
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1189-1211 (2022)
DOI: 10.6688/JISE.202211 38(6).0006

SandboxNet: A Learning-Based Malicious Application
Detection Framework in SDN Networks∗

PO-WEN CHI1, YU ZHENG1, WEI-YANG CHANG2

AND MING-HUNG WANG3,+

1Department of Computer Science and Information Engineering
National Taiwan Normal University

Taipei, 106 Taiwan
2Department of Information Engineering and Computer Science

Feng Chia University
Taichung, 407 Taiwan

3Department of Computer Science and Information Engineering
National Chung Cheng University

Chiayi, 621 Taiwan
E-mail: neokent@gapps.ntnu.edu.tw; 60747041s@gapps.ntnu.edu.tw;

m0907194@o365.fcu.edu.tw; tonymhwang@cs.ccu.edu.tw

Software Defined Networking (SDN) is a concept that decouples the control plane and
the user plane. So, the network administrator can easily control the network behavior
through its own programs. However, the administrator may unconsciously set up some ma-
licious programs on SDN controllers so that the whole network may be under the attacker’s
control. In this paper, we discuss the malicious software issue on SDN networks. We use
the idea of the sandbox to propose a sandbox network called SanboxNet. We emulate a
virtual isolated network environment to verify the SDN application functions. With contin-
uous monitoring, we can locate the suspicious SDN applications if the system detects some
pre-defined malicious behaviors. We also apply machine learning (ML) techniques to iden-
tify unknown malicious applications. Considering the sandbox-evading issue, in our work,
we make the emulated networks, and the real-world networks will be indistinguishable to
the SDN controller.

Keywords: software defined networking, intrusion detection, SDN application, machine
learning, software testing

1. INTRODUCTION

Software Defined Networking (SDN) is a paradigm shift on network technology. The
idea was first proposed by McKeown et al. in [1]1. Unlike legacy networks where network
engineers implement protocols on network devices following well-specified standards and

Received October 23, 2021; revised December 7, 2021; accepted February 14, 2022.
Communicated by Meng Hsun Tsai.
+ Corresponding author.
∗ This work was supported by Ministry of Science and Technology, Taiwan, under the Grant MOST 110-2221-
E-003-002-MY3, MOST 110-2927-I-194-001, and MOST 107-2218-E-035-009-MY3.
1Actually, there were some earlier works about how to process network packets dynamically according to the
administrator’s programs. However, these works are not popular and practical. In this paper, for convenience,
we use McKeown et al.’s OpenFlow as the SDN architecture.

1189



1190 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

devices process packets with network software on them, SDN provides a possibility that
the network administrator can decide how to manage his/her networks. SDN separate
the control plane and the data plane from the network devices. The data plane is kept in
the network device while the control plane is logically centralized on a controller. So,
the network administrator can deploy his/her programs on the controller and modify the
network behavior.

Though the SDN architecture is attractive, it also raises another risk: what if the
deployed software is malicious? The network administrator may download or buy a
software module which is claimed to bring some benefits and load the module on the
controller. However, the module may include some malicious behavior. For example,
the module randomly drops targets for some target user, like presented in Fig. 1. Another
example is that a malicious load balance module may forward a VIP user traffics to a weak
server instead of a strong one to launch a QoS degrade attack. To solve this problem, we
need a defense approach against malicious SDN software2.

Software testing is a way to detect the malware. There are two kinds of testing,
whitebox testing and blackbox testing. Whitebox testing is a software testing approach
that the tester has source codes of the software. However, it is not appropriate for SDN
software testing. There are two reasons. First, though there are lots of open source SDN
controller projects, like [2–5], most SDN networks are built by network device vendors
and their products are close sourced. So, it is not possible for administrators in these
networks to run whitebox testing. Another reason is that most SDN controller projects
apply module-based development. That is, every function is implemented as a module and
this module can be loaded and unloaded dynamically. So, a module may be normal at first
until some catalyst module is inserted. This increases the difficulty of whitebox detection.
As for the blackbox detection, the tester only focuses on the behavior of the software
under test without recognizing its source code. To avoid risking harm to host machines,
sandbox technology is often applied when blackbox testing. Sandbox is a cybersecurity
mechanism that executes a software under testing in an isolated environment. The tester
can continuously monitor the sandbox’s statuses, like CPU and memory usage, network
sockets, system registers etc., to check if the software is a malware. In this paper, we
apply this idea to test SDN applications.

Since SDN applications are in charge of network packet processing, the isolated en-
vironment should be a network instead of a host. We propose SandboxNet, an emulated
sandbox network for SDN applications. We use mininet [6, 8] to setup an emulated net-
work and periodically check the network status and performance. However, applying
mininet directly does not work for two reasons. First, mininet uses Linux kernel net-
work namespace to create virtual links. A packet forwarding through a virtual link can
be treated as an inter-process memory copy action. So, when the emulated topology is
large, the emulated performance is downgraded very soon. Second, though sandbox tech-
nology is widely used for malware detection, attackers may teach their malware to stay
inactive when in sandbox [9, 10]. In this way, sandbox-evading malware will bypass de-
tection process. To overcome these two issues, SandboxNet is improved from mininet
to support large scale network topology which is copied from a real network. So, the

2Here SDN software indicates the software module run on the SDN controller. Undoubtedly the controller itself
is also a software, but in this paper, we will not discuss this issue.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1191

Fig. 1. An SDN malware example. The left block is the claimed function while the right block is
the actual function in process. So, the victim’s packets will be dropped.

emulated network will be indistinguishable from the real network. We also implement a
monitoring mechanism which can trace a given target’s network behavior and see if the
SDN application maliciously affects the target.

