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Local mean decomposition (LMD) is an effective signal analysis method for ana-

lyzing nonlinear and nonstationary signals. LMD has been usefully applied in a wide va-
riety of applications. However, achieving real-time LMD calculations in software is dif-
ficult. In this paper, a flexible, low-cost, and high-performance hardware architecture for 
LMD is proposed that satisfies the real-time requirements of various LMD applications. 
All proposed circuits were developed using Verilog and then synthesized using the Syn-
opsys Design Compiler with the Taiwan Semiconductor Manufacturing Company 
0.18-μm cell library. With the help of parameterization, the proposed LMD circuit can 
easily be used for various applications and hardware architectures. 
 
Keywords: hardware, local mean decomposition (LMD), real-time, signal processing, 
demodulation 
 
 

1. INTRODUCTION 
 

Most real-world data are nonlinear and nonstationary [1], but conventional data 
analysis methods, such as the Fourier transform, are ineffective for nonlinear and nonsta-
tionary data. The Hilbert-Huang transform (HHT) [1] is an effective data analysis meth-
od for analyzing nonlinear and nonstationary signals. Empirical mode decomposition 
(EMD), the major component of HHT, can decompose a signal into a set of scaled data 
sequences and a final residue. EMD has been widely used for data analysis [2-5]. How-
ever, the EMD process loses frequency and amplitude information [6]. To solve these 
problems, local mean decomposition (LMD) [6], an adaptive signal decomposition 
method, has been proposed. 

LMD has been widely used for analyzing nonlinear and nonstationary signals, such 
as radar image processing [7], biosignal processing [8], blind source separation [9, 10], 
and rolling bearing fault diagnosis [11, 12]. Although the analysis results of LMD are 
more stable and precise than those of EMD [7], the sifting process of LMD requires con-
siderable time to generate frequency-modulated (FM) signals. Writing software that 
achieves real-time LMD calculations is difficult. However, real-time analysis and reac-
tion are necessary in many applications, particularly safety-related applications such as 
biosignal detection and mechanical fault diagnosis. Hardware implementations can oper-
ate in parallel to reduce the overall computation time [13-15]. Therefore, a high-perform- 
ance hardware architecture for accelerating LMD calculations must be developed. In 
practice, different LMD applications [6-12] have different timing requirements and re-
quire various data lengths, data widths, and precisions. To solve these problems, a flexi-
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ble, low-cost, and high-speed design for LMD is proposed in this paper. 
According to our review of the literature, this is the first complete LMD hardware 

design. All modules of the proposed LMD circuit described in this paper were developed 
in the Verilog hardware description language (HDL). Variables in the proposed LMD 
circuit are as parameterized as possible. Users can choose the most suitable design and 
architecture for different LMD applications. With the optimization and pipeline scheme, 
the proposed LMD circuit is very suitable for high-speed LMD applications, and can 
easily be embedded into other hardware systems. 

The remainder of this paper is organized as follows: The LMD algorithm is de-
scribed in Section 2. The hardware architecture is presented in Section 3. Section 4 illus-
trates the experimental results and the statistical data. The conclusions are provided in 
Section 5. 

2. LMD ALGORITHM 

LMD decomposes a signal into a finite set of product functions (PFs) and a residue. 
Each PF is a product of an amplitude envelope and an FM signal. Analysis of the PF eas-
ily yields signal information such as instantaneous amplitude and instantaneous frequen-
cy. 

In LMD, an original signal x(t) can be decomposed as 
 
     1

,k

ii
x t pf t u t


      (1) 

 
where k is the total number of PFs, pfi(t) is the ith PF, and u(t) is the final residue. The 
LMD procedure is summarized in the following steps: 
Step 1: Initialize the settings as follows: i=1, j=1, ui1(t)=x(t), and si

 j1(t) = x(t), where i 
is the current PF count, j is the current iteration count, ui1(t) is the residue after 
i1 PFs have been extracted, and si

 j1(t) is the candidate FM signal generated in 
the previous iteration. 

