM SIGPLAN OOPS Mes-

senger, Vol. 5, 1993, pp. 127-129.

4. B. A. Myers, “Taxonomies of visual programming and program visualization,” Jour-

nal of Visual Languages & Computing, Vol. 1, 1990, pp. 97-123.

5. C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers,” ACM Comput-

ing Surveys, Vol. 37, 2005, pp. 83-137.

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1105

6. K. Charntaweekhun and S. Wangsiripitak, “Visual programming using flowchart,” in

Proceedings of International Symposium on Communications and Information Tech-

nologies, 2006, pp. 1062-1065.

7. M. Resnick et al., “Scratch: programming for all,” Communications of the ACM, Vol.

52, 2009, pp. 60-67.

8. N. Fraser, “Ten things we’ve learned from blockly,” in Proceedings of IEEE Blocks

and Beyond Workshop, 2015, pp. 49-50.

9. H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He, “BiDaML: A suite

of visual languages for supporting end-user data analytics,” in Proceedings of IEEE

International Congress on Big Data, 2019, pp. 93-97.

10. J. E. Rivera, F. Durán, and A. Vallecillo, “On the behavioral semantics of real-time

domain specific visual languages,” in Proceedings of International Workshop on Re-

writing Logic and its Application, 2010, pp. 174-190.

11. E. Guerra, J. de Lara, A. Malizia, and P. Díaz, “Supporting user-oriented analysis for

multi-view domain-specific visual languages,” Information and Software Technology,

Vol. 51, 2009, pp. 769-784.

12. J. C. Grundy, J. G. Hosking, R. W. Amor, W. B. Mugridge, and Y. Li, “Domain speci-

fic visual languages for specifying and generating data mapping systems,” Journal of

Visual Languages & Computing, Vol. 15, 2004, pp. 243-263.

13. M. Almorsy, J. Grundy, R. Sadus, W. van Straten, D. G. Barnes, and O. Kaluza, “A

suite of domain-specific visual languages for scientific software application model-

ling, ,” in Proceedings of IEEE Symposium on Visual Languages and Human Centric

Computing, 2013, pp. 91-94.

14. J. Sprinkle and G. Karsai, “A domain-specific visual language for domain model evo-

lution,” Journal of Visual Languages & Computing, Vol. 15, 2004, pp. 291-307.

15. G. Guizzardi, L. F. Pires, and M. J. Van Sinderen, “On the role of domain ontologies

in the design of domain-specific visual modeling languages,” in Proceedings of the

2nd Workshop on Domain-Specific Visual Languages, 2002, pp. 25-38.

16. J. C. Grundy, J. Hosking, K. N. Li, N. M. Ali, J. Huh, and R. L. Li, “Generating Do-

main-specific visual language tools from abstract visual specifications,” IEEE Tran-

sactions on Software Engineering, Vol. 39, 2013, pp. 487-515.

17. N. Zhu, J. Grundy, J. Hosking, N. Liu, S. Cao, and A. Mehra, “Pounamu: A meta-tool

for exploratory domain-specific visual language tool development,” Journal of Sys-

tems and Software, Vol. 80, 2007, pp. 1390-1407.

18. E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science: An

overview of workflow system features and capabilities,” Future Generation Computer

Systems, Vol. 25, 2009, pp. 528-540.

19. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic

Press Ltd., London, 1972.

20. S. Apel, D. Batory, C. Kästner, and G. Saake, “Software product lines,” in Feature-

Oriented Software Product Lines, Springer, 2013, pp. 3-15.

21. C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in Proceedings

of European Conference on Object-Oriented Programming, 1997, pp. 419-443.

22. E. W. Dijkstra, “Dijkstra archive: On the role of scientific thought (EWD447),” http:

//www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html, 2020.

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1106

23. T. Ball and S. K. Rajamani, “The SLAM project: Debugging system software via sta-

tic analysis,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, 2002, pp. 1-3.

24. I. Nassi and B. Shneiderman, “Flowchart techniques for structured programming,”

ACM SIGPLAN Notices, Vol. 8, 1973, pp. 12-26.

25. K. M. Rich, C. Strickland, T. A. Binkowski, C. Moran, and D. Franklin, “K-8 learning

trajectories derived from research literature: sequence, repetition, conditionals,” ACM

Inroads, Vol. 9, 2018, pp. 46-55.

26. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: Abstraction and

reuse of object-oriented design,” in Proceedings of European Conference on Object-

Oriented Programming, 1993, pp. 406-431.

27. J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science &

Engineering, Vol. 9, 2007, pp. 90-95.

28. G. Xu, F. Liu, J. Hu, and T. Bi, “Coordination of wind turbines and synchronous gen-

erators for system frequency control,” Renewable Energy, Vol. 129, 2018, pp. 225-236.

29. V. Petrović and C. L. Bottasso, “Wind turbine envelope protection control over the

full wind speed range,” Renewable Energy, 2017, Vol. 111, pp. 836-848.

30. K. T. Magar, M. J. Balas, and S. A. Frost, “Direct adaptive torque control for maximiz-

ing the power captured by wind turbine in partial loading condition,” Wind Energy,

Vol. 19, 2016, pp. 911-922.

31. J. Bystryk and P. E. Sullivan, “Small wind turbine power control in intermittent wind

gusts,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, 2011, pp.

624-637.

32. E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for

wind-energy-conversion applications,” IEEE Transactions on Industrial Electronics,

Vol. 53, 2006, pp. 486-494.

33. J. H. Kao, Y. Zhuang, and P. Y. Tseng, “Proposing hybrid controlling logic (HCL) for

the wind turbine system with verification by the DSL framework,” Electric Power

Systems Research, Vol. 187, 2020, p. 106280.

34. M. Sulír, M. Bačíková, S. Chodarev, and J. Porubän, “Visual augmentation of source

code editors: A systematic mapping study,” Journal of Visual Languages & Comput-

ing, Vol. 49, 2018, pp. 46-59.

35. M. Boshernitsan and M. S. Downes, “Visual programming languages: A survey,”

Computer Science Division (EECS), University of California, 2004.

36. G.-C. Roman and K. C. Cox, “A taxonomy of program visualization systems,” Com-

puter, Vol. 26, 1993, pp. 11-24.

37. B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy of software

visualization,” Journal of Visual Languages & Computing, Vol. 4, 1993, pp. 211-266.

38. D. D. Hils, “Visual languages and computing survey: Data flow visual program-ming

languages,” Journal of Visual Languages & Computing, Vol. 3, 1992, pp. 69-101.

39. B. A. Myers, “Visual programming, programming by example, and program visuali-

zation: a taxonomy,” ACM Sigchi Bulletin, Vol. 17, 1986, pp. 59-66.

40. M. Tempel, “Blocks programming,” CSTA Voice, Vol. 9, 2013, pp. 3-4.

41. B. Harvey and J. Mönig, “Bringing “no ceiling” to scratch: Can one language serve

kids and computer scientists,” in Proceedings of Constructionism, 2010, pp. 1-10.

USING USER-DEFINED DSVLS TO MODULARIZE PROGRAMS FOR EXPERIMENTS 1107

42. B. Magnuson, “Building blocks for mobile games: a multiplayer framework for App

inventor for Android,” Massachusetts Institute of Technology, 2010.

43. S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, Inc.,

1980.

44. F. E. Allen, “Control flow analysis,” SIGPLAN Notices, Vol. 5, 1970, pp. 1-19.

45. N. Ensmenger, “The multiple meanings of a flowchart,” Information & Culture, Vol.

51, 2016, pp. 321-351.

46. T. O. Ellis, J. F. Heafner, and W. L. Sibley, “The GRAIL Project: An experiment in

man-machine communications,” Rand Corp Santa Monica CA, 1969.

47. V. Parondzhanov, “Visual syntax of the DRAGON language,” Programming and

Computer Software, Vol. 21, 1995, pp. 142-153.

48. M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “RAPTOR: in-

troducing programming to non-majors with flowcharts,” Journal of Computing Scien-

ces in Colleges, Vol. 19, 2004, pp. 52-60.

49. P. G. Whiting and R. S. V. Pascoe, “A history of data-flow languages,” IEEE Annals

of the History of Computing, Vol. 16, 1994, pp. 38-59.

