JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 549-560 (2023)
DOI: 10.6688/JISE.202305-39(3).0006

A Multi Tasking Model for Object Detection, Instance
Segmentation and Keypoint Estimation Tasks”

AJAI JOHN CHEMMANAM!, BIJOY A JOSE?**
AND ASIF MOOPAN?

L Cyber Physical Systems Lab, Department of Electronics
2Cyber Physical Systems Lab, Department of Computer Science
Cochin University of Science and Technology
Kerala, 682022 India
E-mail: {ajaichemmanam; bijoyjose}@cusat.ac.in
3Vuelogix Technologies Pvt. Ltd.

Kerala, 682037 India

E-mail: asif@vuelogix.com

Recent developments in neural networks have enabled them to achieve comparable or
better than human accuracy on different computer vision tasks like image classification,
object detection, segmentation, keypoint estimation efc. Large scale datasets have explicitly
been curated for each of these tasks, and researchers from around the world compete to get
state of the art results on these benchmarks. Outside these datasets, these models may not
always perform equally better. Real-world applications often require multiple models to be
used together to generate meaningful results. The processing time primarily relies on the
slowest model in the pipeline. The allocated resources for other models remain idle in the
meantime, causing a sub-optimal processing pipeline. Each of these models comes with
its own input data pre-processing, feature extraction, output post-processing efc., causing a
significant unnecessary overhead.

To overcome these issues, we explored multitasking architectures to do multiple closely
related tasks together. In this work, we developed a single multitasking model to perform
object detection, instance segmentation and keypoint estimation tasks. We presume such
models will be more robust to data specific noises as it finds a better representation of
the trained data by learning to predict multiple closely related tasks. Our most accurate
model gave 41.2 AP on object detection, 38.2 AP on instance segmentation and 53.0 AP on
keypoint estimation tasks when evaluated on COCO validation dataset. We optimised the
models through layer fusion and float 16 quantisation. We achieved 107 frames per second
(fps), while a lighter version achieved 131fps on RTX 3090 GPU. We also benchmarked the
models on Nvidia Jetson Tx2 and got 4.2 fps and 6.3 fps for the two respective models. The
models were successfully deployed in a server-client system architecture / cloud computing
with future possibilities for on-premise deployment using edge devices.

Keywords: joint learning, multi tasking, object detection, instance segmentation, keypoint
estimation

Received Februay 5, 2022; revised April 3, 2022; accepted May 27, 2022.

Communicated by Jimson Mathew.

* This research work was funded and supported by Vuelogix Technologies Pvt Ltd, Confederation of Indian
Industry (CII) and the Department of Science and Technology (DST-SERB), Government of India, through the
Prime Minister’s Fellowship for Doctoral Research 2020.

* Corresponding author.

549

550 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN

1. INTRODUCTION

Computer vision problems such as image classification, object detection, image seg-
mentation efc. have been solved at par or better than human accuracy levels. Industries
have started using these algorithms in mainstream data analytics to generate new business
insights. Traditionally they have been using signal processing and image processing tech-
niques to do image and video analytics but were far from being useful for practical usage.
Researchers have developed various models to solve each of these problems with varying
model complexity, performance and accuracy. They all are state of the art in one way or
another on the specific data they are trained on. As these algorithms are scaled from proof
of concepts to real-world problem solvers, they start to degrade their performance when
given a different data distribution than they are trained with.

Our industry partner, Vuelogix Technologies, works in the surveillance and security
domain. They provide advanced security solutions through Al and ML. Their business re-
quirements primarily include detecting people, helmets, weapons and other objects. They
also wanted to do body pose estimation and identify their actions to provide alerts proac-
tively to possible security threats. Anomalous activities like loitering are detected by
tracking the people continuously. These require additional models for keypoint estima-
tion, pose classification, tracking algorithms, instance segmentation models to separate
objects from the background to improve tracking, efc..

