JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 27-39 (2024)
DOI: 10.6688/JISE.202401-40(1).0002

Privacy Block-Streaming: A Novel DEX File Loading
Scheme Based on Federated Learning”

YICHUAN WANG'?, YANHUA FENG', YEQIU XIAO'*,
XIAOXUE LIU'" AND XINHONG HEI'?
'School of Computer Science and Engineering
2Shaanxi Key Laboratory for Network Computing and Security
Xi’an University of Technology
Xi’an, 710048 PR. China
E-mail: chuan@xaut.edu.cn; yhfeng @ stu.xaut.edu.cn; xiaoyeqiu@xaut.edu.cn”;
liuxiaoxue @ xaut.edu.cn; heixinhong @xaut.edu.cn

With the technologies of wireless mobile networks and wireless devices, users have
faced a severe issue of data overload in application usage. Preference recommendation of
applications is viewed as an effective method to solve such issues, which mainly relies on
users’ interests in an application. However, preference recommendation of applications ig-
nores what functions users like to utilize. This paper aims to address the data overload issue
by analyzing users’ preference of functional classes for devices in wireless mobile networks
and proposes a privacy scheme of block-stream service for DEX files based on federated
learning. We first propose a formalized model of application functions to provide insight
into applications. We calculate correlation weights of functions in mobile applications by
using users’ operation behavior data. The homomorphic encryption technologies are also
utilized to prevent privacy leakage of model parameters in this paper. Finally, models in-
volved in the proposed scheme are stored in the blockchain to support trusted storage and
traceability services. Experiment results are presented to verify the effectiveness of our
proposed scheme. Compared with other block-streaming loading schemes, the proposed
scheme in this paper has a pretty good performance in saving storage space.

Keywords: federated learning, homomorphic encryption, block-streaming service loading,
blockchain, DEX file

1. INTRODUCTION

With the development of wireless mobile networks technology and the explosive
growth of application usage of wireless mobile terminals, applications (Apps) have been
deeply involved in human being’s life, which results in the fact that people are surrounded
by massive volumes of data [1]. It is significant for Apps to analyze and recommend items
that users are potentially interested in from such complex information. Thus, recommen-
dation systems for Apps have been attracting extensive attention in recent years [2]. Tradi-
tionally, a recommendation system provides users’ preferences by collecting history data
of users and analyzing them in a server, which always contains sensitive information of
users. Unfortunately, different kinds of malicious attacks exist and bring various threats
to data privacy [3]. Therefore, how to protect data privacy in recommendation systems
serves as a critical issue and needs to be carefully considered.

Federated learning (FL) is a novel framework of distributed machine learning, which
has a good performance on privacy protection of data. Its fundamental principle is to
transmit trained data (e.g., local model parameters) instead of original ones from the
user’s terminal to the server. Nowadays, technologies of federated learning have been
widely applied to various recommendation systems. Literature [4] gave a federated rec-
ommendation system based on user embedding features and updates parameters with the
time decay factor relying on user historical data. In [5], authors proposed a federated

Received September 30, 2022; revised October 31, 2022; accepted December 13, 2022.
Communicated by Xiaohong Jiang.

* Corresponding author.

* The preliminary version of this work has been presented in NaNA conference.

27

28 YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

collaborative filtering method for personalized recommendations, where vectors of user
factor are updated by the user’s local feedback data. Although systems based on feder-
ated learning reduce the probability that events of privacy leakage occur, there may exist
unpredictable attacks when local model parameters of a terminal are transmitted, such as
eavesdropping attacks. Thus, traditional approaches based on federated learning are not
sufficient to ensure data security.

To improve privacy of data in recommendation systems, researchers have been study-
ing the protection of model parameters, which are mainly achieved by data perturbation
or cryptography. The federal recommendation algorithm (FedRec) was put forward by [6]
for privacy protection, which uses mixed filling and user average algorithm to generate
a pseudo-interaction set for data disturbance, and it improves privacy protection ability.
In [7], authors studied the collaborative filtering recommendation system based on feder-
ated learning, which adds Laplacian noise to gradient parameters uploaded by end-users
to reduce likelihood of privacy leakage. The framework of multi-party deep learning
was designed by [8], where the method completed a strategy of dynamical allocation for
privacy budget in each stage of federated learning.

In aforementioned works, most of them provide privacy for model parameters via
losing the transmission rate or the accuracy of predicting users’ preference. However,
such indexes about quality of service are also important for an App, since they have
heavy effects on users’ experiences and the profit of App. Motivated by the above ob-
servations, in this paper, we try to propose a lightweight recommendation system based
on federated learning for Apps, which aims at achieving accuracy of preference predic-
tion and privacy of data. Particularly, we will design a recommendation scheme based on
DEX file to improve the probability of successful preference prediction. It is notable that
existing research mainly focuses on App recommendation based on user behavior [9, 10],
while our work has an insight into recommendation method based on user’s preference
for functional class of App.