Though SandboxNet provides an isolated indistinguishable emulated environment,
there is a serious problem here: What is a malicious SDN APP? In this work, we launch
two different approaches to define the malicious SDN APP, the policy-based approach and
the machine-learning-based approach. The policy-based approach is a pre-defined criteria
detection mechanism according to the user policy, like QoS. Given a user with its policy,
our system can emulate the user scenario in SandboxNet and check if the traffic behavior
in the emulated environment follows the user policy. Though the policy-based approach
is trivial, unfortunately, it is hard to list all checking criteria. To solve this problem, we
apply the ML technique to detect undefined malicious behaviors. Based on the popular
malicious traffic dataset, we build a prediction model to catch the suspicious behavior of
the SDN APP.

1.1 Our Contributions

Our contributions are listed as follows:

• Large Scale Network Support. SandboxNet can emulate large scale network.
Large scale network implies lots of switches, hosts and network traffics.

• Online Detection. SandboxNet supports online detection which means the detec-
tion system can coexist with the real network and be controlled by the same SDN
controller. This ensures the SDN application under testing is configured with the
real setting. Meanwhile, the SDN controller does not need to stop its service for
testing setup phase.

• Indistinguishable to Real Networks. Since SandboxNet supports large scale net-
work emulation, we can clone the real network into an emulated network, including
traffics. So, in the view of SDN controller, the real network and the emulated net-
work are indistinguishable.



1192 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

• ML-Integration. We apply the ML technique to determine if a given SDN APP is
malicious or not, that can help the user to catch the unnoticed malicious behavior.

1.2 Organization

This paper is organized as follows. In Section 2, we will introduce some related
works about SDN testing and an introduction to mininet. In Section 3, we propose the
SandboxNet framework and implementation details. The framework evaluation is in Sec-
tion 4. Our conclusions are in Section 5.

2. RELATED WORKS

In this section, we review some SDN application testing frameworks. We also de-
scribe how mininet works and its limitation.

2.1 SDN Application Testing

There are many SDN application testing frameworks proposed in recent years.
Though most works focus on the correctness of the application behavior, we can sim-
ply treat the suspicious action as the abnormal case and use the test framework to catch
the malicious applications. We also introduce some SDN application debugging tools
here since these tools can also trace the SDN application behaviors.

Nick McKeown et al. proposed an SDN debugging framework called ndb in [12,13].
They built a packet tracking system to follow packet transmission for checking if the ap-
plication is correctly developed. They also developed a breakpoint system to interrupt
packet transmission and check dynamically. Canini et al. integrated model checking and
symbolic execution to build an automating testing tool called NICE [14, 15]. This tool
can check the SDN application behavior and see if there are any violations about the
application properties. Ball et al. applied the similar idea with NICE but created their
own language to described SDN applications [16]. So, they can handle the case of SDN
programs with infinite states by turning the model into First-Order Logics. Yao et al. en-
hanced the NICE work to support the black-box testing [17]. They created a middleware
between the SDN application and their state machine, so they did not need to know the
source code of the application under testing. Scott et al. used a black-box fuzz tester to
test a sequence of packet inputs [18]. Durairajan et al. used fs-sdn [20] to establish a
debugging system [19]. They built an OFf proxy between the SDN controller and fs-sdn
simulator and provided many debugging tools in the OFf proxy.

Though the works described above provide lots of approaches to uncover SDN ap-
plication bugs3, they all have some limitations. First, most debugging tools focus on only
one SDN application. That is, they may ignore the interaction between SDN applications,
and some malicious behaviors may be triggered by other applications instead of network
events. Second, most debugging tools take the network topology as inputs without con-
sidering the network throughput issue. So, the traffic from some host may be directed to

3For simplicity, we treat bugs in those works as malicious applications. In our opinion, the difference between
a bug and a malicious application is if it is intentionally programmed.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1193

a congested but valid path and it is hard to be detected by existing tools. Third, all de-
bugging tools do not consider the sandbox-evading issue. So, malicious SDN applications
can disable themselves when finding the debugging process. For example, the breakpoint-
based solution is not suitable since the processing time will lease the debugging fact.

2.2 Mininet

Mininet [6, 8] is the most popular testing platform for SDN applications. Mininet
is based on Linux kernel containers to emulate hosts, switches and links in a network.
Therefore, mininet can run native userspace applications on each emulated host. As for
the SDN switch, mininet uses Open vSwitch [7] as the switch software. Open vSwitch
is a virtual switch with production quality and many vendors use Open vSwitch as their
OpenFlow protocol implementations. So, the emulated network based on mininet is very
close to the real network.

Unfortunately, mininet cannot be used as the sandbox network directly for some
reasons. First, mininet uses Linux container technology and each program on a virtual
host is directly executed on the mininet host. However, it is difficult to make one computer
run so many programs because of resource limitation, especially when considering large
scale environment. Second, the virtual link performance in mininet is inverse proportional
to the network distance. Lantz et al. shown that with longer distance, the end-to-end
bandwidth decreases seriously [8]. This is because longer distance implies more memory
copy counts and undoubtedly more transmission time. This fact will help the attacker to
learn if the network is a real network or an emulated one and the malicious SDN APP can
evade the emulated environment.

To overcome these problems, instead of generating real traffics, we modify the Open
vSwitch to support virtual traffic generation. We record the network topology and the
traffic pattern from the real network. Then we clone the network to the SandboxNet with
virtual traffics. We assert that with our SandboxNet, the emulated network is indistin-
guishable to the real network.

2.3 Machine Learning Based (ML-based) Malicious Traffic Detection

One common technique applied in conventional intrusion detection system (IDS) is
rule detection; however, such rule-based algorithms relied on maintaining a list of signa-
tures. When facing new threats (i.e., zero-day) or a variant of attack, rule-based methods
could not perform well due to lack of knowledge in the threat. Thus, several scholars
turned to ML techniques for improving the IDS. In recent years, ML is playing an essen-
tial role in addressing different issues. In IDS, several ML studies have been conducted
for malicious traffic detection for different application, such as Internet of Things (IoT),
SDN, and botnets [28,35]. Garcia-Teodoro et al. compared different IDS based on statis-
tical methods, knowledge about threats, and ML. They listed the strengths and drawbacks
of each method [33]. To improve the accuracy and detection speed for IDS, Jyothsna
et al. reviewed and compared the learning-based approaches with previous studies [34].
Recently, Dushimimana et al. proposed a ML-based IDS in IoT [29]. They built an IDS
by constructed a Bidirectional Recurrent Neural network (BRNN) technique to detect ma-
licious behavior in IoT. Kasongo et al. constructed a deep long short-term memory-based
classifier to detect the malicious behavior for wireless IDS [31]. They also compared their



1194 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

method with traditional learning technique. In [30], Lo et al. presented an IDS based on
GNNs for node classification. They leverage the information in network flow data and
transform it to graph, and construct GNNs through feed these features, such as graph
structure and edge features.