The processing power and computation time required for each model are not identi-
cal, resulting in an unoptimised processing pipeline and wastage of resources. The pro-
cessing time of the system largely depended on the slowest model. Running models
parallely is not a viable solution as it increases the peak computation power and GPU
memory requirement. Also certain models can only be run sequentially. For example in
the case of top-down keypoint estimation models, an object detection model must first
detect a person in an image. Once we get the results, the bounding box is cropped to
each person and then given for body keypoint estimation by the second model. Further
each model has its own data preprocessing and output post-processing techniques. Even
though the models can be GPU accelerated, their pre and post-processing are mostly done
on CPUs. In most cases, these processing overheads take equivalent or more time than
actual model inference. Also, each model has its own feature extraction layers that extract
relevant information for each specific task. The features extracted by one model are not
reused by another model, leading to significantly more computations.

These challenges quickly overwhelmed the system, which has to provide real-time
alerts using the limited computation resources. In order to overcome these issues, we
explored the possibility of using multitasking architectures to reduce the number of mod-
els and improve the processing pipeline. Multitasking models learn to perform multiple
related tasks at the same time, there by reducing the number of models to be used in the
pipeline. In addition, the correlation between the tasks could boost the overall perfor-
mance of the model. The prior knowledge on a related task can help the system learn
faster and, at the same time, be more generalised and robust model.

The following sections discuss the different multi-tasking model architectures and
the related literature reviews. We detail the proposed model architecture, objective/loss
function, training, and inference methodology. Part of this work was originally presented
in ICDSE 2021 [1]. We further extended the work by optimising the performance and

MULTI TASKING MODEL FOR DETECTION, SEGMENTATION AND KEYPOINT ESTIMATION 551

evaluating on different hardware configurations for edge and cloud processing.

2. RELATED WORKS

Multitask learning solves multiple related tasks together. It is also known as joint
learning, learning to learn, learning with auxiliary tasks efc. In the following sections, we
discuss more about multitasking architectures and the previous related works.

Multitasking network architectures can be broadly classified into two. Hard param-
eter sharing networks and soft parameter sharing networks.

Task 1 Output Task 2 Output
Task 1 Output Task 2 Output
t t
| | |
i i
|] |
... Task Specific Layers
>
Shared Layers
—r
Shared Policy Constraints

Input Input Input

(a) Soft parameter sharing. (b) Hard parameter sharing.

Fig. 1. Multi tasking architectures.

Soft parameter architecture contains identical independent models performing differ-
ent tasks in parallel, where their weights are updated with a few regularisation constraints
as in Fig la, while the hard parameter architecture uses a set of layers shared between
different tasks as in Fig 1b. From a performance perspective, hard parameter sharing
models are better, as they have shared layers, reducing the number of trainable parame-
ters and computation requirements. Hence we chose the hard parameter architecture for
the proposed model as it is more suitable for real-time systems and edge devices.

The multitasking architectures have been explored by researchers in computer vi-
sion, natural language processing, reinforcement learning domains. [2] used an encoder-
multi-decoder architecture for depth estimation as well as both instance and semantic
segmentation. They also suggested giving weightage to losses calculated for different
tasks by determining the uncertainties in the output of each task. [3] proposed to use head
pose estimation and other facial attributes as auxiliary tasks to improve detection of facial
landmarks. In order to prevent overfitting of the model to any of the auxiliary tasks, the
authors also suggested using task wise early stopping. FT-MTL-NET (Feature Transfer
— Multi Task Learning — Net) [4], a model developed for medical imaging applications,
suggested using feature transfer learning between branches of the multitask model. [5]
used YOLO (You Only Look Once) model to detect the cancerous masses and then a full
resolution convolution network (FrCN) to segment the exact area of occurrence as well
as classify it as benign or malignant. Recently, mask SSD (Single Shot Detector) was
proposed [6] to enhance the performance of the popular SSD model to detect small ob-
jects. The model contains a detection branch and a segmentation branch to enhance the
extracted features with contextual information.

552 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN

"
M [
Heatmaps \
(128x128) - =
[Object Detection
Bbox offset
heads
SN [—— /
a Keypoint offset —_— n
hY fre—» heads - cxmr
— Keypoint Estimation

Input Image o
G12xs12) Shared Segmentation mask
Backbone Network ~ “——— head ¢
Task x
— B

Specific Network -
Instance Segmentation

Multi Task Output

Fig. 2. Multi task architecture.