The contributions of this paper are three-fold:

(1) We propose a novel DEX file loading scheme based on federated learning, which
measures users’ preference for functional classes with their actual operation behaviors and
provides priority loading of block-streaming service in wireless mobile networks. Our
scheme will dynamically update the description of relationships among different func-
tional classes to improve the accuracy of preference recommendations.

(2) Consider interactions between terminal users and edge servers that may suffer
attacks. We apply additive homomorphic encryption and authorized blockchain to guar-
antee the privacy and secrecy of data. Furthermore, trusted storage and backtracking ser-
vices are also realized for the scheme in this paper.

(3) We calculate internal behavior data of users about applications by embedded
technology and conduct model training based on corresponding data. The effectiveness of
our scheme is demonstrated by experiments. Results show that the proposed scheme can
not only save storage space for end devices but also it is able to improve the efficiency of
service transmission.

The rest of this paper is organized as follows. The second section describes the ar-
chitecture of the DEX file loading scheme in this paper. The third section presents pro-
cesses of the preference recommendation based on functional classes and approaches of
guaranteeing data privacy in our proposed scheme. Experiments are shown in the fourth
section and conclusions are given in the fifth section.

Throughout this paper, we use the following notations. Scalars and matrices are de-
noted by normal letter and bold letter, respectively. {x1, za, - - , 2, } represents a set and
its elements. The notation X[¢][j] describes the jth element of the ith line of matrix X.
We denote Gragh.X as the adjacency matrix for a graph that can be obtained by X. Let
(), Enc(-,-), Dec(-,-) denote the ciphertext, encryption and decryption, respectively.

A NOVEL DEX FILE LOADING SCHEME 29

2. SYSTEM ARCHITECTURE

2.1 Network Model

We consider a network model consisting of terminals, edge-end and cloud-end,
where the terminal is composed of wireless mobile devices embedded in Android op-
erating system, such as mobile phones and tablets, the edge-end comprises multiple edge
servers, and the cloud-end is responsible for global data aggregation as well as large-scale
data storage and computing. According to existing work, privacy leakage may be caused
by reverse analysis of updating parameters in such networks [11]. In this paper, to protect
data privacy of users’ operation behavior, the end device is designed to constantly update
model parameters and transmit model parameters instead of original behavior data to the
edge server.

Consider the fact that transmission of block-streaming service in block-streaming
execution platform(e) [BSEP(e)] mode may suffer attacks [12], which results in incorrect
services provided by edge servers. In order to solve such problem, a novel loading scheme
of block-streaming service based on federated learning for DEX file is proposed, which
adopts existing block-streaming service and trusted verification method to realize trusted
loading [13].

2.2 System Architecture

As shown in Fig. 1, we design a system consisting of the end device layer, edge
server layer, blockchain storage layer and cloud server layer. The terminal layer forms
the set U of Android operating system devices, and the edge layer is composed of several
edge servers, which are usually distributed in the mobile phone base stations and have the
function of interacting with the blockchain network. Based on this system, we build a
federated learning-based scheme of block-streaming service for DEX file.

End Devices Edge Server
sAppl sApp2 I sApp Repository
Request I
Appl App2 Platform sAppl | sApp2 @ -
BSEP(i) II BSEP(e)
; . . App
Lightweight Device OS Block-Streaming Edge Server OS
Local Training (((‘)))‘ 1(((‘))) Parameter Update
Network
Privacy Protection Transmission Federated Learning
Federated Learning § g B“_‘Ck-S'fé*"‘_‘i“&
Loading Optimization
Network
Transmission
Cloud Server Blockchain Network
Data Block Hash
Digital Signature
Tamper Proof
Network

Transmission

0-0-3-0-0d

Cloud Computing Traceability
Global Analysis Consensus
Large Scale .
arge Scale Chaincode
Data Storage

Fig. 1. System architecture.

First, the edge server that is nearest to the end device utilizes DEX file to generate
a directed graph based on a specific application, which is denoted by the initial model
M. Then, the initial model M, and digital signature D, are sent to the end device.

30 YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

Furthermore, the end device will apply M and sensitive data of users to model training,
where local parameter M} will be obtained and then transmitted to the edge server. After
receiving MY, the edge server verifies the digital signature to ensure the reliability of
received parameters and begins to train edge nodes. Particularly, once the edge server
receives the weight parameters, it will also upload weight parameters in the blockchain
network. Furthermore, the weight of the hot spot functional class will be also sent to
the blockchain network within a designed time constraint, which can prevent hot spot
function’s weight from attacks and support the ability of backtracking information on
such weight for each transaction.

