
Journal of Information Science and Engineering 39, 1185-1207 (2023)

DOI: 10.6688/JISE.202309 39(5).0011

SADEM: An Effective Supervised Anomaly
Detection Ensemble Model
for Alert Account Detection

Hui-Kuo Yang+, Bing-Li Su and Wen-Chih Peng
Department of Computer Science

National Yang Ming Chiao Tung University
Hsinchu, 300093 Taiwan

E-mail: hgyang@gmail.com+; billy4195.su@gmail.com; wcpeng@cs.nctu.edu.tw

Anomaly detection has been an important research topic for a long time

and has been applied to many real-world applications. However, due to the

high cost of manually getting the instance label, researchers mostly resort to

unsupervised or semi-supervised learning approaches. The supervised learning

method has rarely been used in anomaly detection tasks. In this paper, we pro-

posed a supervised learning ensemble method to detect alert accounts among

transaction data. We solve the problem of low-confident predictions when the

anomalies reside within normal data points. The ensemble model comprises

the LightGBM and Multi-layer Perceptron (MLP) to synergize machine learn-

ing and neural network models. The proposed model preserves the result of

high-confident predictions and improves the performance of low-confident pre-

dictions with the new features generated from encoding the leaf node of GBDT

(Gradient Boosting Decision Tree). Our experiments on a real-world dataset

show the effectiveness of the model when compared with the state-of-the-art

methods.

Keywords: alert account detection, anomaly detection, imbalanced classifica-

tion, supervised learning, low-confident predictions

1. INTRODUCTION

Anomaly detection is an important function in many critical tasks [1, 2], in
which the failure to detect anomaly cases could cause a huge impact or loss. The
goal of the anomaly detection is to pick up the anomaly instances among the
normal ones. The definition of anomaly varies from application to application.
It could be a network packet sent from a malicious program to launch intrusive
attacks in cyberspace [3, 4], or a series of fraudulent transaction requests in the
financial industry [5]. Because of the cost of quality labels from the expert, most
anomaly detection tasks do not have fully labeled ground truth. Their works focus
on the unsupervised or semi-supervised method, which does not require too many
labels.

Received August 17, 2022; accepted November 8, 2022.

Communicated by Shyi-Ming Chen.
+Corresponding author.

1185

1186 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

In this paper, we will focus on a specific case of anomaly detection in banking,
alert account detection. Alert accounts are those blocked by banks from certain
operations because of their suspected involvement in a crime or a lawsuit. The alert
accounts will be collected monthly and sent to the bank by the law enforcement
agency. In certain cases, the list would be given to the bank earlier once the law
enforcement agency finds it necessary and urgent to investigate and stop crimes.
Therefore, the bank can obtain a list of accounts being labeled as alert accounts
at least once a month. From the perspective of the bank, if they could detect alert
accounts earlier than receiving notifications from the law enforcement agency, they
can actively control the risk themselves to reduce the loss in advance, and further
improve customer experiences.

As illustrated in Fig. 1, we hope to detect the alert accounts before we get
them from the crimal investigators of the government so that we can actively
prevent any illegal money transfer to protect potential victims. Thus we set our
goal as finding a top-K watch list that is most likely to contain the accounts in
the list obtained from the law enforcement agency. The number K is defined by
our bank client through their consideration of the human resources involved in
account validation procedures. The generated list will be manually checked by the
bank clerks using phone calls or other means; therefore, the validation of the list
of K accounts should be an affordable workload for the bank. In our setting, the
K is larger than the average number of alert accounts in a month to attain better
coverage.

Fig. 1. The motivation to early detect the alert account.

Following the scenario mentioned above, we next highlight challenges for alert
account detection:

� Low-confident predictions
A trivial way to get a K watch list is to select K accounts with the highest
probabilities from the predicted outputs of the best classification model as
alert accounts. Since the alert account is scarcely seen, the model would
give high scores only to a small number of alert accounts. In contrast, other
alert accounts get very low scores, which render the problem of low-confident
predictions, as shown in Fig. 2. Thus, only a few instances are recognized
as anomalies, and the remaining undiscovered anomalies are low-confident

An Effective Supervised Anomaly Detection Ensemble Model 1187

Fig. 2. The toy example of low-confident predictions problem.