Multitask learning has been applied more in Natural Language Processing (NLP)
than computer vision. [7] used multitask learning and suggested that auxiliary tasks like
parts of speech tagging and entity recognition require low-level supervision. A hierarchy
for multiple NLP tasks was predefined in [8]. [9] used a multitasking approach for search
and retrieval of websites. They used representation learning using a multitask network
for information retrieval related to the web search and identifying web query semantic
classification. Taskonomy [10] developed a visual space for over 20 different tasks by
computing the transfer learning dependencies both in 2D and 3D space. Natural Lan-
guage Decathlon [11] is a multitasking challenge to perform ten different NLP tasks such
as question-answering, machine translation, summarization, sentiment analysis etc. [12]
used multitasking models in medical fields for drug discovery. A higher predictive ac-
curacy was obtained for the multitasking model than the single task models. Empirical
studies showed that the overall performance of multitask networks improved as additional
tasks and data were added.

3. PROPOSED MULTI TASKING MODEL

This work proposes a novel model based on multi-tasking architecture that performs
object detection, instance segmentation and keypoint estimation tasks. We used a single-
stage anchorless model Centernet [13] as our baseline. It considers the objects as a single
keypoint (the center of the bounding box). Once the centre point is detected, Centernet
regresses to all other object properties, such as size, 3D location, orientation etc.. Dif-
ferent variants of Centernet with different backbone networks such as resnet, Deep Layer
Aggregation (DLA), Hourglass are available with varying accuracy and computation re-
quirements. Prior to Centernet, models like CornerNet [14] and ExtremeNet [15] also had
similar approaches. CornerNet performs object detection by identifying the two opposite
corner points of the bounding box. Instead of two opposite points, Extremenet identifies
all four corner points through the keypoint estimation method.

Fig. 2 shows a high-level architecture of the proposed model. We modified the Cen-
ternet baseline model by replacing the backbone network (shared layers) with a Harmonic
Densely Connected Network (HarDNet) [16]. HarDNet is a simple U shaped network

MULTI TASKING MODEL FOR DETECTION, SEGMENTATION AND KEYPOINT ESTIMATION 553

with Conv3x3, ReLU, bilinear interpolation upsampling, and Sum-to-1 layer normaliza-
tion. We chose HarDNet as the shared feature extraction layer as we want our model to
work on both high-end GPUs and edge devices like Jetson boards. The model has op-
timised DRAM memory traffic by using Nvidia profiler and ARM Scale-Sim software.
The two variants, HarDNet 68 and HarDNet 85, achieved 76.5 and 78.0 Topl accuracy
on the Imagenet classification dataset.

The features extracted by the shared network are given to the task-specific layers.
We modified the baseline model to predict 17 body keypoints from the COCO dataset and
the object’s centre. The COCO keypoints include the nose, left eye, right eye, left ear,
right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left
hip, right hip, left knee, right knee, left ankle, right ankle. The keypoints are predicted as
heatmaps of size 128x128 for an input image size of 512x512 (with a stride size of 4). The
model also predicts an offset error in both x and y axes to compensate for the uncertainty
of the keypoint while upscaling from 128x128 to 512x512 input size. As in the original
Centernet model, our model has two regressive heads to predict the height and width of
the model. We added another task head based on conditional convolution networks for in-
stance segmentation as an auxiliary task. The CondInst [17] uses dynamically generated
instance aware segmentation mask heads. Unlike other segmentation models, they use a
compact fully convolutional layers to generate the masks without relying on expensive
ROI operations. Variants of CondInst claimed 35.7 mAP to 40.2 mAP on COCO seg-
mentation tasks in the published paper. The segmentation mask head in our architecture
consists of three 3x3 convolutions with relu activation except for the final layer. We chose
eight channels for the mask head as suggested in the study [17].

3.1 Multi Task Loss

Defining the loss function of the multitasking network is the core idea of joint learn-
ing/multitask learning. Individual loss is calculated for each task-specific head and can
be used to optimise the model separately or jointly. Previous approaches used alternate
training on the same model with different tasks. After calculating the losses, the optimis-
ers are called for each task one after the other. Our approach is, however, a more simpler
one. We computed the sum of the loss of individual tasks for each iteration and optimised
the model with this joint loss. Combining different losses will be beneficial in these ways:

* Acts as regularization, smoothing the loss function.

* Gives informative priors for the model: Prior knowledge on a related task can sig-
nificantly improve the learning curve.