Otherwise, we also design a cloud server layer in our system to provide data ag-
gregation and information sharing for multiple edge servers. It will dynamically view
the weights of hot spot functions on the blockchain network and conduct global model
training. The weights of hot spot functions will be also transmitted to the edge server
in a designed period, which will provide support to improve strategy of block-streaming
service loading.

2.3 Scheme Design

A novel loading scheme of block-streaming service based on federated learning for
DEX file (RS-FLBS) includes six steps, which are initialization, downloading global
model, uploading local parameter information, model aggregation, uploading data to
blockchain network and the block-streaming service loading application. The design of
the scheme is shown in Fig. 2.

Global Model

T

(loud Server)
_ -/

/ N\

G0 ° SW\”’“’“

Local Model Local Model Local Model Local Model
0 D . 0 Detz B . D Data C [Dawb
Elw S S ES . LIS -

1] o o i)

Fig. 2. Scheme design.

Initialization: The DEX file is first processed on the edge server, generating a di-
rected graph of block-streaming service based on DEX file for a specific application
program. The weight of the reference relationship between the directed graph nodes
is randomized, so the initial model M is generated. Secondly, blockchain network is
constructed, we use each edge server as a blockchain node, and peer-to-peer network is
built by connecting each edge server. The edge server broadcasts the initial model M
and digital signature D, to neighboring nodes.

Download global model: The end-user devices download the initial model M, from
the edge server node that is nearest to themselves.

Upload local parameters: We will first calculate the duration of user access, click
volume and user behavior type depending on the user’s behavior. Then, the local operation
data and the global model issued by the edge server are utilized to determine the local
weights of parameters in the process of local training. Furthermore, obtained local model
will be updated depending on the above results, while local weights of parameters will be
uploaded to the edge server with technologies of homomorphic encryption.

A NOVEL DEX FILE LOADING SCHEME 31

Model aggregation: The edge server aggregates the local models uploaded by mul-
tiple users by federal average algorithm, which updates the aggregation parameters to the
global model.

Data upload to blockchain network: Considering that users’ preferences for past
operations will remain relatively stable in the future, the edge server will send local model
parameters and global model parameters to the blockchain network within a certain period
of time, where the local model parameters are a matrix, which indicates the weights of
the reference relationships between nodes in the directed graph (CRG) of block-streaming
service loading based on DEX file for a specific application.

Let introduce CRG, CRG(V, E) which consists of a vertex set V' and an edge set
E. In this paper, V. = {V1, V4, ..., V,,}, which represents the set of classes in the DEX
file and (V;, V;) indicates that there is a direct reference relationship between V; and V.
Moreover, the reference relationship between classes is depicted by the set F/, where £ =
{E1, Es, ..., E,}and E; = {(V;, V;) |V; € V and V; € V'}. Adjacency matrix Graph.A
is used to store the weighted directed graph (C'RG).

Block-streaming service load application: According to the weight of reference re-
lation in the directed graph (CRG) updated by the edge server gives priority to loading
the functional class with a larger weight. We use BSEP(e) method to transmit block-
streaming service through wireless networks and carry out the trusted loading and ver-
ification. Finally, loading is efficiently completed in the process of application service
request, service calculation and service transmission.

3. PROCESS OF RS-FLBS SCHEME

3.1 Generating Directed Graph (CRG) of Block-Streaming Service Loading for
DEX File

To obtain the loading weighted directed graph (CRG) of block-streaming service
based on DEX file, an algorithm of class information extraction of DEX file is designed
to get the class information as well as the reference relationship between classes by first
analyzing DEX file, as Algorithm 1 presents [14].

Algorithm 1: The method of class information extraction (classExtraction)
input : classes.dex //DEX file
output: Information set of class

1 mapOff = DexHeader.mapOff;
2 DexMapList = DexHeader[mapOft];
3 fori < Otondo

4 DexMapltem=list[¢];
5 if DexMapltem.type.kDexTypeClassDefltem == DexMapltem.type then
6 DexClassDef = DexMapltem [offset];
7 className = DexMapltem[classIdx];
8 preClassName = DexMapltem[superclassldx];
9 end
10 end

We can get the directed graph (CRG) of block-streaming service loading based on
DEX file for Android application by the class information extraction algorithm and jar
package obtained by reverse analysis of the application. CRG can well describe the class
information of DEX file as well as the reference relationship between classes, and the
weight means the value of calculation of the reference relationship between classes based
on user behavior. The weighted directed graph is stored by adjacency matrix Graph.A.