Step 2: Identify the local extrema of si
 j1(t). Calculate the local mean and local magni-

tude from each two successive extrema. 
Step 3: Generate the successive local mean function (SLMF) and successive envelope 

estimate (SEE) by extending the values of local means and local magnitudes 
between successive extrema, respectively. 

Step 4: Use the moving average (MA) to obtain the smoothly varying SLMF (SVSLMF) 
m

i
j(t) and the smoothly varying SEE (SVSEE) a

i
j(t) by smoothing the SLMF and 

the SEE, respectively. 
Step 5: Sift mean and demodulate amplitude: s

i
j(t)=(s

i
j1(t)m

i
j(t))/a

i
j(t), where s

i
j(t) is the 

new candidate FM signal generated in the current decomposition iteration. 
Step 6: Review the stopping criterion. If the stopping criterion is not satisfied, then proceed 

to the next iteration by letting j=j+1 and repeating Steps 2-6. If the stopping crite-
rion is satisfied, then compute the 𝑖th PF pfi(t) and proceed to Step 7. 

Step 7: Update the residue u
i
(t) by subtracting the obtained PF function pfi(t) from the 

previous step: u
i
(t)=u

i1(t)pfi(t), where u
i
(t) is the residue after the previous i 

PFs have been extracted. 
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Step 8: Determine whether u
i
(t) becomes a constant or contains no more oscillations. If 

u
i
(t) is not a constant and contains oscillations, then let i=i+1, j=1, s

i
j1(t)= u

i1(t),  
and repeat Steps 2-8 to identify the remaining PFs. If u

i
(t) becomes a constant or 

contains no more oscillations, then let the final residue be u(t)=u
i
(t) and stop the 

LMD procedure because no more PFs can be obtained. 

3. PROPOSED DESIGN FOR LMD 

A low-cost and high-performance LMD architecture was developed in Verilog HDL, 
and each module was synthesized using the Synopsys Design Compiler with the Taiwan 
Semiconductor Manufacturing Company (TSMC) 0.18-𝜇m cell library. The synthesized 
circuit was then laid out and verified using the Synopsys IC Compiler for design rule 
check (DRC), layout versus schematic (LVS) check, and electrical rule check. Users can 
set parameters and obtain functional LMD circuits that satisfy their parameter settings. 
This flexible design enables users to combine the proposed LMD circuit with other prac-
tical circuits easily for various real-time LMD applications. 

In this section, the hardware architecture of the proposed design is discussed in de-
tail. Fig. 1 shows a state diagram of the proposed LMD; Table 1 lists the required cycle 
counts to finish the operations of each state, where T is the data length of signals and iter 
is the iteration count of S2. The iteration count iter depends on the signal qualities. Fig. 2 
shows the system architecture, which is composed of data memories (FM signal and res-
idue), a control unit, a feature extractor, an interpolating module, a smoothing module, 
and a stopping controller. The control unit monitors the data flow and sends control sig-
nals to all other modules. It sends signals to control timing statuses and schedules the 
reading and writing statuses of the data. The four main blocks, namely the feature ex-
tractor, the interpolating module, the smoothing module, and the stopping controller, 
which correspond to Steps 2-4 and 6 of the LMD procedure, are described in detail in the 
following subsections. 

 

 
 
 

 
Fig. 1. State diagram of the LMD hardware. 

 



PEI-YIN CHEN, YEN-CHEN LAI AND PING-HSUAN LAI 

 

54 

 

 Table 1. Required clock cycle numbers of each state. 
State S0, S1, S3, S4, S5 S2 
Required Clock Cycles 𝑇 Titer 

  

 

3.1 Feature Extractor 

In LMD, the first step is to extract the local means and local magnitudes. The fea-
ture extractor contains two subblocks, namely the extrema extractor and the feature gen-
erator. The extrema extractor uses a moving search window to identify the local extrema, 
then the feature generator computes local means and local magnitudes. 

