
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 1-12 (2020)
DOI: 10.6688/JISE.202001 36(1).0001

An Asynchronous High-Performance Approximate Adder
with Low-Cost Error Correction

TARAK K. KODALI1, YILIN ZHANG2, EUGENE JOHN1 AND WEI-MING LIN1

1Department of Electrical and Computer Engineering
University of Texas at San Antonio

San Antonio, TX 78249 USA
2Advanced Micro Devices, Inc.

Austin, TX 78735 USA

Integer addition, being the fundamental process used in all other integer and floating
point arithmetic operations, is the most important process used in computer systems and re-
lated applications. Many adder designs have been proposed in order to enhance the overall
system performance. Approximation/speculation proves to be a very effective approach in
leading to results faster than non-approximation techniques, though with its intrinsic draw-
back in having a potentially incorrect result. This paper proposes an approximate adder
design with a very cost-effective error correction capability incorporated. In addition, with
a built-in completion-detection mechanism, the proposed design is suitable for an asyn-
chronous or variable-latency processing environment, and can deliver an expected comple-
tion time much shorter than all well-known parallel adders.

Keywords: approximate adder, speculative adder, speculative circuit, asynchronous adder,
variable-latency adder

1. INTRODUCTION

Parallel (or semi-parallel) adders have been dominating all various applications
where adder speed is a critical concern. These include Carry-Lookahead Adder, Kogge-
Stone adder [1], Brent-Kung adder [2], and many of their variations spreading over the
design spectrum of trade-off between cost and speed. All these adder designs always
produce correct results but most without a completion-detection mechanism. Thus, they
do not take advantage of cases when the finalized correct result is available earlier than
the worst-case delay. Therefore, these adders are not in general suitable for systems that
employ asynchronous processing for earlier event triggering or systems that can detect
operation completion in a variant number of clock cycles.

Approximate computing or imprecise hardware have become very popular in the past
decade due to the growing concern in speed and power consumption. Without having to
guarantee always obtaining a correct result, especially in the areas of digital signal pro-
cessing for image, speech, and video, artificial intelligence and machine learning, these
circuits can afford using a smaller amount of hardware and/or reach an acceptable result
faster [3-6].

Due to reasons aforementioned, approximate or speculative adder designs are among
the most focused and have led to many breakthroughs by using a reduced number of
transistors and by truncating the carry propagation chain for a speculation-based opera-
tion [7, 8]. Additional circuitries have been also established to provide error detection and

Received January 9, 2018; revised July 19, 2018; accepted July 26, 2018.
Communicated by Meng Chang Chen.

1

2 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

correction in [9-14]. Configurable-accuracy adders to reduce the delay of the traditional
adder are proposed in [15, 16] by splitting the traditional adder into several overlapped
sub-adders to obtain the approximate results. Obvious tradeoffs from these designs are in
the additional cost and delay required for their error detection and correction circuitries.
Several papers attempted to derive the error probability of their designs but most either
rely on approximate derivation, or simply reach an incorrect conclusion due to some er-
roneous assumptions. Several other recent related results, such as [17] which further
attempted to improve hardware utilization efficiency, or [18] in which error resilience is
improved, and [19] in which error probability is reduced using a hierarchical design ap-
proach. A detailed probabilistic model for analyzing error occurrence is given in [20]. A
design by separating carry generator and sum generator to reduce power consumption is
proposed in [21].

This paper proposes an approximate adder design based on a simple bit-overlapping
design in [8], and incorporates error-detection and error-correction mechanisms into the
design to always ensure the final result is correct. When an error is detected, the error-
correction mechanism is then triggered to correct the result. The almost negligible logic
required for this add-on correction mechanism is just a very small fraction of the original
approximating logic, and is much simpler than all the known approximate adder designs.
An even simpler completion-detection mechanism is also built in for this design to take
advantage of an asynchronous processing environment. In addition, a comprehensive and
robust analytical derivation is given in this paper to deliver the correct error probability of
the approximate adder without resorting to approximation or assuming incorrect mutual
exclusiveness like others. We also show that the expected processing latency is much
shorter than all the well-known parallel fast adders, while at the same time incurring a
smaller amount of logic and power consumption.