(a) Original features (b) Leaf features

Fig. 3. Using t-SNE to visualize the distribution of the alert account and the normal
account in the feature space. The red points are the anomaly (alert accounts) and the
blue points are the normal (normal accounts).

predictions. It would hurt the accuracy of model predictions by generating
many false alert accounts, and overlooking most true alert accounts, thus
decreasing the practical value of the model and increasing the labor cost for
manual account validation.

� Imbalanced class dataset
With the help of label information, we could use supervised learning to build
a classification model. However, since the anomaly behavior is rare, a huge
difference in the number of data points between alert and normal accounts
would be the case. The imbalanced class dataset can result in a trained
model being deeply biased toward the major class as it only learns to predict
inputs as normal accounts since the normal class is the most seen in the
dataset.

� Anomalies mixed with normal data
The behavior of the alert account is, to some degree, similar to the normal ac-
counts. The alert accounts would undergo the same operations as the normal
accounts, such as depositing, withdrawing, and transferring. When visualiz-

1188 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

ing these behaviors, as shown in Fig. 3 (a), we could observe that the anomaly
(red) points are very close to normal (blue) points or reside within normal
points. Unsupervised models could barely identify the anomaly points be-
cause their distance to the normal points is probably shorter than that be-
tween normal points and thus are indistinguishable. Anomalies mixed with
normal data would lead to an inseparable feature space. A feature space
transformation to higher dimensions is often necessary to overcome it, thus
adding model complexity and the risk of overfitting.

In this paper, we have proposed an ensemble classification model that consists
of LightGBM (LGBM) [6] and Boost Predictor, which further consists of Multi-
layer Perceptron (MLP) [7] and Logistic Regression [8]. Since the number of alert
accounts reported each month is small, we choose LGBM as the machine learning
model that could match the scale of our dataset. LGBM is used to generate new
features to improve representation learning for anomaly identification. It then
enables a neural network for this dataset to map the original feature vectors to a
different space. We would argue that using features of leaf nodes from a tree-based
model (e.g., LightGBM as in our work) would have a higher chance for these new
features to be more distinguishable. As shown in Fig. 3 (b), when turning to the
feature space generated using leaf nodes of a tree-based model, anomalies are far
away from normal points when compared with Fig. 3 (a). Our experiments show
the effectiveness of the proposed model.

The contributions of this paper are summarized as follows:

� Present the low-confident predictions problem and design a boost
predictor to solve it
Instead of selecting K accounts that contain low-confident predictions, we
design a boost predictor, which takes advantage of a neural network so that
it could learn the non-linear and complex feature combinations to improve
the low-confident predictions.

� Enhance anomaly detection with the strength of the imbalanced
classification model
Since the anomalies are scarce compared with the amount of normal data,
we tackle this problem with the strength of the imbalanced classification
model, using the sampling method and cost-sensitive learning. The sam-
pling method selects an adequate number of normal accounts for LightGBM
to train, while the cost-sensitive method tries to adjust the loss weight to
recognize the anomaly points better.

� Propose to learn separable features from a tree-based model
We use the result of a supervised machine learning model LightGBM [6], in
learning the representation to solve that alert accounts are indistinguishable
from normal accounts. With the help of LightGBM, we transform original
features into leaf-node based feature space. In the new feature space, the
anomalies are easier to be identified. Furthermore, we could utilize a neural
network to train the model on the transformed dataset while LightGBM
enriches by adding distinguishable features.

An Effective Supervised Anomaly Detection Ensemble Model 1189

The rest of the paper is organized as follows. In Section 2, we review papers in
anomaly detection and imbalanced classification. In Section 3, the proposed model
SADEM is elaborated in detail. We present the experiment results in Section 4.
Section 5 concludes our work.

2. RELATED WORK

The alert account detection task could be discussed in two perspectives, (1)
anomaly detection task; which is to discover anomaly accounts using a seldom
labeled dataset, and (2) imbalanced classification problem; which is with
full-labeled dataset. In the anomaly detection task, some state-of-the-art methods
include unsupervised and semi-supervised learning. We discuss some state-of-
the-art methods focusing on supervised learning approaches for the imbalanced
classification problem.

2.1 Anomaly Detection

Due to the high cost of acquiring labels among a massive number of data
instances, most of the anomaly detection tasks only contain very few ground truths.
Therefore, the previous works mainly focus on unsupervised learning and semi-
supervised learning.