There are studies related to the NSL-KDD dataset to improve the ML-based IDS.
They improve models trained on the NSL-KDD dataset to improve to the higher per-
formance on identifying abnormal traffics. In [40], L. Dhanabal et al. proposed a deep
network system SAE-LR (Sparse AutoEncoder with Logic Regression) to try to adjust to
new patterns of intrusions on the NSL-KDD dataset. Another research [42], trained on
NSL-KDD dataset through an AutoEncoder-based approach that uses only the encoder
in the autoencoder without a decoder, which helps them compress features, extract key
features build faster, and make precise predictions of abnormal traffic.

From the abovementioned works, different ML methods were employed in construct-
ing novel IDS; however, studies applying learning-based IDS on SDN for malicious SDN
application detection remain scant. In this study, we constructed a learning-based mali-
cious traffic detection in the proposed emulated network to explore approaches for ma-
licious SDN application detection. Furthermore, we monitored and analyzed the flows
from external hosts and the interactions between the SDN applications.

3. OUR PROPOSAL: SANDBOXNET

In this section, we introduce the SandboxNet architecture and its implementation
details. Note that in this paper, we only focus on the OpenFlow architecture and its
protocol [11]. For simplicity, in this section we use a LAN (local area network) to describe
how SandboxNet work, but we think that SandboxNet can be extended to support WAN
(wide area network).

3.1 Assumption

We first list assumptions in this work before we describe how SandboxNet works.

• Trusted SDN switches. There are some works which focus on how to find out
compromised SDN switches, like [21–23]. A compromised SDN switch may not
follow the rule from the SDN controller. In this work, we focus on the SDN applica-
tion, and we assume all SDN switches are trusted. That is, SDN switches honestly
execute configured flow rules and the SDN controller can derive correct network
information through OpenFlow protocol.

• Trusted SDN controller. As described before, our target is the SDN application.
So, we assume the SDN controller which is a platform to run SDN applications is
trusted. That is, the SDN controller will honestly execute SDN applications. More-
over, we consider that the SDN application can correctly get network information
from the SDN controller.

• Malicious behaviors are only for the network. In this paper, we assume the ma-
licious SDN application attacks the network only and will not attack other entities
like the controller or the computer runs the controller. For example, the application



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1195

Fig. 2. SandboxNet architecture.

may use out all system’s memory and crash the SDN controller. This is an un-
doubtedly attack scenario, but our work focuses on the network. Moreover, passive
attacks are not our concerns in this paper. For example, leaking network informa-
tion from SDN malware to outsiders is not our concern.

We note that these attacks so serious and an SDN network system need to protect
from these attacks. There are many works proposed to discuss and defensive these attacks.
SandboxNet can be integrated as a part of protection mechanism.

3.2 SandboxNet Architecture

SandboxNet is an emulated, isolated network environment for testing SDN applica-
tions. In order to make the emulated network indistinguishable from the real network,
first we clone the network information from the real network, including hosts, network
switches, and its topology. Then we build an emulated network in mininet with the given
topology. We also add a virtual node to serve as a gateway and data from this node will be
treated as data from Internet4. We also record the host behaviors and make emulated hosts
generate traffics. We describe traffic generation detail in Section 3.3. The architecture is
shown in Fig. 2. Note that the real network and the emulated network are both controlled
by the same controller at the same time. So, the controller configurations for the real net-
work and the emulated network are definitely the same. For the controller, it controls two
isolated and similar networks. Besides, since the emulated network is directly connected
to the real controller, all testing cases can be run online.

We call the emulated network background, which is the testing condition. Since the
testing condition is cloned from the real network, it should be indistinguishable with the
real network. The background information is used for the SDN application to do deci-
sions. Then the administrator can add some test traffic to test the SDN application. The
test traffic may include host emulation or service flow emulation. For example, a network
manager wants to deploy a new SDN application on his/her network. The administrator
directly loads the application on the controller. Then the administrator can add a virtual
host as a VIP user and start a new service. The administrator monitors this emulated net-
work and see if the network status violates pre-defined criteria. The administrator also
collects the traffic attributes and uses the pre-trained model to check the APP. If the an-
swer is yes, which means the traffic introduced by the APP violates the user policy or

4Of course, there may be multiple gateways.



1196 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

Algorithm 1 : Traffic Counter Generation

Input: The set of emulated traffic flows, F = {F1, . . . ,Fn}. For a flow Fi, there is a set
of OpenFlow rules Ri that Fi matches and follows and a distribution function Di(t),
where t is the time interval. Each OpenFlow rule r has its own counter information c.

Output: The counter of each OpenFlow rule in the network.
1: for each Fi ∈ F do
2: for each r ∈ Ri do
3: r.c+= Di(t).
4: end for
5: end forreturn En;

the prediction result is positive, the monitor system will send an alarm to the administra-
tor and the administrator can remove the application. Otherwise, the SDN application is
treated as trusted.

Note that the detection process is continuous and dynamic. The administrator can
adjust the emulated environment as it wishes anytime. That is, the administrator is able to
try all possible trigger points by adjusting hosts and connections in the background.

Undoubtedly, this testing operation needs the SDN application to be loaded first.
Some may doubt that the malicious SDN application may attack the network before we
catch it. This is true. However, we think this is unavoidable. SDN is a kind of event-
triggered system. Without events, in most cases the applications will not work at all. To
ease this problem, we can emulate important users first in SandboxNet before they enter
the real network to reduce damage. Besides, since this is an online detection system, the
testing procedure can run continuously and parallel with the real network. So, we can test
any host or any traffic at any time.