* Robust to data specific noises: Models find a more generalised representation of
the data.

e Self Feature Attention: If a feature is relevant to more than one task, it should be
a more important and better representative of the data. The model will be able to
prioritise them over other features.

* Provides better and faster convergence: Similar to transfer learning helping the
models learn better in another related domain, Jointly learning different tasks helps
the model learn better and faster.

554 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN

* Avoids over-fitting: Losses of additional tasks can help avoid over-fitting on indi-
vidual tasks or data.

Our multi-task loss is a combination of pixelwise logistic regression with focal loss
[13] (heatmap heads), regression loss (bbox height, bbox width and offset heads) and dice
loss [18] (segmentation head) as in Eq. (1).

Ltor = Lpear + 2'reg * Lpox +)vsegm * Lgice (D

where Lj,, is regression loss for bounding box height and width.

Lyear = ZN(A‘heutmap * Lfocal + loffset * Loffset) 2
-1 (1-Y)%log¥ ify=1
Lipeas = —X 5 5 3
focal = 7N { 1=Y)B()%log(1—F) otherwise ©)

We took o =2 and =4 as seen in Cornernet [14].

L. — 2 * Number of overlapping pixels @)
dice = Total number of pixels

While training with the combined loss of different tasks, a few considerations must
be made.

* There is a chance for the gradients from different tasks to interfere negatively, caus-
ing the loss to fluctuate and making the learning process unstable.

* There can be cases where one task dominates the others, causing the final loss to be
lower but with some underperforming tasks.

We overcome these issues by weighing the different task losses before combining
them. Empirical analysis gave the value of Apearmaps Aregs Aoffser and Agegm as 1, 0.05, 0.5
and 0.1 respectively.

4. TRAINING AND EVALUATION

We trained two variants of the proposed model, the h85 model with a hardnet85
backbone and a lighter h68 model using a Hardnet68 backbone. The training methodol-
ogy is extensively detailed in [1]. During inference, We use a 3x3 max pooling on the
predicted heatmaps to find the peaks that denote the center of the object. It is highly un-
likely for the center to be at the same point, even for multiple objects of the same class.
The intensity of the peak of heatmaps gives confidence for the detection and keypoints.
Thus we can avoid costly post-processing like Non-maximum suppression (NMS) [19]
algorithm, traditionally used to prevent duplicate boxes for an object.

Tables 1 shows the evaluation results of the proposed multitasking model on the
three different tasks it is trained for. The Average Precision (AP) is a popular metric in

MULTI TASKING MODEL FOR DETECTION, SEGMENTATION AND KEYPOINT ESTIMATION 555

Table 1. COCO evaluation results.

Task Model Name AP AP50 | AP75 | AP small | AP medium | AP large
Object Detection Ours-h68 0.368 | 0.582 | 0.397 0.164 0.556 0.498
Object Detection Ours-h85 0412 | 0.599 | 0.452 0.131 0.503 0.709
Segmentation Ours-h68 0.295 | 0.543 | 0.297 0.102 0.452 0.437
Segmentation Ours-h85 0.382 | 0.643 | 0.406 0.135 0.524 0.638
Keypoint Estimation Ours-h68 0.393 | 0.643 | 0.408 - 0.428 0.418
Keypoint Estimation Ours-h85 0.530 | 0.786 | 0.563 - 0.449 0.664

Table 2. Object detection task — Comparison with baseline.

Model Name AP AP 50 | AP75
Resnet50+CondInst 0.358 | 0.540 | 0.384
HardNet68+SSD512 0.317 - -
HardNet85+SSD512 0.351 - -
Centernet-Hourglass 0.403 | 0.591 | 0.440
Centernet-DLA1x 0.363 - -
Centernet-DLA2x 0.374 | 0.551 0.408
Centernet-Resnet101(DCN) 0.346 | 0.530 | 0.369
Centernet-Resnet1 8(DCN) 0.281 | 0.449 | 0.296
Extremenet+Hourglass 0.358 - -
Extremenet+DeepLayerAggregation (DLA) | 0.330 - -
Ours-h68 0.368 | 0.582 | 0.397
Ours-h85 0.412 | 0.599 | 0.452

object detection. Intersection over Union (IoU) is the ratio of the area of overlap and
area of union between two bounding boxes. The precision and recall are calculated with
different IoU thresholds. We calculated the AP over different IOU thresholds, AP at IOU
thresholds 0.5(AP50) and 0.75 (AP75). The HarDNet85 (h85) backbone network model
gave 43.6 AP on object detection, 38.2 AP on instance segmentation, and 53.0 AP on
keypoint estimation tasks on evaluation with coco validation data. The smaller model
with HarDNet68 (h68) backbone network gave 36.8 AP on object detection, 29.5 AP
on instance segmentation and 39.3 AP on keypoint estimation tasks. These results are
evaluated without Flip/Multiscale testing.