50. J. B. Dennis, “Data flow supercomputers,” IEEE Computer, Vol. 13, 1980, pp. 48-56.

51. A. L. Davis and R. M. Keller, “Data flow program graphs,” Computer, Vol. 15, 1982,

pp. 26-41.

52. E. Sunitha and P. Samuel, “Automatic code generation from UML state chart dia-

grams,” IEEE Access, Vol. 7, 2019, pp. 8591-8608.

53. I. A. Niaz and J. Tanaka, “Code generation from UML statecharts, ,” in Proceedings

of the 7th IASTED International Conference on Software Engineering and Application,

2003, pp. 315-321.

54. D. Kundu, D. Samanta, and R. Mall, “Automatic code generation from unified model-

ling language sequence diagrams,” IET Software, Vol. 7, 2013, pp. 12-28.

55. D. A. Scanlan, “Structured flowcharts outperform pseudocode: an experimental com-

parison,” IEEE Software, Vol. 6, 1989, pp. 28-36.

56. B. B. Graham, “Detail process charting: speaking the language of process,” John

Wiley & Sons, 2004.

57. H. H. Goldstine and J. von Neumann, “Planning and coding of problems for an elec-

tronic computing instrument,” Institute for Advanced Study, Princeton, NJ, 1947.

58. J. M. Yohe, “An overview of programming practices,” ACM Computing Surveys, Vol.

6, 1974, pp. 221-245.

59. N. Chapin, “Flowcharting with the ANSI standard: A tutorial,” ACM Computing Sur-

veys, Vol. 2, 1970, pp. 119-146.

60. ISO, “ISO 1028:1973 − Information processing − Flowchart symbols,” https://www.

iso.org/standard/5500.html.

61. ISO, “ISO 5807:1985 − Information processing − Documentation symbols and con-

ventions for data, program and system flowcharts, program network charts and system

resources charts,” https://www.iso.org/standard/11955.html.

62. V. P. Ivannikov, “Visual syntax of the DRAKON language,” Programming and Com-

puter Software, Vol. 21, 1995, pp. 142-153.

63. W. Wulf, C. Geschke, D. Wile, and J. Apperson, “Reflections on a systems pro-

gramming language,” ACM SIGPLAN Notices, Vol. 6, 1971, pp. 42-49.

YUNGYU ZHUANG, JUI-HSIANG KAO, KUAN-SHANG LIU, CHIA-YU LIN

1108

YungYu Zhuang (莊永裕) received the B.S. and M.S. degrees

in Mechanical Engineering and Computer Science from National

Taiwan University in 2002 and 2004, respectively, and the Ph.D.

degree in Information Science and Technology from the University

of Tokyo, Japan, in 2014. From 2014 to 2016, he was a Project As-

sistant Professor with the University of Tokyo. He is currently an

Assistant Professor with the Department of Computer Science and

Information Engineering, National Central University, Taiwan. He

was a Research Assistant with the Central Weather Bureau, Taiwan,

from 2004 to 2006, and worked as a Software Engineer in the industry from 2006 to 2011.

His research interests include programming language design, software engineering, high-

performance computing, machine learning, and programming education.

Jui-Hsiang Kao (高瑞祥) was born in 1975, and received the

Ph.D. degree in Department of Systems Engineering and Naval Ar-

chitecture from National Taiwan Ocean University in June 2004. He

worked as the design manager in Hung Shen Propeller Company

from 2004 to 2010. From 2010 to 2014, he worked in the Delta Elec-

tronics Company as the deputy manager. In 2014, he was invited to

be an Assistant Professor in the Department of Systems Engineering

and Naval Architecture, National Taiwan Ocean University, Kee-

lung, Taiwan. His research focuses on propeller acoustic and vibra-

tion, marine propulsion system, and wind turbine design.

Kuan-Shang Liu (劉冠尚) graduated from National Central

University, where he majored in Computer Science and Information

Engineering. In the college period, he learned lots of knowledge

about electrical engineering, programming, and software engineer-

ing. This experience has given him a deeper understanding of pro-

gramming and also sparked my interest in the field.

Chia-Yu Lin (林佳育) graduated with a Master degree in Com-

puter Science and Information Engineering from National Central

University in Taiwan. He currently works for Pro Brand Technology

in Taiwan. He’s engrossed in software engineering and the improve-

ment of user experience.