3.3 Mininet Scalability Issue and Host Emulation

As described in Section 2.2, mininet cannot support large scale network emulation.
This will be a key point for malware to check if the controlled network is a real network
or not. To solve this problem, we back to a simple question: how the SDN controller gets
the information of all traffic flows?

In OpenFlow specification [11], the SDN switch uses counter to record the status
of each flow. The SDN controller uses the OpenFlow protocol to derive the counter in-
formation of each flow, table and port. So, we can cheat the SDN controller by replying
to artificial values. The design is shown in Fig. 3. The traffic generator module gener-
ates counter value of each flow according to the administrator requirement, like constant
bit rate or Poisson traffic, and answer the request from the SDN controller directly. In
this design, there is no real packet between virtual switches and therefore it is possible
to generate traffics with high throughput. The traffic generator module controls all SDN
switches in the emulated network at the same time. The traffic generation module’s work
is described in Algorithm 1.

For the implementation details, we modify OVS as shown in Fig. 4. We modify the
function rule dpif credit stats in ofproto-dpif.c by adding a customized byte number
to the rule. This byte number is generated from a central process called traffic generator,



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1197

Fig. 3. Artificial cheating traffic generation. The dotted block is our implemented module. The
counter information is derived from our traffic generation module except the Packet In flows.

Fig. 4. The implementation of our design.

which can support different traffic patterns, and is passed to the OVS daemon through
sockets and the IPC mechanism. The traffic generator pattern is determined by the user
so it can setup its own background network for the experiment. The traffic generator is
the central architecture because we want to synchronize the customized traffic statuses
among all emulated switches. Note that we keep the flow status here because there may
be some real packets that pass through the rule and we still count them in.

Note that there are some kinds of counters that cannot be generated. For example,
a flow may ask the SDN switch to forward packets with some pattern to the controller.
In this case, using artificial counters to cheat the SDN controller is nonsense since the
controller can absolutely know how many packets it processes. Therefore, for this kind of
Packet In flows, we leave the openvswitch to derive counter information through normal
APIs instead of our traffic generation module. Though the Packet In flow traffic cannot
be generated, we assert that this should be fine in the real use. The reason is that the
Packet In event often happens at the initialization phase and most packets in this phase
are control packets only which cost almost nothing in bandwidth. Even the network scale
is large, mininet can still afford this task.

In this work, we implement some network service initialization tools, like TCP syn,



1198 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

Fig. 5. TCP emulated flow setup. Here we assume the SDN controller sets bi-directional flow rules
at the same time. After step (1) to step (8), SandboxNet only needs periodical counter setting to
emulate traffics.

UDP packet, HTTP Get and so on. We use these tools to trigger a network service. We
also implement related response tools on one host for serving as a gateway or a router
to another networks. Note that these tools are only sending the first packets in their
protocols to trigger the works of the SDN applications. Once the SDN application setup
related packet handling rules on the network switches, we use the traffic generator to
modify the flow counter and give a traffic illusion to the SDN controller. For example,
if we want to emulate a host watching YouTube, we only send one TCP syn packet and
then use constant bit rate to add counters. Some may doubt that even the YouTube video
is transmitted in a constant rate, there are other control messages like TLS negotiation5.
Here we skip these packets and simply add an offset on each counter since most SDN
controller monitor applications work periodically and TLS connection time is often short
enough in one monitoring interval. If the SDN application requires more packets to the
controller, we will use other trigger program which implements more steps in the service
setup. The overall process is shown in Fig. 5.

The evaluation result is shown in Section 4. Note that we only use this way to
simulate background flows. For the flow that we want to trace, we will make the packets
be forwarded in the virtual links.

3.4 Suspicious Behavior Detection Criteria

In SandboxNet, the monitor system will focus on a given host or a given traffic flow
and see if there is any violation to pre-defined criteria. If the new generated flow rules
violate these criteria, the monitor system will send an alarm to the administrator. The
criteria we use to check the SDN applications:

1. The host cannot reach the destination. The pass condition is to check if the
packet can be correctly forwarded to the destination. The looped path also falls into
these criteria.

5YouTube video is transmission through HTTPs.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1199

2. The path is unconsciously duplicated. The pass condition is to check if a packet
is duplicated to unwanted places.

3. The traffic is directed to an unreasonable path. If there are multiple candidate
paths between the source and the destination6 and the traffic loads are not even
distributed, the monitor system will raise an alarm to the administrator since the
network is not fully utilized.

We use libpcap to implement a receiver agent for every emulated host to check the
forwarded packets.

Note that new criteria can be added to this list, and this is our future work. Of course,
sometimes we may program the network with abnormal configurations. So, we just raise
an alarm to the administrator to decide if this is a normal case or not.

3.5 Machine Learning Technique

As mentioned in the previous section, we will use the pre-trained model in mininet
to check the APP behaviors. The reason that affects us in choosing ML techniques and
the structure of ML will be discussed in this section.

3.5.1 Method of machine learning - BRNN

Schuster and Paliwa first introduced Bidirectional Recurrent Neural Networks
(BRNN) in 1997 [36], which is an extension of unidirectional RNN. The ordinary RNN
only focuses on the previous input, while BRNN focuses on the past and future inputs,
and can use more information than RNN to make predictions. Fig. 6 shows how to com-
bine the past and future input connect with the output layer. The structure of the BRNN
was constructed by two RNNs that are opposite in direction and connected to the same
output layer. The output Yt can be calculated by:

Q(Yt |{Xi}i ̸=t) = σ(W f
Y h f

t +W b
Y hb

t +bY ) (1)

where

h f
t = tanh(W f

h h f
t−1 +W f

X X f
t +b f

h) (2)

hb
t = tanh(W b

h hb
t+1 +W b

X Xb
t +bb

h) (3)

In the formula above, the forward layer and the backward layer are represented as super-
script f and superscript b. WY are the weights that connect the hidden layer to the output
layer, Wh are the weights that connect between hidden layers, and WX are the weights that
connect the input layer to the hidden layer. bY and bh are represented as the biases of the
output layer and the hidden layer. This structure indicates that BRNN accepts both hidden
layer outputs of the previous and the next moments as inputs to achieve the attention of
the past and future elements.