2. APPROXIMATE ADDERS

2.1 The Lu Approximate Adder

The proposed approximate adder design is based on a well-known approximate
adder, the Lu Approximate Adder (LAA) [8]. The fundamental concept behind this de-
sign is to generate an “approximate (speculative) carry” for each bit for deriving the final
sum bits. Generating an always correct carry bit can only be guaranteed by using input
operand bits from all less significant bit positions, which involves a potentially long chain
of carry propagation. Instead, in this design each approximate carry bit is generated using
only a fraction of input operands from the less significant portion. Since most of the ac-
tual carry-propagation chains are shorter than the worst case, such an approximate carry
generated may be mostly correct, if not all.

For an n-bit addition to add two operands A = an−1an−2 . . .a1a0 and B =
bn−1bn−2 . . .b1b0, instead of generating all correct carry bits cn,cn−1, . . . ,c2,c1, each
approximate carry, denoted as aci for bit i, will be generated using a k-bit “Approxi-
mate Carry Generating Block” (ACGB), where k < n, with the following dependency:
ci = aci if i < k. One can choose to use a simple k-bit Ripple Carry Adder (RCA), with
a zero carry-in, to implement each such ACGB; however, the slow carry propagation of
RCA, especially when k is not small, can easily beat the purpose of this design. Thus
a more reasonable approach is to use the carry-lookahead circuit to produce each such
speculative carry bit.

Adopting the general notations in the literature, let gi and pi denote the “carry-

AN ASYNCHRONOUS HPAA WITH LOW-COST ERROR CORRECTION 3

generate” and “carry-propagate” signal for bit i, respectively, where gi = ai · bi and
pi = ai⊕bi. Thus, each aci can be generated with its corresponding k-bit ACGB as:

aci = gi−1 +gi−2 · pi−1 +gi−3 · pi−1 · pi−2 + · · ·
+gi−k · pi−1 · pi−2 . . . pi−k+1

(1)

where the summation and product notations are borrowed for the corresponding logical
OR and AND operations, respectively. For the sake of generality and future extension,
identical PGG circuits are used for all bit positions although the least significant one does
not need to produce its p signal since pi−k is not needed.

Note that obviously the carry bit thus generated is erroneous when aci = 0 but the
actual carry ci is 1, which arises under the following condition:

ci−k = 1 and ∀ j, i− k ≤ j ≤ i−1,g j = 0 and p j = 1.

That is, the length of carry propagation chain to lead to ci = 1 is longer than k, which
cannot be materialized by any m-bit ACGB with m ≤ k. Let the n-bit LAA design using
k-bit ACGBs be referred to as (n,k)-LAA.

2.2 Error Probability Analysis

The error probability analysis in [8] is not correctly presented, which is to be properly
established here, since the error rate matters significantly in terms of performance for our
proposed design and other similar designs.

First, as aforementioned, each of the ACGBs that are used to produce the carries
at bit position i when i ≤ k will correctly generate their carry results since there will be
no carry propagation chain longer than k for any of them. Thus, in a LAA all carry bits
are considered correct from c1 to c3. For any other bit position i such that i > k, the
approximate carry aci generated by its corresponding ACGB is correct only when there
does not exist a carry propagation chain longer than k leading to its output carry.

Given any random input, the probability for any bit to have p = 1 is 1/2 and to
have g = 1 is 1/4. Thus, for the example an LAA with k = 3, ac5 is incorrect with the
probability of (1

2)
3 · 1

4 +(1
2)

3 · 1
2 ·

1
4 , with the first term from a carry chain of 4 bits (from

bit 1 to bit 4) and the second from a carry chain of 5 bits (from bit 0 to bit 4). In order
to properly calculate the overall probability of correctness, we will consider all lengths of
carry chains, starting from the most significant bit position. Let E1 be the error probability
caused by the shortest carry chain in the most significant k+1 bit positions, that is, starting
at bit n−k−1 and propagating to bit n−1. Thus, this probability is (denoted as r as well)

E1 = r = (
1
2
)k · 1

4
= (

1
2
)k+2 (2)

Next term E2 denotes the error probability caused by a carry chain originating at one bit
to the right (bit position n− k− 2), and the length of this carry chain can be either k+ 1
or k+2 to lead to an error. Each of the subsequent error probability terms will then cover
additional “new” situations caused by the carry chain originating from the respective bit
position, without overlapping with any of the previous situations already addressed. That
is