2.1.1 Unsupervised learning

The unsupervised learning methods include one-class SVM [9], and SVDD
[10]. One-class SVM used a curve while SVDD [10] used a sphere to split the
normal and anomaly points. They transformed the input data into a new feature
space before splitting the data points. However, their learning of representation
was usually independent of the target task that was to find out the anomalies, as
addressed in [11]. Deep-SVDD [12] and One-Class Neural Network(OCNN) [13]
proposed their respective objectives to learn the representation for the target task
in model training. IsolationForest [14, 15] built a forest consisting of a random
split decision tree to recognize the anomalies. Following the main structure of
IsolationForest, [16] later used data-dependent information to build isolation for-
est efficiently. [3, 4, 17, 18] used the bottleneck autoencoder to learn the hidden
representation.

2.1.2 Semi-supervised learning

There may be partial labels available in the dataset when training a model to
recognize anomalies. With the help of label information, the model could better
identify anomalies very close to normal data points in the feature space. In [19],
they used active learning and involved domain experts to collaborate during the
training process to get new labels. In this way, data points that were likely to be
anomalies or the points that were indistinguishable for their model would have a
higher chance of being selected for further scrutiny. The new labeled points would
then be added to the training dataset to improve the existing model. [20] used only
the known labels for training a model, then iteratively selected a new anomaly data

1190 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

and put it to the unlabeled data points until the stop criterion was met. In [21], a
deviation metric was considered for directly learning anomaly scores deviating from
average scores of normal data points by leveraging a few labeled anomalies. The
semi-supervised learning performs better than unsupervised learning for datasets
in certain situations. Such as when the dataset contains ground truth obtained
with the collaboration of domain experts or when the partially labeled dataset
contains undiscovered anomalies that need to discover. However, it does not fit our
alert account detection task because the dataset is fully labeled.+Corresponding
author.

2.2 Imbalanced Classification

In imbalanced classification, we treat the problem as to train a model to re-
cognize the given samples between imbalanced classes. We discuss three types of
methods in this category.

2.2.1 Data level

This type of method focuses on data distributions. They use sampling [22–28]
to balance the class distributions. [22, 24] generate the synthetic minority points
to augment the dataset. They use interpolation to acquire new points from in-
terpolated neighbor points. The undersampling methods [25, 28] reduce the data
points in the majority class. The goal of these two types of sampling is to balance
the class distributions in the dataset. Although these methods could resolve the
imbalanced class problem, the oversampling methods would cause overfitting by
repeatedly visiting the same minority points. For the undersampling methods, the
main drawback is information loss.

2.2.2 Algorithmic level

Cost-sensitive learning [6, 29–35] is used here to emphasize the misclassifica-
tion of the minority class. XGBoost [33] and LightGBM [6] are both the gradient
boosting decision tree(GBDT) [36] models. GBDT is one kind of ensemble model
composed of a bunch of decision trees, they use the weight to control the imbal-
anced classes, and the contribution of different classes in the loss function depends
on the number of data points in that class.

2.2.3 Hybrid

There are some models [37–39] that combine the sampling and cost-sensitive
learning together. Besides, several deep learning methods have been proposed
[35, 40–45]. They tend to combine the sampling and the cost-sensitive learning
methods together to build an end-to-end neural network model. Because the
number of alert accounts is small, it could only be trainable by the traditional ma-
chine learning model, otherwise, the deep learning model would overfit by updating
loss function contributed from the minority class repeatedly. After observing our
dataset, the alert accounts are fairly close to the normal accounts. The anomaly
detection methods may not apply to our dataset because they only use few or no
label information in their models. The imbalanced learning methods would be

An Effective Supervised Anomaly Detection Ensemble Model 1191

more suitable for our problem because they consider the label information. How-
ever, the lack of alert accounts data has forced us to try machine learning models
in our dataset, and the low-confident prediction is the main problem addressed in
our work.

3. PROPOSED MODEL

3.1 Problem Definition

In this paper, our goal is to generate a watch list of accounts that is suspicious
to be alert accounts. Given the dataset D = {(X1, y1), (X2, y2), ... (XN , yN)},
where X are the input features of the accounts and y ∈ {0, 1} are the alert account
indicator. The proposed model Supervised Anomaly Detection Ensemble
Model (SADEM) outputs the watch list accounts Walert = {w1, w2, ..., wK},
where w is the account id that is suspected to be an alert account, and K is the
length of the watch list, which is specified depending on the requirement of real
scenarios.