Previous studies have leveraged the temporal patterns of network traffic in identify-
ing malicious behaviors and attacks [26, 27]. Based on the observation, we adopt BRNN
as a ML model to identify the malicious behaviors in this study.
6There may be multiple possible destinations. For example, the load balance service will dispatch the network
load into different servers.



1200 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

Fig. 6. The architecture of Bidirectional Recurrent Neural Networks (BRNN).

Fig. 7. Testing topology for computational cost comparison.

4. EVALUATION

In this section, we evaluate SandboxNet in two ways. First, we evaluate the required
computational cost in the emulated networks. Then, we develop some malicious SDN
applications and catch them with the help of SandboxNet. The experiments are run on
a virtual machine with 2 cores CPU and 4G RAM. The host computer is equipped with
INTEL i7-9700K CPU and 64G RAM.

4.1 SandboxNet Computational Cost

In this subsection, we will evaluate the required CPU resource of SandboxNet. We
compare SandboxNet with pure mininet in a chain topology with 100 switches. We attach
one virtual host at one end and two hosts at the other end. The testing topology is shown
in Fig. 7. We make two hosts generate traffics to the host at the other end independently.
In the mininet case, we use iperf to generate traffics. In the SanboxNet case, we use
our approach to cheat the SDN controller. For simplicity, we use constant bit rate as the
generated traffic model. Besides, we make the bit rate in SandboxNet similar to the value
we measure in the mininet case. The comparison result is shown in Fig. 8. Since it is
hard to isolate each process’s CPU resource cost, here the CPU usage is measured at the
overall system level7.

From the mininet result, we can see that iperf takes lots of CPU resource. With two
iperf processes can use out the system’s CPU resource. More emulated iperf processes
implies each iperf can take less CPU resource and this will restrict iperf’s performance.
So, it is not suitable for mininet to emulate a large network with lots of services. As
for the SandboxNet, we can see the CPU usage is much lower than the mininet case.
Note that this is overall system CPU usage, including irrelevant processes like Desktop

7We use the command vmstate to record the CPU usage.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1201

(a) Mininet with one host traffic. (b) Mininet with two hosts traffics.

(c) SandboxNet with one host traffic. (d) SandboxNet with two hosts traffics.

Fig. 8. Computational cost between Mininet and SandboxNet.

Environment. The average CPU usage after mininet environment setup is around 7%.
So SandboxNet can support real network simulation and therefore can cheat the SDN
controller that this is a ”real” network.

4.2 SandboxNet SDN Malware Detection: Pre-defined Policy

In our experiment, we define two attack scenarios as our checking criteria.

4.2.1 Scenario 1: Malicious forwarding issue

Forwarding issue is a problem that the rules for a network flow given by the SDN
controller cannot forward the flow packets correctly. For example, packets from some
victim host may be dropped at some switch. Another example is that packets from some
victim host may be duplicated to other irrelevant hosts.

To catch this issue, first, we prepare a sensitive user list and a sensitive network
service list. SandboxNet will focus on these hosts and network services. Then we clone
the real network into an emulated network in SandboxNet. The network cloning includes
the virtual traffic generation. We randomly pick a host from the user list and trigger
a network service from the service list. We check if the receiver can correctly get the
packets. When the network service is at the outside of the network, the emulated gateway
plays the role of the receiver and runs relative network services. If the receiver cannot
get the packet, the SDN applications are suspicious. In the meantime, we also enable
the packet capture process on each virtual host other than the receiver. We check if other
hosts can get the sensitive users’ packets. If yes, there may be a duplication issue.

We write an SDN APP to randomly drop the packets for the sensitive user and treat
this APP as a malicious APP. The experiment setting is shown in Fig. 9. Fig. 10 is the
monitor result with different drop rates. We can see that it is simple to catch the drop
packet event. The administrator can then trace the path, find the problematic rule and
locate the APP which sets this malicious rule.



1202 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

Fig. 9. Malicious forwarding scenario. p is the drop rate set by the malicious APP.

(a) Source transmission rate. (b) Target’s receiving rate vs. drop rate.

Fig. 10. Throughput from the unbalanced rates between the source and destination.

4.2.2 Scenario 2: Malicious path selection issue

Generally speaking, when we want to prioritize some network traffic, the most com-
mon way to add a tag to the flow, like the VLAN tag or the DSCP field. Then the flow
packet will be processed in the high priority queue. Consider the following case. If there
is an SDN application that concentrates all VIP flows in a path with low link rate while
other unimportant flows use another path with high link rate. In this case, though the
packets with higher priority are correctly tagged, the network QoS performance for VIP
users will be poor. Fig. 11 is an example of this attack scenario.

To find this kind of attacks, again we first construct an emulated network environ-
ment. Again, we focus on the sensitive users and their sensitive network services. For
each sensitive flow, according to the network topology, we find all possible paths between
the flow source and destination. We record all paths’ information, like their link rates and
on-going throughput. Then we generate a traffic with a given rate and see if the receiving
rate is as expected or not. If not, like Fig. 12, it implies that the SDN application deter-
mines a path that will cause an unbalanced network result. So SandboxNet will raise an
alarm to the network administrator.

Note that the malicious QoS setting can also be treated as a variant of this attack.

4.3 SandboxNet SDN Malware Detection: Machine Learning Technique

In this section, we will introduce how to integrate the machine learning mechanisms
into our design. We also use the NSL-KDD dataset [37] and conduct the experiments of
our intrusion classification method using deep learning.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1203

Fig. 11. Malicious path selection. There are two paths between Host A and Host B. The line
width implies the link rate. The circle represents the packet with higher priority while the square
represents the packet with lower quality. In this case, higher priority packets are forwarded through
low link rate. So even these packets are tagged with high priority, this setting does not work and
can be treated as an attack.