4.1 Comparison with State of the Arts

Our proposed model predicts object detection, keypoint estimation and instance seg-
mentation in a single forward pass. As far as we know, there haven’t been any previous
works in which a single model predicts these exact three computer vision problems to-
gether. Thus a direct comparison between the models is not possible. Tables 4-5 compare
the performance of different tasks individually with their baseline model variants trained
for a single task.

In Table 2, we can see that the bounding box AP for our h85 multi-tasking model is
better than the original conditional instance segmentation model with resnet, SSD model
with similar hardnet backbone networks, variants of Centernet and Extremenet models.

556 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN
Table 3. Segmentation task — Comparison with baseline.
Model Name AP | AP50 | AP75 | AP small | AP medium | AP large
Resnet50+CondInst | 0.354 | 0.564 | 0.376 0.184 0.379 0.469
Ours-h68 0.295 | 0.543 | 0.297 0.102 0.452 0.437
Ours-h85 0.382 | 0.643 | 0.406 0.135 0.524 0.638

Table 4. Keypoint estimation task — Comparison with baseline.

Model Name AP AP S50 | AP75 | Speed (Fps)
Hourglass-104 | 0.640 - - 6.6
DLA-34 0.589 - - 23
Ours-h68 0.393 | 0.643 | 0.408 41.66
Ours-h85 0.530 | 0.786 | 0.563 32.26

The lighter multi-tasking model has comparable performance with the best-performing
Centernet baseline models. Table 3 compares our models with the baseline conditional
instance segmentation model for the instance segmentation task. The h85 model outper-
formed the baseline model on AP at different IOUs and for medium and large objects.
Table 4 shows that we achieved acceptable performance in keypoint estimation task with
less than half the computation time required for other models. The non optimised ver-
sion of our model performs more than five times faster than the current state of the art
Hourglass model in estimating the keypoints.

5. OPTIMISATIONS AND PERFORMANCE EVALUATION

We used different configurations to assess the model’s performance, including 10th
gen Intel Core 19-10900K CPU, RTX3090 GPU, and Nvidia Jetson TX2 board. We op-
timised the model by fusing the convolution layers and batch normalisation layers. As
both convolution and batchnorm are linear operations to the data point x, and they can be
rewritten in terms of matrix multiplications: T, * Sp, * Weony * (x), where we first con-
volve (W) the data (x), then scale (S) and time shift (T) it using the batchnorm-trained
parameters.

Finally, We optimised the models using TensorRT 8.2.2.1 and experimented with
FP32 and FP16 quantization. The performance results are given in Table 5. The model
got nearly 2x improvement when converted to float16 weights. A visualisation of the
performance results on different system configurations is shown in Figs. 3 and 4.

Table 5. Performance evaluation of the proposed model.

Model Name | RTX3090 GPU | RTX3090 GPU | Intel 19 CPU | Jetson Tx2 | Jetson Tx2
(FP32) (FP16) (FP32) (FP32) (FP16)

Ours-h68 014.11 ms 007.60 ms 203.82 ms 275.28 ms 158.97 ms

Ours-h85 018.88 ms 009.38 ms 374.36 ms 399.89 ms | 240.34 ms

MULTI TASKING MODEL FOR DETECTION, SEGMENTATION AND KEYPOINT ESTIMATION 557

Performance Improvement for h68 model with FP16 Performance Improvement for h68 model with FP16
== FP16 = FP16
400 | = FP32 600 { WM FP32
500
g 30 H
o o 400
£ £
F F
£ 2
@ 200 @ 300
2 2
& &
200
100
100
ol NN ol m—
RTX3090 GPU Intel i9 CPU Jetson Tx2 RTX3090 GPU Intel i9 CPU Jetson Tx2
(a) Improvement for h68 model. (b) Improvement for h85 model.