The evaluated sample is treated as a local extremum if the sample is the minimum or 
maximum within the search window. The equation that extracts local extrema is given as 
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where x is the location index of the current sample to be evaluated and 2w+1 is the search 
window size. Fig. 3 shows the hardware architecture of the extrema extractor, where the 
search window size is five. 
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Fig. 2. System architecture. 
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Fig. 3. Hardware architecture of the extrema extractor. 
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The lth local mean value ml of each two successive extrema values el and el+1 is 
given as 

 
1 ,

2
l l

l

e e
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     (3) 

 
and the 𝑙th local magnitude value al is given as 
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2

l l
l

e e
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     (4) 

 
Observing the similarity between Eqs. (3) and (4), the computation of ml and al can be 
combined for resource sharing. Fig. 4 shows the hardware architecture of the feature 
generator. 

 
3.2 Interpolating Module 

After the local means and local magnitudes have been obtained, the interpolating 
module is used to generate the SLMF and SEE. In the interpolating module, all local 
means and local magnitudes are interpolated as straight lines extending between each two 
successive extrema to calculate the SLMF and SEE, respectively. As with the feature 
generator, the computations of the SLMF and SEE can be combined for resource sharing. 
Fig. 5 shows the hardware architecture of the interpolating module. 

 

3.3 Smoothing Module 

The smoothing module is the performance bottleneck in LMD. In the smoothing 
module, the SLMF and SEE are smoothed using the MA equation to form the SVSLMF 
and SVSEE, respectively. The MA equation is defined as 
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Fig. 4. Hardware architecture of the feature generator. 
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Fig. 5. Hardware architecture of the interpolating module. 
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        (5) 

 
where MAV [x] is the moving average value to be obtained, MAV [x1] is the previous 
moving average value, N is the moving window size, PM is the newest value in the MA 
queue, and PMN is the oldest value in the previous MA queue. Eq. (5) shows that divid-
ers are necessary for the MA. However, conventional dividers require long computation 
times and may considerably reduce the clock rate of an LMD circuit. Therefore, the 
smoothing module was optimized to prevent these problems in the present research. 

First, the calculations of the dividers are eliminated. When the division is rewritten 
as multiplication of the dividend with the reciprocal of the divisor, Eq. (5) can be simpli-
fied as 
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where SUM[x] is the summation of incoming values and 1/N is a predefined constant value. 

Second, a four-stage pipeline architecture is applied to accelerate the clock rate of 
the smoothing module. At the first stage, the smoothing module stores the feedback val-
ues and the incoming values. The second stage computes SUM[x]. The third stage com-
putes MAV [x]. At the final stage, the smoothing module normalizes MAV [x] and obtains 
the smoothed value. 

Third, the smoothing processes for the SLMF and the SEE are designed in parallel to 
reduce execution time. Fig. 6 shows the hardware architecture of the smoothing module. 

 

3.4 Stopping Controller 

The stopping controller reviews the SVSEE, stops the FM iteration, and computes 
the PFs. It contains three subblocks: the SVSEE checker, the FM normalizer, and the PF 
generator. 

The SVSEE checker determines whether the stopping criterion has been satisfied. 
The candidate FM signal si

j(t) is considered to be a pure FM signal si
n(t) if 
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Fig. 6. Hardware architecture of the smoothing module. 
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The stopping criterion is satisfied when the candidate FM signal becomes a pure FM 
signal. Obviously, the computation process of the limit is complicated and unsuitable for 
hardware implementation. Moreover, the iterative operation can consume considerable 
computation time. Hence, an approximation method replaces Eq. (7) in the SVSEE 
checker. The equation used in the SVSEE checker is written as 
 

1 [ ] 1 ,n

ia x         (8) 
 
where  is a user-defined error tolerance value. Fig. 7 shows the hardware architecture of 
the SVSEE checker. 

 
The FM normalizer normalizes the FM signal. When the stopping criterion is satis-

fied, the resulting FM signal from the SVSEE checker may still be an approximation of a 
pure FM signal because Eq. (8) is an approximate equation. The FM normalizer ensures 
that the resulting FM signal is a pure FM signal, which can be written as 

 
1 [ ] 1,n

is x       (9) 
 

Fig. 8 shows the hardware architecture of the FM normalizer. 
The PF generator computes the PFs by multiplying the pure FM signal with an en-

velope function, ai[x]. The equations for calculating a PF and the corresponding envelope 
function are given by 

 
[ ] [ ] [ ],n

i i ipf x a x s x     (10) 
 

where 
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Fig. 9 shows the hardware architecture of the PF generator. 
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Fig. 7. Hardware architecture of the SVSEE checker. 