We solved our problems mentioned above using SADEM(X;κ), in which κ is

the parameters of the model SADEM(X;κ) that we will learn. Let G : (Y, Ŷ) →
[0, 1] be the grading function used to evaluate model performance. Y is the ground

truth, and Ŷ is the model output. For example, G = (|Y ∩ Ŷ |)/(|Y |) is the recall
often used to evaluate model performance in classification problems. With these
notations in place, we can formulate our problem as below

κ∗ = argmax
κ

G(Y, Ŷ = {yi;∀i ∈ SADEM(X;κ)}).

When κ∗ is attained, it is our optimizer and G∗ = maxG. In reality, it is difficult to
attain such an optimal point, and we train our model to obtain a set of evaluations
{Gκ′}, where κ′ is the learned model parameters, and we have the approximation
to G∗ as below

sup{Gκ′} ≈ G∗.

3.2 Supervised Anomaly Detection Ensemble Model (SADEM)

Our model aims to consider the low-confident predictions in an imbalanced
class learning problem. The overview of the proposed model is shown in Fig. 4.
The input is downsampled account information which is the result of random
under-sampler (RUS), and the output of SADEM is the top K watch list Walert,
which is the combination of the set of High-Confident Predictions (HCP) and the
set of Augmented Predictions (AP), as described in Eq. (1). HCP are the accounts
in the predictions with a high probability of being the anomalies, and the AP is
the suspicious accounts that are generated by the ensemble model composed of
ML model and NN model.

Walert = SADEM(X;κ)

= {HCP,AP}
(1)

1192 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

Fig. 4. The SADEM model.

The model is composed of the machine learning model and the deep learning
model to be a supervised imbalanced classification model. The random under-
sampler(RUS) balances the data distribution in the training dataset. Light-
GBM(LGBM) [6] generates high-confident predictions and transforms the input
into leaf features. The Leaf Features are the enriched features that fit into the
neural network model training. The Boost predictor takes the low-confident
predictions and uses the leaf features as input to improve the performance of low-
confident predictions. In the following subsections, we explain the implementation
of RUS, LGBM, Leaf Features, and Boost Predictor.

3.3 Random Under-Sampler (RUS)

A random under-sampler is used to reduce the number of normal accounts
(majority class) in the training dataset. Although the number of anomalies is
suitable for the machine learning model to train rather than the neural network
model, the huge amount of normal data will bias the model to only learn the
normal data points. The imbalanced problem will be tackled by sampling and
cost-sensitive learning to reserve the original property and enable the model to
identify minority class. The dataset can be split into two parts, D = {DN , DA},
the DN stands for the set of normal data, and the DA is the set of anomaly data.
The imbalanced distribution of data is described as |DA| ≪ |DN |. We undersample
the DN to D′

N such that |DN | > |D′
N |, and |D′

N | = r × |DA| as Eq. (3) shows,
where RUS(DN) is the random under-sampler for DN . r is the hyper-parameter
to control the ratio to be chosen in the majority class. The undersampled dataset
D′ consists of D′

N and DA as shown in Eq. (4).

D = {DN , DA} (2)

D′
N = RUS(DN) and |D′

N | = r × |DA| (3)

D′ = {D′
N} ∪ {DA} (4)

An Effective Supervised Anomaly Detection Ensemble Model 1193

3.4 LightGBM & High-Confident Prediction

After undersampling, we need to put an appropriate model that fits our re-
quirements. Here, we choose LightGBM(LGBM) [6] as the ML model for training
on the undersampled dataset. The reasons for choosing LightGBM are (1) LGBM
is one kind of GBDT [36], and it has been the well-known winner of a lot of ML
competitions1; (2) it supports cost-sensitive learning using class weights on loss;
and (3) it can extract the learned information to be the leaf features for our needs.
We keep the output of LightGBM model only for high-confident predictions. For
low-confident predictions, since there are still anomalies undiscovered in those
predictions, thus they will get other processes by Boost Predictor to acquire more
convincing and better results.