Ei = r · (1−
i−k−1

∑
j=1

E j)

4 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

where r (see Eq. (2)) again represents the error probability that a carry chain of length of
at least k+ 1 starts from this bit position and the summation term, ∑

i−k−1
j=1 E j, covers all

the previous situations that overlap with this.
Further derivation leads to a closed-form expression for each E term:

Ei = r · [
P

∑
j
(−1) j−1 · xi, j · r j]

where r = (
1
2
)k+2, P = d i

k+1
e−1 and xi, j =

i−(k+1) j

∑
t=1

(
j−2+ t

j−1

)
And the overall error probability for an n-bit LAA using k-bit ACGBs, denoted as E(n,k),
is then a summation of all these mutually independent terms:

E(n,k) =
n−k

∑
i

Ei since Ei = 0, ∀i > n− k

where there are not enough bits to have a (k+1)-bit carry chain.
Probability of an erroneous result from this approximation adder obviously depends

on the value of k adopted relative to the size of operands n – the larger the k is the smaller
the error rate E(n,k) is, while the the rate increases with a larger n. The function E(n,k)
is plotted as in Fig. 1.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

E
rr

o
r

P
ro

b
a
b

il
it

y
 E

(n
,k

)

k

n=64

n=32

n=16

Fig. 1. Probability of erroneous result from an (n,k)-LAA.

Note that the benefits from this approximate adder are twofold: the overall cost is
less than or comparable to all the fast parallel adders – total number of gates required is
in the order of O(n× k) versus O(n logn) for others; the delay to reach the final result
(albeit maybe incorrect) is constant (when k is kept constant) versus O(logn). A detailed
comparison will be given in a later section.

All ACGBs produce their corresponding carry outputs in parallel after receiving the
required p and g signals. Assume that circuit delay is measured in terms of delay of AND
and OR gates (each presumed to be d) with inverter’s delay ignored. If k is chosen small
enough for a k-bit ACGB to generate its output with a simple two-level logic, that is, if k
is no larger than the logic gates’ fan-in limit, then the total delay for the LAA is 5d: one
d through the PGG circuits, 2d through all the ACGBs and 2d through the summation
circuits. Even if k is selected to be larger than the fan-in limit, an extra 2d will be mostly
sufficient to accommodate the necessary associativity gate expansion. Although this delay
is much shorter than typical delays required for most fast parallel adders; for example, 25d
is required for a 64-bit Brent-Kung adder (a complete comparison is to be given later),

AN ASYNCHRONOUS HPAA WITH LOW-COST ERROR CORRECTION 5

most applications still demand the addition result to be correct at the end, which is not
completely guaranteed by the proposed approximate adder. In order to accommodate this
demand, the proposed design will incorporate an error detection and an error correction
mechanisms into the adder to ensure a correct final result.

2.3 Error Detection

In the LAA design, an error occurs whenever there is a carry propagation chain
longer than the block size k. The fastest way to detect such an error is to install a mech-
anism to detect a chain of k+ 1 bits, that is, the first (least significant) k+ 1 bits in the
chain. This error detection signal can be derived from the two adjacent overlapping ACGB
blocks which cover exactly these k+1 bits. For the sake of illustration, assume that these
two adjacent blocks are the ones that produce aci and aci−1. Therefore, the (k+ 1)-bit
chain is from

(gi−1, pi−1) = (gi−2, pi−2) = . . .(gi−k−1, pi−k−1) = (0,1) AND gi−k−2 = 1

which in turn leads to

aci = 0 and aci−1 = 1

in which ci 6= aci (which should have been a 1) is wrongly speculated. To quickly detect
this, since both aci and aci−1 are both available at the end of speculation process, we can
use the following error detection logic to detect this error:

SEi = aci · pi ·aci−1.