In the model, adjacency matrix A, «,, for a weighted directed graph, which is applied
to store the CRG, while Graph.A;; in the matrix indicates the value of calculation of
the direct reference relationship from V; to V;. The weight of the reference relationship

32 YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

between classes is randomized in the initialization phase, in which the initial model M is
generated. The time complexity of Algorithm 1 is analyzed below. Algorithm 1 describes
the class information extraction process. It needs to traverse the DexMapList, so the time
complexity of Algorithm 1 is O(n).

3.2 Model Training

The edge server sends the initial model M to the terminal, and the terminal performs
local training on the initialized model M according to the actual operation behavior data
of the user. When the training is finished, the adjacent matrix model parameters calculated
by the training are uploaded.

It is the key to loading block-streaming services by locally calculating the prefer-
ence value of end-users for application access functions. Based on the preference value
of user behavior data, a local model (UAFCM) for the user accesses functional class is
constructed as

UAFCM = {(co, co, Poo), (co, c1, Po1), (co, c2, Po2), -+, (¢i, ¢j, Pij) }, (D

where ¢;, ¢; and P;; represent the functional class that current user is operating now, the
functional class that current user may operate next and the preference value of the path
that ¢; accesses c;, respectively.

The user behavior data model mainly calculates the weight of each user’s operation
behavior data and outputs weight relation matrix of the user’s block-streaming service for
a specific application. We consider that the application loads the functional classes of
larger weights as much as possible according to the value of the dynamic update matrix
Graph.A;;. The elements of block-streaming service loading model based on user be-
havior are mainly composed of 6, 7, v and ¥J, which in turn represent the class name, the
access time of the class, click volume of user events and the event handling class. Thus,
block-streaming service loading model based on user behavior (UBSLM) can be given as

UBSLM = {6, 7, v, 9}, 2

where 6 and ¥ form the path from c; to ¢;. Furthermore, v marks click volume of user
events, where the value is incremented by 1 once user event is triggered. The click volume
is indicated by the autoincrement, v; and v; represent the click volume of i.class and
Jj.class respectively. The preference value of the path from ¢; to ¢; is calculated by

K
_ Zk:l GWy SV + T

Ui

P;; 3)
where 7; = 75 — 7., GW}, is the weight of user operation behavior k, and 7; represents
the time when the user accesses the c¢; class. Moreover, it is notable that user operation
behaviors in Android applications generally include user-triggered events, user browsing
and so on, in which the weight of comments is greater than the weight of other actions.
The terminal z receives the global model M, (initial value of ¢ is zero), and then the local
model will be updated by

trli]lj] = Graph.A;; = jf[”L @
where My, ; is marked as
a1 aiz2 ... Qip
- a1 Q22 ... Qa2p
t+1 — : : : ' (5)
(pl Qn2 -+ Gnn], ..

The model parameter MY, ; will be stored in the blockchain network after each
iteration, which can support backtracking, and the local training model can be obtained.

A NOVEL DEX FILE LOADING SCHEME 33

The same model training process is repeated for U local end devices on the same
LAN, and homomorphic encryption technology is used to upload the local model param-
eter My, ;. When the edge server receives the local model parameter MY, ;, the global
aggregation parameter is updated by [15]

Sy M7 [i][5]
Zoumt e B0

3.3 Parameter Encryption

Mt+1 == (6)

Homomorphic encryption technology has the characteristics of supporting addition
and multiplication under data encryption as well as low computational complexity. As the
model training in this paper only uploads parameters involved in matrix A, our paper will
use additive homomorphic encryption technology to encrypt gradient parameters, and its
encryption principle is presented by

(A1) = Enc(pk, A1) (A2)" = Enc(pk, As),
(€)' = (A1) + (A2), ™)
C = Dec(sk,(C)') and C = A, + A,

where A; and A represent adjacency matrix parameters uploaded by two terminals. Fur-
thermore, pk, sk, Enc() and Dec() are public key, private key, encryption and decryption,
respectively. The public key can encrypt the gradient parameters and send the encrypted
and masked results to the edge server. After the edge server performs secure aggregation
operation and sends that result to the end device. When the terminal receives the param-
eters, it decrypts them with the private key and updates the local model parameters with
obtained information.

3.4 Algorithm

The data collection of user’s actual operation behavior is completed by embedding
technology. The embedding technology is that developers add processing code to the orig-
inal complex logic in the application. With embedding technology, we can get the access
time, click volume and type value of user behavior for the current class. Utilizing those
coefficients, we can describe weights between different classes.