3.4.1 LightGBM

LightGBM is a lightweight version of the GBDT (Gradient Boosting Decision
Tree). It is a histogram-based algorithm aiming to reduce memory usage and
improve the speed of model training and inference. GBDT is an ensemble model
that iteratively adds a new decision tree Tj(Xi) to improve the previous model
h(j−1)(Xi) as shown in Eq. 5 until the stop criterion is met, i.e., the total loss∑∥D∥

i=1 loss(ŷi, yi) is minimized.

h(j)(Xi) = h(j−1)(Xi) + Tj(Xi) = h(j−1)(Xi) + yij (5)

We apply GBDT in alert account detection to solve the imbalanced prob-
lem. Besides under-sampling, LGBM automatically adjusts the weights of differ-
ent classes in the training dataset. The weights of different classes in the loss
are related to the number of data samples due to the imbalanced nature of the
dataset, and it would significantly increase the performance of identifying the mi-
nority class. Moreover, LightGBM uses a leaf-wise tree growth approach, and the
number of leaves for each decision tree in the forest is the same. The output di-
mension of each decision tree is thus the same after one-hot encoded so that we
could treat it as an intermediate representation learned by LGBM. In each decision
tree Tj , the prediction of the input features Xi ∈ D is yij . The prediction from
overall LGBM given Xi is the combination of all the decision trees in the model
yLGBM
i in Eq. (6), where N is the number of decision trees in the model.

yLGBM
i = LGBM(Xi)

=

N∑
j=1

yij
(6)

3.4.2 High-confident prediction (HCP)

The LGBM outputs the predicted score between 0 and 1 of each input Xi ∈ D
as the probability of being an anomaly. The higher score generated by LGBM

1https://github.com/microsoft/LightGBM/blob/master/examples/README.md#

machine-learning-challenge-winning-solutions

https://github.com/microsoft/LightGBM/blob/master/examples/README.md#machine-learning-challenge-winning-solutions
https://github.com/microsoft/LightGBM/blob/master/examples/README.md#machine-learning-challenge-winning-solutions

1194 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

means the higher confidence of the prediction to be an anomaly. Therefore, we only
keep the high-confident predictions (HCP) while the remaining low-confident pre-
dictions will need more processes. Those low-confident predictions will be boosted
by using the tree structure learned from LGBM and the output scores together to
train a Boost Predictor. HCP is obtained by setting a boundary for the model out-
put with a threshold τ to separate high-confident predictions from low-confident
predictions, as in Eq. (7).

HCP = {yi > τ |yi ∈ yLGBM} (7)

3.5 Leaf Features

In order to improve the low-confident predictions, we utilize a neural network
model for its learning strength. As mentioned before, our main problem is that the
lack of anomaly points is the cause of poor performance. Once LGBM is trained
on the training dataset, the structure of decision trees in LGBM could be seen as
refined features. We can view different inputs leading to different combinations
of decision trees resulting from LGBM. The information obtained from LGBM
includes feature selection, data sampling, and complicated feature combinations.
Inspired by [46], we use leaf features to enrich the dataset and apply a neural
network to obtain improved results. Leaf features are the predicted leaf indexes
of all decision trees in LGBM; the process of generating leaf features is described
below.

3.5.1 Predict leaves

In order to extract the learned structure of LGBM, we use the leaf indexes as
the transformed features. To obtain the leaf indexes, we combined the results of
decision trees as the output features. We obtain leaf index by the tree operation
T.pred leaf(X). As shown in Eq. (8), the leaf index of the decision tree Tj for the
given input Xi ∈ D is Lij , and M is the number of leaves in Tj .

Lij = Tj .pred leaf(Xi), where 1 ≤ Lij ≤ M, Lij ∈ N (8)

Overall output features of LGBM are described in Eq. (9). The input Xi will
be transformed to Li, which is the combination of all leaf indexes Lij from each
decision tree Tj , where 1 ≤ j ≤ N (N is the number of trees in LGBM).

Li = LGBM.pred leaf(Xi)

= {Li1, Li2, ..., LiN | Lij = Tj .pred leaf(Xi)}
(9)

3.5.2 Encode leaves

The generated leaf indexes are categorical. The difference between leaf index
one and leaf index 3 in tree Tj is meaningless. Therefore, we need to transform
it into an encoded format. Here we choose one-hot encode to represent leaf index
features. One-hot encode is the most famous method to encode categorical fea-
tures. It can encode categorical data into numeric value without any information

An Effective Supervised Anomaly Detection Ensemble Model 1195

loss. The leaf index features Li will then be transformed to Lo
i ∈ lM×N , l = {0, 1}

which is the concatenation of all leaf features Lo
ij as shown in Eq. (10).

Lo
i = (Lo

i1, ..., L
o
ij), 1 ≤ j ≤ N (10)

Each leaf feature Lo
ij is encoded from the leaf index Lij by a one-hot encoder as

shown in Eq. (11).