Fig. 12. The expected transmission rate vs. the actual transmission rate.

4.3.1 The centralized controller for behavior monitoring

Since SDN is a centralized architecture with a controller to monitor the traffic and
behaviors of the whole network, we here adopted the features of a controller that can
receive the reports from every end device about the traffic and communication behaviors.
Based on this, the controller can communicate with the detection model to complete an
application classification.

4.3.2 NSL-KDD dataset

We employ the popular NSL-KDD dataset, which is a reduced and enhanced version
of KDD Cup 99 dataset, in our experiment.

Every record in NSL-KDD has a total number of 41 features with a binary value to
represent the category of the traffic (normal/ attack type). These features can be subdi-
vided into 4 categories according to different uses. It can also be subdivided into binary
values, categorical values, and continuous values based on the different types [38].

Based on the NSL-KDD studies [39], the dataset groups all the attack types into four
categories. In each category, sub-labels are indicating detailed attack forms. As shown
in Table A5, a total of 23 sub-labels, including 22 attack types and 1 normal label in the
training set. In the testing set, there are 38 sub-labels, while 21 of them are also included
in the training set. We consider the reason for having different sub-labels between the



1204 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

(a) The number of records of each category in the
training set.

(b) The number of records of each category in the
testing set.

Fig. 13. The number of records of each category in the NSL-KDD dataset.

training set and testing set would be including potential attack types which are not shown
in the training set.

In Figs. 13 (a) and (b), we show the number of records in each category of training
and testing sets in NSL-KDD dataset.

Table 1. Binary classification in all types compared with [40].
Method Precision Recall F1-measure

Our proposal 84.00 99.94 91.28
[40] 84.60 92.87 None

4.3.3 Machine learning experiment

As mentioned in the previous section, we evaluated the proposed work using NSL-
KDD dataset. Three metrics used for measuring the performance of our proposal are
described as follows:

• Recall= T P
T P+FN ∗ 100%: the ratio (%) of true positive divided by the sum of true

positive (TP) and false negative (FN).

• Precision= T P
T P+FP ∗100%: the ratio (%) of true positive divided by the sum of true

positive and false positive (FP).

• F1-measure= 2∗Recall∗Precision
Recall+Precision : the weighted average of Precision and Recall.

What follows illustrates the procedure of our experiment. First of all, we relabel
each record into a binary form (0: benign and 1: malicious). After that, we constructed a
BRNN machine learning model to identify malicious records. Finally, we conduct exper-
iments in two modes, one is normal versus malicious (binary experiment). The other one
is normal versus every attacking category; for each attack category (DoS, Probe, R2L,
and U2R), we also develop corresponding classifiers and evaluate them.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1205

Table 2. Binary classification compared with [42].
Our proposal [42]

Attack type Precision Recall F1-measure Precision Recall F1-measure
All 84.00 99.94 91.28 82.22 79.74 76.47
DoS 97.88 98.87 98.37 96.34 83.95 89.72

Probe 93.06 99.67 96 86.37 8038 83.27
R2L 54.85 97.59 70.23 81.86 11.26 18.79
U2R 53.26 87.16 66.12 73.33 32.84 46.36

We also compared the performance of our model with other recent studies. The
metrics include Accuracy, Precision, Recall, Error Rate, and F1-measure. Table 1 shows
that our proposal receives almost the same performance in Accuracy with [40] but much
better performance on Recall. In Table 2, we compared the performance with [42]. In
all types, DoS, and Probe attacks, our work significantly outperforms previous studies.
Although our Precision is lower in R2L and U2R, we still receive a higher Recall. Finally,
we compared the performance of rule-based and ML-based on the NSL-KDD dataset. In
Table 3, we compared with the Hoeffding Tree [41]. Our proposal works better in both
Accuracy and Error Rates. Based on the results, we assert our model could perform better
in identifying DoS and Probe attacks.

Table 3. Binary classification in all types compared with [41].
Method Accuracy Error(%)

Our proposal 99.94 0.06
Hoeffding Tree [41] 98.60 1.40

5. CONCLUSIONS

In this paper, we propose SandboxNet, a sandbox concept for SDN applications. We
use mininet to build an emulated networks and enhance mininet to support large traffics.
SandboxNet provides a possibility to check if loaded SDN applications have any suspi-
cious behaviors. So SandboxNet is a great tool for network administrators to catch the
malicious SDN application.

Though SandboxNet provides a testing framework, the suspicious network behaviors
are undoubtedly not complete. For example, packet modification problem may be an
important issue and need to be discovered. Our next step is to find more attack scenarios
and extend SandboxNet for more malicious behavior patterns.

REFERENCES

1. N. McKeown, T. Anderson, H. Balakrishnan, et al., “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Computer Communication Review, Vol. 38, 2008,
pp. 69-74.

2. “The POX network software platform,” https://github.com/noxrepo/pox,2019.
3. “ONOS - A new carrier-grade network operating system designed for high availabil-

ity, performance, scale-out,” https://onosproject.org/, 2019.
4. “OpenDaylight,” https://www.opendaylight.org/, 2019.



1206 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

5. “Ryu SDN framework,” https://osrg.github.io/ryu/, 2019.
6. “Mininet: An instant virtual network on your laptop (or other PC),” http://mininet.

org/, 2019.
7. “Open vSwitch,” https://www.openvswitch.org/, 2019.
8. B. Lantz, H. Bob, B. Heller, and N. McKeown, “A network in a laptop: Rapid pro-

totyping for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010, pp. 19:1-19:6.

9. T. Vidas and N. Christin, “Evading Android runtime analysis via sandbox detection,”
in Proceedings of the 9th ACM Symposium on Information, Computer and Commu-
nications Security, 2014, pp. 447-458.