Algorithm 2: Federated learning algorithm (E-FedAvg)
Input : M,, Candidate U
Output: Global model M, ; after decryption

1 initialize My;
2 fort < 0to1 do

3 {U.} = Select the devices from the end device set U;

4 Edge-server sends M, to each device in {U, };

s | forwu e {U,} in parallel do

6 (MY, ;)" = LocalUpdate(u, M) ;

7 Device u sends (M}, ;)" back to server;

8 My, = Dec(pk, (M)

9 end

U u

10 Server aggregates the globle model My as My = #,
11 end

We calculate operation data of user behavior, which the local model is trained by
combining with the initialization model My, and the training result parameters are up-
loaded to the edge server. Since privacy leakage may occur when uploaded parameters are
transmitted among different devices or servers, homomorphic encryption will be adopted

34 YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

for model training. First, each end device generates a public/private keypair, and devicex
and devicey respectively train local model to get parameters M7, ; and M 1 1- After en-
crypting M7, and MY, ; with the public key, (M, ;)" and (M +1)/ are sent to the edge
server. When the edge server receives the parameters, it aggregates them with formula
(6) after decrypting (M¥ +1)/ and (MY +1)'. The edge server encrypts the global model
using the same process and sends it to the end device. After the end device decrypts the
global parameters, the local model is trained and updated by combining with operation
data of the local user. Then, the end device sends them to the edge server with technolo-
gies of homomorphic encryption. We repeat above process until the model converges, as
Algorithm 2 presents. The time complexity of Algorithm 2 is analyzed below. It takes
O(n) for t rounds of global iteration and O(log, n) for parallel loop training of terminal
equipment. Therefore, the time complexity of the federated learning algorithm based on
homomorphic encryption is O(n log, n).

The LocalUpdate(u, M) in the sixth line of Algorithm 2 is further given by Al-
gorithm 3. Since it needs O(n) for e round local iteration, the time complexity of Algo-
rithm 3 is O(n).

Algorithm 3: Local model update (LocalUpdate)

input : M,, Candidate U
output: Encrypted local parameters (M} +1)I

for epoch e € E do
Training local weight parameter;
P, = 2k GWewstry
’Lf:)ij-‘,-Mti j] .
Graph..A'ij = Dt [][J],
M?ﬂ[l]] = Graph.A;;
MY, ; parameter homomorphic encryption;
(M?+1)/ = Enc(pk, M?-s-l)

[S

R == -EEE N B - L7 BN

end
return (MY, ,)";

Through the above steps, the global model parameters can be obtained, which is
the weight of the reference relationship in the directed graph based on block-streaming
service loading for DEX file. According to the weight, the application can be loaded
through the block-streaming service, and the service with the larger weight can be loaded
preferentially as much as possible, where loading of the application can be efficiently
completed.

4. EXPERIMENT

The experimental environment used in RS-FLBS scheme is configured as follows:
The terminal operating system: android 12; Storage space: 10GB; RAM: 64KB. The edge
server device operating system: CentOS Linux Release 7.2.1511; Storage space: 40GB;
RAM: 4GB.

4.1 Initialization Stage

To validate our work, we first developed a lightweight application named House
Project, which contains three functional modules, namely terminal monitoring module,
user management module and system setting module, and the House Project is installed
on Android devices. Then, based on the application, classes.dex is converted into classes-
dex2jar.jar with the help of dex2jar tool and the classes-dex2jar.jar file is dragged into
jd-gui tool, following which class file can be viewed. By analyzing the .class files, we
can get the dependency relationship between different classes in House Project. The class

A NOVEL DEX FILE LOADING SCHEME 35

names are shown in Table 1, where Not. is the abbreviation of Notion. Fig. 3 shows
directed graph of block-streaming service that loading for DEX file.

Fig. 3. The directed graph of the House Project based on block-streaming service loading of DEX
file.

Table 1. House project class names.

Not. || Class Name | Not. Class Name Not. Class Name

A Launcher B LoginActivity Y ComponentCallbacks

C Person L OtherActivity Q2 ComponentCallbacks2

D Intent M SettingActivity Q3 onCreateContextMenuListener

E Button N AppCompatActivity | Q4 android.view.keyEvent

F EditText J MainActivity Qs android.view.windows

G TextView K ControlActivity U ContextThemeWrapper

H view N3 LayoutInflater N5 AppCompatTextView

Q Activity v contextWrapper N1 AppCompatDelegateImpl
Q1 Factory2 (0] FragmentActivity N2 LayoutInflaterCompat

X Factory w context N4 AppCompatViewInflater

I Toast p ComponentActivity

Table 2. Initialize class dependency weights.
Values Values Values Values Values

az 3 9 a2 4 66 az s 17 a2 e 5 az s 78
az 17 28 ag 16 89 ag 2 30 ai16 13 63 aie 4 3
aie 12 8 aie 14 74 ai2 4 84 ai4 4 72 aiz 9 56
a12 17 91 a14 17 77 a13 17 85

The directed graph is stored in the adjacency matrix Graph.A., and the dependency
weights between initialization classes are shown in Table 2. The initialization rule is a
one-to-one dependency with a weight of oo, and the rest of the dependencies are randomly
set to integers in the interval [1, 100].