Fig. 3. Performance improvement with FP16 quantization.

Performance Evaluation for proposed model Performance Evaluation for proposed model
- h68 - h68
- h85 - hs5
120 350
300
100
£ £ 250
fg 80 g
E
§ 200
£ 60 2
g g 150
£ &
40
100
20 50
0 0
RTX3090 GPU Intel i9 CPU Jetson Tx2 RTX3090 GPU Intel i9 CPU Jetson Tx2
(a) Processing speed. (b) Processing time.

Fig. 4. Performance evaluation on different devices.

On analysing the performance on various devices, the proposed model has sufficient
processing speed and performs multiple computer vision tasks simultaneously. As future
work, We look forward to optimise the models further by using int8 quantisation and
calibration on more resource-constrained edge devices.

6. CONCLUSION

Most of the existing state of the art models are optimised for certain benchmark pa-
rameters on curated datasets for specific tasks. Actual industrial use cases often require
results from multiple models, used sequentially or as an ensemble, for generating mean-
ingful business insights. The final output can only be obtained after getting the results
from the slowest model among them. Due to uneven resource requirements for the dif-
ferent models, the allocated resources will mostly be underutilised. Also, each model
extracts its own features and cannot take advantage of features pre-computed by other
models. This, in addition to the pre and post-processing overheads associated with each
model, is sub-optimal for a real-time video analytics pipeline. In most cases, the pre-post
processing overheads are done on CPUs, causing the processing pipeline to throttle.

558 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN

We explored the multitasking architecture for neural networks to overcome these
issues. We developed a multitasking model that can do multiple tasks in a single forward
pass. The joint learned model can do multiple related tasks — object detection, keypoint
estimation for body posture analysis and instance segmentation for improved tracking.

We compared our model with the state of the art single task models that had sim-
ilar architectures to our baseline, as we couldn’t find models developed for exactly the
three tasks that we trained for. We see that our models outperformed in terms of accuracy
in the bounding box (41.2 mAP) and segmentation tasks (38.2 mAP) on COCO dataset.
We achieved comparable performance in the keypoint estimation task (53.0 mAP) with
nearly 5-7 times faster inference time than others. We attribute the improved performance
of the model to the carefully chosen multitasking architecture and the optimised backbone
network. The use of auxiliary tasks enabled the model to become a more robust and gen-
eralised one, by understanding the complex relationship between the tasks and reducing
the chances of overfitting. As future work, we are planning to implement the multitask-
ing model in previously developed robotic testbed [20, 21] to measure the impact of the
additional auxiliary tasks through an ablation study.

We optimised the model by combining batch norm layers with convolution layers
and applying float16 quantisation for the weights. We achieved 107 frames per second
(fps), while a lighter version achieved 131fps on RTX 3090 GPU. We also benchmarked
the models on Nvidia Jetson Tx2 and got 4.2 fps and 6.3 fps for the two respective models.
We plan to use int8 quantisation and calibration to further improve the processing speed
on edge devices. Using a multitasking model helped us avoid using multiple models for
different use cases and reduce their pre-post computational cost and time complexity.
This enabled us to optimise the video analytics pipeline and process data in real time with
sufficient accuracy levels.

REFERENCES

1. A.J. Chemmanam and B. A. Jose, “Joint learning for multitasking models,” Respon-
sible Data Science, Springer, 2022, pp. 155-167.

2. A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7482-7491.

3. Z.Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection by deep multi-
task learning,” in Proceedings of European Conference on Computer Vision, 2014,
pp. 94-108.

4. F. Gao, H. Yoon, T. Wu, and X. Chu, “A feature transfer enabled multi-task deep
learning model on medical imaging,” Expert Systems with Applications, Vol. 143,
2020, p. 112957.

5. M. A. Al-Antari, M. A. Al-Masni, M.-T. Choi, S.-M. Han, and T.-S. Kim, “A fully
integrated computer-aided diagnosis system for digital x-ray mammograms via deep
learning detection, segmentation, and classification,” International Journal of Medi-
cal Informatics, Vol. 117, 2018, pp. 44-54.