 



PEI-YIN CHEN, YEN-CHEN LAI AND PING-HSUAN LAI 

 

58 

 

 

4. IMPLEMENTATION AND COMPARISON 

All modules of the proposed LMD circuit described in this paper were developed in 
Verilog and then synthesized using the Synopsys Design Compiler with the TSMC 
0.18-𝜇m cell library. The design layout was then generated using the Synopsys IC Com-
piler. The DRC/LVS error of the layout result was verified using Mentor Calibre. Static 
timing analysis was conducted using Synopsys PrimeTime. The simulation results were 
verified using Cadence Incisive Enterprise Simulator, Synopsys VCS, and Mentor Mod-
elSim. 

In practice, different LMD applications have different timing requirements and re-
quire various data lengths, data widths, and precisions. The variables in the proposed 
LMD circuit are parameterized as much as possible so that the circuit can achieve the 
highest possible flexibility. Seven designs were chosen for precision testing, namely 8-, 
12-, 16-, 20-, 24-, 32-, and 48-bit designs. Table 2 lists the clock rates and gate counts of 
the seven proposed designs with a data length of 200. The layout result of the 48-bit de-
sign is shown in Fig. 10. 
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Fig. 8. Hardware architecture of the FM normalizer. 
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Fig. 9. Hardware architecture of the PF generator. 
 

Table 2. Clock rates and gate counts of seven proposed designs. 
Design 8-bit 12-bit 16-bit 20-bit 24-bit 32-bit 48-bit 
Clock Rate (MHz) 88.41 78.74  70.97  64.55  59.24  50.83  39.26  
Gate Count 23758 28519 33359 38471 44142 55415 82413 

 

 
Fig. 10. Layout of the proposed 48-bit design developed using the TSMC 0.18-𝜇m cell library. 
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For comparison, a software solution was implemented using C programming lan-
guage in the Visual Studio 2010 integrated development environment and run on a Mi-
crosoft Windows 7 computer with Intel® Core™ i7-3770 CPU @ 3.4GHz. Table 3 
shows the execution time comparison with a data length of 200. Figs. 11 and 12 show the 
comparison results of decomposing an electrocardiogram (ECG) signal when using 48- 
and 24-bit precision, respectively. The difference between the software solution and the 
proposed hardware solution is defined as 

 
   

 
.

software hardware

i i

software

i

pf t pf t
ERROR

pf t


     (12) 

 
Fig. 13 shows the error rates of the seven designs compared with that of the software 
solution. 

 

 

 Table 3. Execution time comparison between software solution and proposed hard- 
ware solution. 

Design I7-3770  
(Software) 

48-bit  
(Hardware) 

24-bit  
(Hardware) 

Execution time (second) 2.48 0.015 0.010 

 

 
Fig. 11. Comparison of applying LMD to an ECG signal when using a software solution and the 

proposed hardware solution with 48-bit precision. 
 



PEI-YIN CHEN, YEN-CHEN LAI AND PING-HSUAN LAI 

 

60 

 

 

 

5. CONCLUSIONS 

In this paper, a high-speed hardware implementation of an LMD algorithm is pro-
posed. Variables in the proposed LMD circuit are parameterized as much as possible. 
Because of the parameterized design, the proposed LMD circuit can be easily embedded 
into other hardware systems. Users can choose the most closely coincident result for 
various LMD applications. A comparison shows that the proposed hardware LMD im-
plementation is 165-248 times faster than a software solution. Moreover, the decomposi-
tion results show that the proposed designs are not only fast, flexible, and low-cost but 
also have satisfactory precision. With these features, the proposed designs are extremely 
suitable for various LMD applications. 

REFERENCES 

1. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. 
Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum 

 
Fig. 12. Comparison of applying LMD to an ECG signal when using a software solution and the 

proposed hardware solution with 24-bit precision. 
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