4.2 Model Training

In order to verify the effectiveness of our scheme, we apply data based on House
Project to experiments. With technologies of SDK embedding, weights of user-defined
classes in House Project are calculated and updated, which is further utilized to be the
test data in the following experiments. Consider different user behavior involved in this
study, namely the user-triggered behavior, the user browsing, the user comment, the user
favorites and the user collection. The respective weight of above user behavior, denoted
by GW}, in Section 3, is set to be 25, 15, 40, 5 and 15. Otherwise, with an analysis of the
Android operating system source code, our approaches in this work are also available to
extract system classes and compute their weights.

Utilizing formulas (3) and (4), we update values of a1 12, @9 16, @16 14 and a6 13 to
be 17, 84 ,41 and 37 for the local model, respectively, which is based on the test data and
weights of user operation behavior. With similar steps, operation data from 10 Android
users are collected in local area network and the global model parameters can be obtained
through the E-FedAvg algorithm. Adopting formula (6), values of a1¢ 12, a9 16, @16 14,
a6 13 are updated to be 15, 114 ,41 and 37, respectively.

36 YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

Then, we will use the global model parameters obtained above to dynamically
load the block-streaming service, giving priority to the services with larger weights.
There are 10 new android users. When users utilize the application for House Project,
they will load the service by BSEP(e) method according to the global model parame-
ters. Here, local model training is carried out according to the global model and lo-
cal sensitive data. Theoretically, the service predicted by 10 users is M ainActivity.
However, due to experiments in this paper, services that users prefer to load are
MainActivity, MainActivity, MainActivity, MainActivity, LoginActivity,
LoginActivity, MainActivity, MainActivity, MainActivity, MainActivity, re-
spectively. It means the likelihood achieves eighty percent, where we are successful in
predicting the preference of block-streaming service.

4.3 Cost Analysis

It is known that new versions of Android operating system will implement new sys-
tem function modules into libraries, which are part of applications. Some classes provided
by the operating system may be not packaged into DEX file. To verify the effectiveness
of our proposed scheme, time and space required in the whole application running pro-
cess are analyzed. In order to avoid the influence of network environment, we complete
experiment 10 times and show their average results in this section.

40 10*
‘ Occupied space based on our scheme‘ A A A A
3851 313851 381 381 38SI 351 38s1 3851 31 38sl 3
3SE 34 100 F
Occupied space based on our scheme
E 0k f’: Occupied space based on block-streaming loading
1 310
N N
n 2] 54 51 64
~ 10 8190
Sk ,] 9 10 "
1 1 1 4
0 100 1 1 1 1 1 1 1 1 1 1 1 1
M, B C] L N K M NI N2 N5 classes.dex M, B C] L N K M NI N2 N§
className and global model parameter className and global model parameter
Fig. 4. Space overhead of our scheme. Fig. 5. Cumulative space overhead of our scheme.

We investigate terminal equipment needed for storage space in a novel loading
scheme based on federated learning for DEX file as shown in Fig. 4. The bar chart rep-
resents the global model parameter M, and the amount of space occupied by the appli-
cation of House Project to complete the on-demand loading of each .class file, where the
abscissa is denoted by Not., and the specific class name is shown in Table 1. We consider
terminal equipment needed for accumulated storage space as shown in Fig. 5. The bar
colored by dark blue shows the global model parameter M and the rest uses N ot. to rep-
resent the cumulative amount of space occupied by the House application to complete the
on-demand loading of each .class file. The traditional block-streaming service scheme re-
quires 3851KB to load the classes.dex file, which colors light blue. It is notable that there
is no data with respect to the classes.dex under our proposed scheme, since our method
loads classes in DEX file instead of DEX file itself. Obviously, we can see from Fig. 5 that
the block-streaming loading method for DEX file requires about 60 times storage space
of our proposed scheme in this paper, which illustrates that the RS-FLBS scheme has a
good performance in saving storage space for users.