This signal can detect an error caused by a (k + 1)-bit carry propagation chain. If the
error in aci is instead caused by a longer carry chain, then SEi will not be able to detect
it, which does not really pose a problem since there will be another detection signal in a
less significant bit position along this chain that can detect the error which is caused by a
chain of exactly k+1 bits. The overall error detection signal is then an OR combination
of all these signals:

SE = SEn +SEn−1 + . . .+SEk+2 +SEk+1 (3)

which requires a delay of 2d to obtain after all the approximate carries are available.
Note that the delay of this error detection process may be hidden/absorbed if the final
approximation addition result is correct since this process actually overlaps in time with
the summation process which also takes 2d. If the detection output eventually rises which
indicates an error then another proposed add-on mechanism to be discussed next will
proceed to correct the result.

2.4 Error Correction

All the carry bit errors can be easily corrected by adding one more product term in
each ACGB to consider the carry input generated by the respective ACGB k bits to its
right. Eq. 1 becomes

aci = gi−1 +gi−2 · pi−1 +gi−3 · pi−1 · pi−2 + · · ·
+gi−k · pi−1 · pi−2 . . . pi−k+1
+pi−1 · pi−2 . . . pi−k+1 · pi−k ·aci−k.

(4)

Note that the ACGBX that generates aci is provided with the carry aci−k as an additional
input.

6 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

The pattern with which these ACGBXs are connected provides a total of k “parallel”
error correction paths concurrently rectifying any wrong carry along the path, as shown
in Fig. 2. For a carry propagation chain of length L (L > k), there are a total of L− k
approximate carry values incorrect from the original approximation process, and these
L−k carries will be corrected by the k correction paths in dL−k

k eACGBX “stages/cycles”,
with each such cycle incurring the delay of an ACGBX. Therefore, the maximum number
of “stages/cycles” required to rectify all errors is, when L = n,

R = dn− k
k
e= dn

k
e−1. (5)

1234567
c

0

2−bit ACGB

1−bit
ACGB

ac ac ac ac c ccac
8

: Correcting Paths

3−bit ACGBX

3−bit ACGBX

3−bit ACGBX

3−bit ACGBX

3−bit ACGBX

3−bit ACGBX

Fig. 2. k parallel error correcting paths with k = 3.

Note that this error correction process automatically starts whenever the parallel
carry speculation process performed by all the ACGBXs is completed.

3. ASYNCHRONOUS PROCESSING

3.1 Completion Detection

The error detection signal SE (from Eq. (3)) will be used to indicate if there is an
error from carry speculation. This signal will start with zero and be raised to one once at
least an error occurs, and it will stay high until all the errors are corrected. This signal
will be used to trigger the process completion indicator (C):

C = G ·SE

in which the gating signal G will be used to “gate” the SE signal to prevent the initial low
SE state to be wrongly interpreted as process completion. Starting from the time when
operands are provided, the G signal will be forced to be low for at least 5d to prevent the
low SE signal from passing through.

AN ASYNCHRONOUS HPAA WITH LOW-COST ERROR CORRECTION 7

3.2 Delay Analysis

The total delay of the the proposed AAEC process, in the worst case, will require

Dworst = DPGG +DACGBX +DCor +DSum

= d +2d +R ·2d +2d

= (2R+5)d

where DPGG, DACGBX, DCor and DSum each represents the delay for the PGG circuit, the
ACGBX circuit, the correction process and the summation process, respectively. Note
that R denotes the maximum number of correction stages as shown in Eq. (5). The range
of the actual delay, denoted as D, is then

DPGG +DACGBX +DSum ≤ D≤ Dworst =⇒ 5d ≤ D≤ (2R+5)d. (6)

The actual delay it takes to complete the process with a correct result depends on how
long the correcting paths eventually take to rectify all errors. The longer the correcting
path is required to correct the results, obviously the smaller its probability is. If this circuit
is used in an asynchronous environment, its smaller “expected” (versus the worst-case)
latency will further benefit the overall processing efficiency. The expected delay, denoted
as Dexp, can be determined by:

Dexp = DPGG +DACGBX +DCor exp +DSum (7)

where DCor exp denotes the expected delay for the correction process. The time chart for
the whole process is illustrated in Fig. 3. In the best case, the AAEC produces the correct
result without any error, which means the error detection signal SE never rises and thus
the completion signal C will rise soon after 5d. Since the summation process essentially
overlaps with the error detection process in time, so the overall time required will be
5d. On the other hand, if the error detection circuit produces a 1, then the signal will
continue to be 1 until the error correction paths rectify all errors. Note that the correction
process also is automatically initiated right after the approximate carries are generated.
The expected delay from the correction process can be derived with:

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

if error occurs�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ti
m

e

D

D

D

PGG

ACGBX

Sum Ddetection Dcorrection1

Dsum

Dcorrection2

Dsum

Dsum

DcorrectionR

d

2d

2d

Fig. 3. Time graph for the approximate adder with correction process.