10. N. Miramirkhani, M. P. Appini, and N. Nikiforakis, and M. Polychronakis, , “Spot-
less sandboxes: Evading malware analysis systems using wear-and-tear artifacts,” in
Proceedings of IEEE Symposium on Security and Privacy, 2017, pp. 1009-1024.

11. “The open networking foundation, openflow switch specification,” https://www.open
networking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, 2015.

12. N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown, “Where is the
debugger for my software-defined network?,” in Proceedings of the 1st Workshop on
Hot Topics in Software Defined Networks, 2012, pp. 55-60.

13. B. Heller, C. Scott, N. McKeown, et al., “Leveraging SDN layering to systematically
troubleshoot networks,” in Proceedings of the 2nd ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, 2013, pp. 37-42.

14. M. Canini, D. Kostic, J. Rexford, and D. Venzano, “Automating the testing of Open-
Flow applications,” in Proceedings of the 1st International Workshop on Rigorous
Protocol Engineering, 2011, pp. 1-6.

15. M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE way to
test OpenFlow applications,” in Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation, 2012, pp. 127-140.

16. T. Ball, N. Bjørner, A. Gember, et al., “VeriCon: Towards verifying controller prog-
rams in software-defined networks,” in Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 2014, pp. 282-293.

17. J. Yao, Z. Wang, X. Yin, X. Shi, Y. Li, and C. Li, , “Testing black-box SDN ap-
plications with formal behavior models,” in Proceedings of IEEE 25th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, 2017, pp. 110-120.

18. C. Scott, A. Wundsam, B. Raghavan, et al., “Troubleshooting blackbox SDN control
software with minimal causal sequences,” in Proceedings of ACM Conference on
SIGCOMM, 2014, pp. 395-406.

19. R. Durairajan, J. Sommers, and P. Barford, “Controller-agnostic SDN debugging,” in
Proceedings of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, 2014, pp. 227-234.

20. M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for SDN prototyp-
ing,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, 2013, pp. 31-36.

21. P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a compromised SDN
switch,” in Proceedings of the 1st IEEE Conference on Network Softwarization, 2015,
pp. 1-6.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1207

22. Y. Chiu and P. Lin, “Rapid detection of disobedient forwarding on compromised
OpenFlow switches,” in Proceedings of International Conference on Computing, Net-
working and Communications, 2017.

23. P. Perešı́ni, M. Kuźniar, and D. Kostić, “Dynamic, fine-grained data plane monitoring
with monocle,” IEEE/ACM Transactions on Networking, Vol. 26, 2018, pp. 534-547.

24. J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999
Darpa intrusion detection system evaluations as performed by Lincoln laboratory,”
ACM Transactions on Information and System Security, Vol. 3, 2000, pp. 262-294.

25. M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling internet
traffic dynamics of cellular devices,” ACM SIGMETRICS Performance Evaluation
Review, Vol. 39, 2011, pp. 265-276.

26. F. Soldo, A. Le, and A. Markopoulou, “Blacklisting recommendation system: Using
spatio-temporal patterns to predict future attacks,” IEEE Journal on Selected Areas
in Communications, Vol. 29, 2011, pp. 1423-1437.

27. A. Lakhina, M. Crovella, and C. Diot, “Detecting distributed attacks using network-
wide flow traffic,” in Proceedings of FloCon 2005 Analysis Workshop, 2005, pp. 1-3.

28. M. S. Elsayed, N.-A. LeKhac, S. Dev and A. D. Jurcut, “Machine-learning techniques
for detecting attacks in SDN,” IEEE 7th International Conference on Computer Sci-
ence and Network Technology, 2019, pp. 277-281.

29. A. Dushimimana, T. Tao, R. Kindong, and A. Nishyirimbere, “Bi-directional Recur-
rent Neural network for Intrusion Detection System (IDS) in the internet of things
(IoT),” arXiv Preprint, Vol. 7, 2020, pp. 524-539.

30. W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-GraphSAGE:
A graph neural network based intrusion detection system,” arXiv Preprint, 2021,
arXiv:2103.16329.

31. S. M. Kasongo and Y. Sun, “A deep long short-term memory based classifier for
wireless intrusion detection system,” ICT Express, Vol. 6, 2020, pp. 98-103.

32. M. Aljanabi, M. A. Ismail, and A. H. Ali, “Intrusion detection systems, issues, chal-
lenges, and needs,” International Journal of Computational Intelligence Systems, Vol.
14, 2021, pp. 560-571.

33. P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anoma-
ly-based network intrusion detection: Techniques, systems and challenges,” Comput-
ers & Security, Vol. 28, 2009, pp. 18-28.

34. VVRPV. Jyothsna, R. Prasad, and K. M. Prasad, “A review of anomaly based in-
trusion detection systems,” International Journal of Computer Applications, Vol. 28,
2011, pp. 26-35.

35. Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine learning-
based IoT-botnet attack detection with sequential architecture,” Sensors, Vol. 20,
2020, pp. 4372.

36. M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Transactions on Signal Processing, Vol. 45, 1997, pp. 2673-2681.

37. “NSL-KDD|Datasets|Research|Canadian Institute for Cybersecurity|UNB,” https://
www.unb.ca/cic/datasets/nsl.html, 2021.

38. L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD dataset for intrusion de-
tection system based on classification algorithms,” International Journal of Advanced
Research in Computer and Communication Engineering, Vol. 4, 2015, pp. 446-452.



1208 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

39. M. V. Mahoney, Matthew and P. K. Chan, “Learning nonstationary models of normal
network traffic for detecting novel attacks,” in Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2002, pp. 376-
385.

40. S. Gurung, M. K. Ghose, and A. Subedi, “Deep learning approach on network intru-
sion detection system using NSL-KDD dataset,” International Journal of Computer
Network and Information Security, Vol. 11, 2019, pp. 8-14.

41. S. Geetha, U. N. Dulhare, and S. S. S. Sindhu, “Intrusion detection using NBHoeffd-
ing rule based decision tree for wireless sensor networks,” in Proceedings of IEEE
2nd International Conference on Advances in Electronics, Computers and Commu-
nications, 2018, pp. 1-5.