The average time cost of local model training is shown in the bar chart in Fig. 6. We
consider respective time cost of downloading global model parameters, decrypting global
model parameters, storing global model parameters into database, training local model by
combining local data with global model parameters, and encrypting updated local model
parameters. The line chart in the Fig. 6 represents the accumulated time cost of each
stage. The bar chart in Fig. 7 presents the average time cost of global model training,
which include time costs of decrypting local model parameters, calculating global model
parameters, storing global model parameters in notepad file and encrypting global model
parameters. The accumulated time cost of each stage is shown in the line chart in Fig. 7.

A NOVEL DEX FILE LOADING SCHEME

37

4 &5

Average time cost of each stage

188

180 - Accumulated time overhead of each stage|

Average time cost of each stage
Accumulated time overhead of each stagg

150 -

104,

Time(ms)

Time(ms)

0+

L 1 1
Global model calculation M, is stored M, txt Encrypt M,

10" 1 1 1 1 1 0
Downloads M, Decrypt M, M, is stored in database Local calculation Encrypt M,

Each stage of local model training

1
Decrypt M,
Each stage of global model training

Fig. 6. Local model training time overhead. Fig. 7. Global model training time overhead.

We study the average time overhead required in the DEX file loading scheme from
a federated learning perspective. In Fig. 8, Local describes the total time of local model
training, Global represents the total time of global model training and the rest uses Not.
to represent time costs required by application on-demand loading of .class files in the
House Project. The total time cost required by our method is shown in Fig. 9. The blue
line with five-pointed star indicates that the total time required for the whole processes
is 1444 ms, which includes loading .class file, local model training and global model
training. Furthermore, time cost of traditional block-streaming service scheme to load
classes.dex file is about 27363 ms, which is denoted by blue square. It should highlight
that our method only loads classes in DEX file but not DEX file so that Fig. 9 does not
show the data about classes.dex under our proposed scheme. It can be seen from Fig. 9
that compared with the block-streaming loading method for dex file, efficiency will be
greatly increased if the RS-FLBS scheme is applied, where the cost of loading time for
block-streaming method of DEX file is about 18 times higher than our proposed scheme.

10° 10°

85 -
Average time cost of our scheme

10*F 27363 27363 27363 27363 27363 27363 27363 27363 27363 27363 27363 27363 27363

188

=
T

1256 144

2 D0
= el r 3 91 4l
A4 N 27
g E RN E) ’\:3 w W 18
B S0k "
aSUS = o
. ok 5 Time expenditure based on our scheme
Time expenditure based on block-streaming loading|
1 \0 1 1 1 1 1 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1 1 1 1 1 1 1
Local Global B C] L N K M N N N classesdexB C] L N K M NI N2 N5 Local Global

className and federated learning process className and federated learning process

Fig. 8. Time overhead of our scheme. Fig. 9. Cumulative time overhead of our scheme.

Obviously, with our proposed scheme, both time and space costs are greatly reduced,
which illustrates that our scheme is effective to recommend the user’s interested prefer-
ence functional classes according to the user’s actual operation behavior.

5. CONCLUSIONS

This paper focuses on the problem of data overload in wireless mobile networks,
which may influence the efficiency of communication among terminals and servers. Com-
bining technologies of federated learning and blockchain, we propose a novel loading
scheme based on a recommendation system for DEX file to guarantee the privacy of
users’ operation data involved in training. Moreover, in order to provide secrecy for data
transmission of model training parameters, the technology of homomorphic encryption is
further introduced to the proposed scheme. In our work, the weights based on user-defined
classes are measured by their behavior and then utilized to find the functional class that
the user prefers, which will affect what block-streaming services should be loaded. The
validity of our model involved in this paper is verified by an application called House
Project on Android devices. The results show that the proposed scheme has a better per-

38

YICHUAN WANG, YANHUA FENG, YEQIU XI1AO, XIAOXUE LI1U, XINHONG HEI

formance than traditional block-streaming loading schemes in both storage cost and time
cost. It illustrates that our work seems to be helpful for solving the data overload problem

of

10.

11.

12.

13.

14.

15.

wireless mobile networks.

REFERENCES

. A. Balapour, H. R. Nikkhah, and R. Sabherwal, “Mobile application security: Role
of perceived privacy as the predictor of security perceptions,” International Journal
of Information Management, Vol. 52, 2020, pp. 102 063-102 075.

X. Ye, M. Chen, and R. Ali, “Personalized recommendation for mobile internet weal-

th management based on user behavior data analysis,” Scientific Programming, Vol.

2021, 2021, pp. 9326 932-9 326 939.

. L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended fea-

ture leakage in collaborative learning,” in Proceedings of IEEE Symposium on Secu-

rity and Privacy, 2019, pp. 691-706.