DCor exp =
R

∑
s=0

DCors ·PEs (8)

8 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

where DCors represents the correction delay required when the correction process goes
through exactly s stages/cycles to rectify all errors, and PEs represents the probability of
such occasion. Note that for the case of s = 0 there is no correction needed, whereas s = R
represents the situation where it requires the longest correction path. In general,

DCors = s ·2d.

The corresponding PEs will be determined as follows. For the correction process to
go through exactly s stages, the length of the longest carry chain, denoted as l, becomes

d l− k
k
e= s

which leads to the following range for l:

s · k+1≤ l ≤ (s+1) · k.

This then translates to the respective probability

PEs = E(n,s · k)−E(n,(s+1) · k).

For example, with n = 32 and k = 5, if the correction process is required to go through
exactly 3 stages, then 16 ≤ l ≤ 20, and its probability is exactly the difference between
the error probability of having a (32,15)-AAEC design and a (32,20)-AAEC; that is,

PE3 = E(32,15)−E(32,20).

Fig. 4 (a) shows the expected delay value (Dexp) of the proposed (n,k)-AAEC. Even
with a tight fan-in limit of 5, the expected overall delay is still relatively small, under
8d throughout various k values. When k becomes larger the length of correction path
becomes shorter thus leading to shorter delay. Fig. 4(b) shows the expected delay value
of the proposed (n,k)-AAEC under a fan-in of 5. Such a fan-in limit leads to the jump
from k = 5 to k = 6 since any gate requiring more than 5 inputs will need one more level
of OR gate.

5

5.5

6

6.5

7

7.5

ct
ed

 D
el

a
y

 (
D

_
ex

p
)

n=16

n=32

n=64

4

4.5

3 4 5 6 7 8 9

E
x

p
e

k

n=64
5.5

6

6.5

7

7.5

8

8.5

ct
ed

 D
el

a
y

 (
D

_
ex

p
)

n=16

n=32

n=64

4

4.5

5

3 4 5 6 7 8 9

E
x

p
e

k

n=64

(a) (b)
Fig. 4. Expected delay value of the (n,k)-AAEC with (a) No fan-in limit and (b) with a fan-in limit
of 5.

3.3 Cost Analysis

Throughout the rest of this paper, for the sake of simplicity, the cost of a design is in
terms of the number of logic gates (AND and OR) required. The number of logic gates
required for an (n,k)-AAEC, denoted as NAAEC(n,k), can be roughly derived by

NAAEC(n,k) = NPGG +NACGBX +NSum +NDetection

≈ 2n+(k+1) ·n+4n+(n− k+1)
= nk+8n− k+1

AN ASYNCHRONOUS HPAA WITH LOW-COST ERROR CORRECTION 9

4. COMPARISON

In this section the delay and cost required for the proposed AAEC design is compared
to some of the most widely recognized and adopted parallel adders, the Kogge-Stone
adder [1] and the Brent-Kung adder [2], and one speculative design in [13].

4.1 Delay Comparison

The Kogge-Stone adder can generate all carry signals in O(logn) time, and is widely
considered one of the fastest adder designs. Its delay, denoted as DK-S(n), represented in
terms of d, is

DK-S(n) = DPGG +DCarry-Tree +DSum

= d +(log2 n) ·2d +2d

= (2log2 n+3)d

where the log2 n is the number of levels of the carry-generating tree.
The Brent-Kung adder design is similar to the Kogge-Stone one by trading off delay

for the benefit of lower cost. Its delay, denoted as DB-K, represented in terms of d, is

DB-K(n) = DPGG +DCarry-Tree +DSum

= d +(2log2 n−1) ·2d +2d

= (4log2 n+1)d.

The speculative adder presented in [13] (to be referred to as the Du adder), require
a much longer speculative processing time (≈ 4d logk) than the proposed AAEC (a very
small constant delay (≈ 3d) and a substantially more complex and costly correction logic
(≈ 3 n

k log n
k versus k in ours).