6. C. Sun, Y. Ai, S. Wang, and W. Zhang, “Mask-guided ssd for small-object detection,”
Applied Intelligence, Vol. 51, 2021, pp. 3311-3322.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

MULTI TASKING MODEL FOR DETECTION, SEGMENTATION AND KEYPOINT ESTIMATION 559

. A. Sggaard and Y. Goldberg, “Deep multi-task learning with low level tasks super-
vised at lower layers,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, Vol. 2, 2016, pp. 231-235.

. K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher, “A joint many-task model:
Growing a neural network for multiple nlp tasks,” arXiv Preprint, 2016, arXiv:1611.
01587.

. X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang, “Representation learning

using multi-task deep neural networks for semantic classification and information

retrieval,” in Proceedings of the 53th Annual Meeting of the Association for Compu-

tational Linguistics, 2015, pp. 912-921.

A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik, and S. Savarese, ‘“Taskon-

omy: Disentangling task transfer learning,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 3712-3722.

B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language decathlon:

Multitask learning as question answering,” arXiv Preprint, 2018, arXiv:1806.08730.

B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande, “Mas-

sively multitask networks for drug discovery,” arXiv Preprint, 2015, arXiv:1502.

02072.

X. Zhou, D. Wang, and P. Krihenbiihl, “Objects as points,” arXiv Preprint, 2019,

arXiv:1904.07850.

H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in Proceed-

ings of European Conference on Computer Vision, 2018, pp. 734-750.

X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection by grouping ex-

treme and center points,” in Proceedings of IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, 2019, pp. 850-859.

P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, “Hardnet: A low mem-

ory traffic network,” in Proceedings of IEEE/CVF International Conference on Com-

puter Vision, 2019, pp. 3552-3561.

Z. Tian, C. Shen, and H. Chen, “Conditional convolutions for instance segmentation,”

in Proceedings of the 16th European Conference on Computer Vision, Part 1, 2020,

pp- 282-298.

R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, “Learning to predict crisp bound-

aries,” in Proceedings of European Conference on Computer Vision, 2018, pp. 562-

578.

A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in Proceedings

of IEEE 18th International Conference on Pattern Recognition, Vol. 3, 2006, pp.

850-855.

P. Nithin, A. J. Chemmanam, B. A. Jose, J. Mathew et al., “Interactive robotic testbed

for performance assessment of machine learning based computer vision techniques,”

Journal of Information Science and Engineering, Vol. 36, 2020, pp. 1055-1067.

P. Nithin, A. Francis, A. J. Chemmanam, B. A. Jose, and J. Mathew, “Face track-

ing robot testbed for performance assessment of machine learning techniques,” in

Proceedings of IEEE 7th International Conference on Smart Computing and Com-

munications, 2019, pp. 1-5.

560 AJATI CHEMMANAM, B1JOY JOSE, ASIF MOOPAN

Ajai John Chemmanam currently a Research Scholar in
Artificial Intelligence and Machine Learning at the Department
of Electronics, CUSAT, Kerala, India. He obtained his Masters
and Bachelors degree from Cochin University of Science and
Technology, Kerala, India. He has three years of industrial ex-
perience in Al and ML. He is also an active contributor to vari-
ous open-source projects. For his research contributions, he was
awarded the Prime Minister’s Fellowship for Doctoral Research
in 2020.

Bijoy A Jose currently working as an Associate Professor
in the Department of Computer Science, CUSAT, Kerala, In-
dia. He has received his B.Tech from the School of Engineering
CUSAT and MS from the State University of New York. Dur-
ing his graduate studies, he has been an intern with IBM, New
York and Intel Corporation, Illinois. He received his Ph.D. from
Virginia Tech and worked in Intel Corporation in California and
Bangalore for four years. He received the Early Career Research
il |l Award from the Department of Science and Technology, Govt.
fll il | of India, in 2016. He is the Principal Investigator for multiple
funded projects from DST and IEEE. His areas of interest include cyber security, the
Internet of Things and cyber-physical systems.

Asif Moopan is the Founder and CEO of Vuelogix, an Al
and IoT solutions company based out of Bangalore. He drives
the product and technology roadmap for the company. Prior to
Vuelogix, he was the co-founder and CTO of Carinov, which was
into Digital Media Narrowcasting and Audience Measurement.
He has over sixteen years of experience in technology and started
his career as an embedded system and DSP engineer at Motorola
and Tata Elxsi.