Z. Jie, S. Chen, J. Lai, M. Arif, and Z. He, “Personalized federated recommendation

system with historical parameter clustering,” Journal of Ambient Intelligence and

Humanized Computing, Vol. 2022, 2022, pp. 1-8.

. M. Ammad-ud-din, E. Ivannikova, S. A. Khan, W. Oyomno, Q. Fu, K. E. Tan, and

A. Flanagan, “Federated collaborative filtering for privacy-preserving personalized

recommendation system,” arXiv Preprint, 2019, arXiv:1901.09888.

G. Lin, F. Liang, W. Pan, and Z. Ming, “FedRec: Federated recommendation with

explicit feedback,” IEEE Intelligent Systems, Vol. 36, 2021, pp. 21-30.

. Y. Wang, Y. Tian, X. Yin, and X. Hei, “A trusted recommendation scheme for privacy
protection based on federated learning,” CCF Transactions on Networking, Vol. 3,
2020, pp. 218-228.

. M. Gong, J. Feng, and Y. Xie, “Privacy-enhanced multi-party deep learning,” Neural

Networks, Vol. 121, 2020, pp. 484-496.

S. Zhao, Z. Luo, Z. Jiang, H. Wang, F. Xu, S. Li, J. Yin, and G. Pan, “Appusage2vec:

Modeling smartphone app usage for prediction,” in Proceedings of IEEE 35th Inter-

national Conference on Data Engineering, 2019, pp. 1322-1333.

Y. Z. K. Wang, B. Wang, and J. Wang, “Research on app usage prediction algorithm

based on smartphone users’ behavior habits,” Computer Applications and Software,

Vol. 36, 2019, pp. 82-86.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring class

representatives: User-level privacy leakage from federated learning,” in Proceedings

of IEEE INFOCOM — IEEE Conference on Computer Communications, 2019, pp.

2512-2520.

X. Peng, J. Ren, L. She, D. Zhang, J. Li, and Y. Zhang, “Boat: A block-streaming

app execution scheme for lightweight iot devices,” IEEE Internet of Things Journal,

Vol. 5, 2018, pp. 1816-1829.

Y. Wang, Y. Tian, X. Hei, L. Zhu, and W. Ji, “A novel iov block-streaming service

awareness and trusted verification scheme in 6G,” IEEE Transactions on Vehicular

Technology, Vol. 70, 2021, pp. 5197-5210.

Y. Wang, Y. Feng, Y. Du, X. Hei, Y. Tian, and X. Cui, “Block-streaming service

loading optimization of android dalvik executable file for cloud-end collaboration,” in

Proceedings of International Conference on Networking and Network Applications,

2022, pp. 1-6.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, “Communi-

cation-efficient learning of deep networks from decentralized data,” in Artificial In-

telligence and Statistics, 2017, pp. 1273-1282.

A NOVEL DEX FILE LOADING SCHEME 39

YiChuan Wang received the Ph.D. degree in Computer
System Architecture from Xidian University, Xi’an, China, in
2014. He is currently an Associate Professor with the Shaanxi
Key Laboratory of Network Computing and Security Technol-
ogy, Xi’an University of Technology, Xi’an, China. His resear-
ch interests include networks security and system vulnerability
analysis. He is a Member of ACM and CCF.

YanHua Feng is studying for a master’s degree in Xi’an
University of Technology. Her main research direction is block-
streaming service loading for Android.

YeQiu Xiao received the B. Eng. in Computer Science and
Technology, M. Eng. degree in Computer Software and Theory,
and Ph.D. degree in Computer System Architecture from Xidian
University, Xi’an, China, in 2013, 2016 and 2021, respectively.
She is currently a Lecturer in Xi’an University of Technology,
Xi’an, China. Her current work concerns the physical layer se-
curity of wireless communications and satellite communication
systems.

XiaoXue Liu received her MS degree from Shaanxi Nor-
mal University and Ph.D. degree from Xidian University in
2021, Xi’an, China. She now is a Lecturer with the School of
Computer Science and Engineering, Xi’an University of Tech-
nology, Xi’an, China. Her current research interests include cry-
ptography and information security.

XinHong Hei received his BS and MS degrees in Com-
puter Science and Technology from Xi’an University of Tech-
nology, Xi’an, China, in 1998 and 2003, respectively, and his
Ph.D. degree from Nihon University, Tokyo, Japan, in 2008. He
is currently a Professor with the Faculty of Computer Science
and Engineering, Xi’an University of Technology, Xi’an, China.
His current research interests include intelligent systems, safety-
critical system, and train control system.