Fig. 5 (a) displays the delay comparison of the proposed AAEC with k = 3 against
the three other adder designs. The logarithmic slope of the AAEC’s delay is estimated
to be 0.7 which is much smaller than the others, 2 for Kogge-Stone and 4 for Brent-
Kung. Even with a very modest k value (k = 3), the improvement in delay is already very
significant. A larger k will further lower the slope of AAEC’s delay – down to about 0.2
for k = 6, albeit with the concern of physical limitation.

0

5

10

15

20

25

30

16 32 64

D
el

a
y

 (
d

)

n

B-K

K-S

Du

AAEC

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 64

C
o

st
 (

N
u

m
b

e
r

o
f

G
a

te
s)

n

B-K

K-S

AAEC

(a) (b)
Fig. 5. Delay comparison (a) and cost comparison (b).

4.2 Cost Comparison

Number of gates required for the n-bit Kogge-Stone adder, denoted as NK-S(n) can
be roughly estimated as

NK-S(n)≈ 5n+[(log2 n) ·3n−n]+4n = 3n log2 n+8n.

10 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

Number of gates required for the n-bit Brent-Kung adder, denoted as NB-K(n) can be
roughly estimated as

NB-K(n)≈ 5n+(4n−1)+4n = 13n−1.

Fig. 5 (b) displays the delay comparison of the proposed AAEC with k = 3 against
the two parallel adders. Note that the adder proposed in [13] adopts a sequential process
for error recovery without clearly specifying the logic required, thus it is not included
in the cost comparison. Again, even with a very modest k value (k = 3), the cost of
AAEC roughly reflects a 16% saving compared to that of Brent-Kung and over 50%
versus Kogge-Stone in these cases. An AAEC with a larger k will further increase the
improvement percentages.

5. CONCLUSION

A fast and cost effective approximate adder design was proposed in this paper. Not
only delay is shortened but the overall cost is reduced with this design compared to the
most prevalent fast adders. Power consumption is also shown to be lower under vari-
ous VLSI technologies. The potential of the proposed design is further enhanced by its
capability to function in an asynchronous environment. This research can obviously be
further extended by trading off correction latency for lower cost by adjusting the correc-
tion path connections, which should become a very useful design parameter in order to
satisfy various design requirement specifications.

ACKNOWLEDGEMENT

This research is partially sponsored by National Science Foundation Award No.
CNS-1538418.

REFERENCES

1. P. Kogge and H. Stone, “A parallel algorithem for the efficient solution of a general
class of recurrence relation,” IEEE Transactions on Computers, Vol. C-22, 1973, pp.
786-793.

2. R. Brent and H. Kung, “A regular layout for parallel adders,” IEEE Transactions on
Computers, Vol. C-31, 1982, pp. 260-264.

3. J. Huang, J. Lach, and G. Robins. “A methodology for energy-quality trade-off us-
ing imprecise hardware,” in Proceedings of the 49th Design Automation Conference,
2012, pp. 504-509.

4. Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate XOR/XNOR-
based adders for inexact computing,” in Proceedings of IEEE International Confer-
ence on Nanotechnology, 2013, pp. 690-693.

5. J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in Proceedings of the 18th IEEE European Test Symposium,
2013, pp. 1-6.

6. V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal
processing using approximate adders,” IEEE Transactions on Computer-Aided De-
sign Integrated Circuits and Systems, Vol. 32, 2013, pp. 124-137.

AN ASYNCHRONOUS HPAA WITH LOW-COST ERROR CORRECTION 11

7. T. Liu and S. Lu, “Performance improvement with circuit-level speculation,” in Pro-
ceedings of International Symposium on Microarchitetcure, 2000, pp. 348-355.

8. S.-L. Lu, “Speeding up processing with approximation circuits,” Computer, Vol. 37,
2004, pp. 67-73.

9. A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new
paradigm for arithmetic circuit design,” in Proceedings of Design Automation and
Test in Europe, 2008, pp. 1250-1255.

10. A. Cilardo, “A new speculative addition architecture suitable for two’s complement
operations,” in Proceedings of Design Automation and Test in Europe, 2009, pp. 664-
669.