42. C. Zhang, F. Ruan, L. Yin, X. Chen, L. Zhai, and F. Liu, “A deep learning approach
for network intrusion detection based on NSL-KDD dataset,” in Proceedings of IEEE
13th International Conference on Anti-counterfeiting, Security, and Identification,
2019, pp. 41-45.

Po-Wen Chi received his BS, MS and Ph.D. in Electrical
Engineering from National Taiwan University in 2003, 2005 and
2016. From 2005 to 2016, he was an Engineer in Institute for
Information Industry, Taiwan. From 2016 to 2018, he was a Se-
nior Engineer in Arcadyan Technology Corporation, Taiwan. He
joined Department of Computer Science and Information En-
gineering, National Taiwan Normal University, as an Assistant
Professor in 2018. He is currently an Associate Professor. His
research interests include network security, applied cryptogra-
phy, software-defined networking, and telecommunications.

Yu Zheng received his BS degree in the Department of
Computer Science and Information Engineering in National Tai-
wan Normal University. He is currently a Software Engineer at
eWay Network Corporation.



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1209

Table A1. Denial of Service (DoS): Attacks that make computing or memory too busy or too full
to handle normal requests or deny normal users access to machine or server [39].

Attack type Description
back The attacker used the wrong IP addresses in the source IP address of the IP

header. As a result, the receiver fails to determine the real attacking IP to stop
the attacker from sending illegitimate packets.

land In this kind of attack, a large number of TCP/SYN packets are sent to the
target machine. In these attacks, the spoofed IP packets have both the source
as well as the destination IP addresses as the target machine’s IP address.

neptune A large number of SYN packets are sent to the target machine to exhaust its
buffer.

pod It uses oversized IP packets to crash, freeze, or reboot the system.
smurf Use ICMP echo request packets directed to IP broadcast addresses from re-

mote locations to create a DoS attack.
teardrop It uses overlapping IP fragments. It causes machines to reboot. This attack af-

fects systems that are still using old versions of Windows and Linux operating
systems.

mailbomb Flood SMTP server
processtable Server flood exhausts UNIX process
udpstorm Echo / chargen loop flood
apache2 Crash web server with long request
worm Attacker attack in different by using by storm worm botnet

Wei-Yang Chang is currently working as a student towards
his MS degree in the Department of Information Engineering
and Computer Science at Feng Chia University, Taiwan. He re-
ceived his BS degree in Information and Telecommunications
Engineering from Ming Chuan University in 2020.

Ming-Hung Wang is an Assistant Professor in the Depart-
ment of Computer Science and Information Engineering of Na-
tional Chung Cheng University. He received his Ph.D. in Elec-
trical Engineering at National Taiwan University in 2017. Dr. 
Wang focuses on addressing security issues about online infor-
mation, Internet behaviors, and network infrastructures.

A. APPENDIX



1210 PO-WEN CHI, YU ZHENG, WEI-YANG CHANG, MING-HUNG WANG

Table A2. Probe: Trying to avoid network security control by gathering information about a
network of computers [39].

Attack type Description
satan Automate the process of testing systems for known vulnerabilities that can be

exploited via the network
ipsweep Stealthy slow-scan those exists IP address
nmap Discover hosts and services on a computer network by sending packets and

analyzing the responses.
portsweep Stealthy slow-scan the status of ports
mscan Test multiple vulnerabilities
saint It screens every live system on a network for TCP and UDP services to detect

anything that could allow an attacker to gain unauthorized access, create a
denial-of-service, or gain sensitive information about the network.

Table A3. Remote to Local (R2L): Unauthorized access from a remote machine, it will intrudes
into a remote machine and gains local access to the victim machine [39].

Attack type Description
guess password Dictionary password guessing
phf Exploited bad Apache CGI script
imap It makes the mailbox server buffer overflow.
ftp write Upload “+ +” to .rhosts to bypass the firewall
multihop The attacker attacks the victim’s remote machine by other vic-

tim machines
warezmaster Access the victim machine through the warez application that

user has downloaded
sendmail SMTP mail server buffer overflow
xsnoop keystrokes intercepted on open X server
xlock Steals password through the fake screensaver
snmpgetattack The attacker steals the community string which is transmitted

by clear-text in the early SNMP version to access the machine.
named DNS nameserver buffer overflow
httptunnel Backdoor disguised as web traffic
snmpguess Guess the SNMP community string to access the remote ma-

chine in an unauthorized process

Table A4. User to Root (U2R): Unauthorized access to root privileges is an attack type, which
login into a victim system and tries to gain root privileges [39].

Attack type Description
buffer overflow In the core of Unix, it was found that the highest level of au-

thority of the system can be obtained by buffer overflow
xterm UNIX suid root buffer overflow
loadmodule UNIX trojan shared library
rootkit Is a collection of computer software, typically malicious, de-

signed to enable access to a computer or an area of its software
that is not allowed

perl UNIX bug exploit
sqlattack Database app bug, escape to user shell
ps UNIX bug exploit



A LEARNING-BASED MALICIOUS SDN APPLICATION DETECTION FRAMEWORK 1211

Table A5. Attacks in NSL-KDD dataset.
Category Sub-labels in training set Sub-labels in testing set

DoS back, neptune, smurf, teardrop,
land, pod

back, land, neptune, pod smurf,
teardrop, mailbomb, processtable,
udpstorm, apache2, worm

Probe satan, nmap, portsweep, ipsweep satan, ipsweep, nmap, portsweep,
mscan, saint

R2L warezmaster, phf, imap, ftp write,
spy, warezclient, guess password,
multihop

guess password, phf, imap,
ftp write, multihop, warezmaster,
sendmail, xsnoop, xlock, sn-
mpgetattack, named, httptunnel,
snmpguess

U2R rootkit, buffer overflow, perl, load-
module

buffer overflow, xterm, loadmod-
ule, rootkit, perl, sqlattack, ps