11. Baneres et al., “Variable-latency design by function speculation,” in Proceedings of
Design, Automation and Test in Europe, 2009, pp. 1704-1709.

12. Y. Liu et al., “Design methodology of variable latency adders with multistage func-
tion speculation,” in Proceedings of International Symposium on Quality Electronic
Design, 2010, pp. 824-830.

13. K. Du, P. Varman, and K. Mohanram, “High performance reliable variable latency
carry select addition,” in Proceedings of Design Automation and Test in Europe, 2012,
pp. 1257-1262.

14. M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy
configurable adder,” in Proceedings of the 52nd ACM/EDAC/IEEE Design Automa-
tion Conference, 2015, pp. 1-6.

15. A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” in Proceedings of Design Automation Conference, 2012, pp. 820 -825.

16. R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-oriented approx-
imate adder design and its application,” in Proceedings of International Conference
on Computer-Aided Design, 2013, pp. 48-54.

17. V. Camus, J. Schlachter, and C. Enz, “Energy-efficient inexact speculative adder with
high performance and accuracy control,” in Proceedings of IEEE International Sym-
posium on Circuits and Systems, 2015, pp. 48-54.

18. M. Weber, M. Putic, H. Zhang, J. Lach, and J. Huang, “Balancing adder for error
tolerant applications,” in Proceedings of IEEE International Symposium on Circuits
and Systems, 2013, pp. 3038-3041.

19. D. Esposito, D. De Caro, E. Napolu, N. Petra, and A. G. M. Strollo, “Variable latency
speculative Han-Carlson adder,” IEEE Transactions on Circuits and Systems, Vol. 62,
2015, pp. 1353-1361.

20. S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, ”Probabilistic error
modeling for approximate adders,” IEEE Transactions on Computers, Vol. 66, 2017,
pp. 515-530.

21. I. C. Lin, Y. M. Yang, and C. C. Lin, “High-performance low-power carry speculative
addition with variable latency,” IEEE Transactions on Very Large Scale Integration
Systems, Vol. 23, 2015, pp. 1591-1603.

12 TARAK K. KODALI, YILIN ZHANG, EUGENE JOHN, WEI-MING LIN

Tarak K. Kodali earned his bachelor’s degree in Electron-
ics and Communication Engineering from Vasireddy Venkatadri
Institute of Technology, Inida in 2014. He then received his M.S.
degree in Electrical Engineering from the University of Texas at
San Antonio (UTSA) in 2016. He is currently a software devel-
oper with Deloitte Consulting at New York.

Yilin Zhang received her B.S. and M.S. degrees in Elec-
trical Engineering from Dalian Maritime University in 2007 and
Beijing University of Posts and Telecommunications, Beijing in
2010, respectively. She then received her Ph.D. degree in Elec-
trical Engineering from the University of Texas at San Antonio
(UTSA) in 2014. She has been with Advanced Micro Devices as
a Member of Technical Staff since then. Her research interests
include computer architecture and parallel and distributed com-
puting. She has published over a dozen papers in international
conference proceedings and journals.

Eugene John received his Ph.D. in Electrical Engineering
from the Pennsylvania State University. He is currently a Profes-
sor in the Department of Electrical and Computer Engineering
at the University of Texas at San Antonio. His research inter-
ests include energy efficient computing, energy efficient hard-
ware for deep learning, hardware security, low power VLSI sys-
tems, power aware cloud computing, computer architecture and
benchmarking. He is a recipient of the University of Texas Sys-
tem Regent’s Outstanding Teaching Award in 2014.

Wei-Ming Lin is currently a Professor of Electrical and
Computer Engineering at the University of Texas at San Anto-
nio (UTSA). Dr. Lin received the BS degree in Electrical En-
gineering from National Taiwan University, Taipei, Taiwan, in
1982, the M.S. and Ph.D. degrees in Electrical Engineering from
the University of Southern California, Los Angeles, in 1986 and
1991, respectively. Dr. Lin’s research interests are in the areas of
distributed and parallel computing, computer architecture, com-
puter networks, autonomous control and internet security. He
has published over 120 technical papers in various conference

proceedings and journals. Dr. Lin’s past and on-going research has been supported by
NSF, DOD, ONR, AFOSR, etc.