Lo
ij = OneHotEncoder(Lij)

= (l1, ..., lM), where lt ∈ {0, 1},
M∑
t=1

lt = 1
(11)

3.5.3 Reduce dimensions

After encoding the leaf features, the dimension of the features will beM×N. It
will become very large if we adjust the N and M to the larger numbers. The larger
dimensions in input features will cause the model to need more anomaly points
in the dataset because the model will contain more parameters to be trained,
thus requiring more training time. One solution is to reduce the dimensions of the
input features. We choose autoencoder here for dimension reduction, which we are
inspired by [47]. We design a bottleneck autoencoder to reduce the dimension of
features. The autoencoder is one kind of neural network model that consists of an
encoder and a decoder, and the goal is to learn a low-dimensional representation
with minimized reconstruction error. Assume that the encoded feature is Le

i ∈ Rd,
where d is the reduced dimension, and the encoder is used to encode the input
feature Lo

i to the latent features Le
i as shown in Eq. (12).

Le
i = sE(WEL

o
i + bE), (12)

where sE is the activation function, and WE and bE are parameters and bias for
encoder network, respectively.

The decoder will learn to use the latent features Le
i to rebuild the original

input L̃o
i ∈ {0, 1}M×N as shown in Eq. (13).

L̃o
i = sD(WDLe

i + bD), (13)

where sD is the activation function, WD and bD are parameters and bias for the
decoder network, respectively. The objective is to minimize the reconstruction
error ∥L̃o

i − Lo
i ∥.

3.6 Boost Predictor & Augmented Predictions

To solve the low-confident predictions problem, we proposed Boost Predic-
tor, which utilizes both neural networks and cost-sensitive learning to tackle it.
Boost Predictor takes the leaf features and the low-confident predictions produced
by LGBM as inputs and generates theAugmented Predictions (AP) for adding
to the overall model output.

1196 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

3.6.1 Boost predictor

Although the neural network is popular for its strong learning capability, its
restriction is the prerequisite of a large-sized dataset for learning. In previous sec-
tions, we have mentioned how we solve the minority problems by extending features
to large spaces. However, the data distribution is still imbalanced. As a result,
we need the help of cost-sensitive learning to handle the imbalanced problem.
Boost Predictor consists of a weighted Multi-layer Perceptron (wMLP) and
weighted Logistic Regression(wLR). The neural network can capture com-
plicated feature interactions through the complex structure and the non-linear
activation function. The predictions of wMLP are defined in Eq. (14).

pi = wMLP (Le
i)

= q
(k)
i , where 0 ≤ q

(k)
i ≤ 1,

(14)

pi is the output of the wMLP with the input of encoded leaf features for the i-th
data point, and k is the layer index in wMLP. Each layer in the wMLP is defined
in Eq. (15). The output of the last layer in the wMLP will be taken as the model
prediction.

q
(k)
i =

{
s(W (1)Le

i + b(1)), if k = 1

s(W (k)q
(k−1)
i + b(k)), if k ≥ 2

(15)

W (k) and b(k) are the parameters and bias for the k-th layer of wMLP, respectively,
and s is the sigmoid function in wMLP. The difference between wMLP and MLP
is its error function. The original error function of MLP is cross-entropy as shown
in Eq. (16).

Err =
1

m

m∑
i=1

[−yilog(pi)− (1− yi)log(1− pi)] (16)

But for wMLP, the error function is a weighted cross-entropy in which the weights
are adjusted for different classes. In this paper, the weighted cross-entropy is
defined in Eq. (17), in which λ is a weight factor that controls the weight of loss
from normal and anomaly classes.

wErr =
1

m

m∑
i=1

[−yilog(pi)λ− (1− yi)log(1− pi)(1− λ)] (17)

However, the number of anomaly points is still insufficient for a neural network
to train a strong model. Under this situation, we design the Boost Predictor that
combines the predictions of LGBM and wMLP by stacking. Then we use a logistic
regression model, which takes the predictions from LGBM and wMLP as inputs
to generate augmented predictions. The reason to choose logistic regression is
that first, it seeks to capture the non-linear relation of features using the sigmoid
function; second, it is less complex which is suitable to train a model with only
two classes.

An Effective Supervised Anomaly Detection Ensemble Model 1197

3.6.2 Augmented predictions

The output after going through the boost predictor is called Augmented Pre-
dictions. It is the improved versions of predictions from the initial predictions of
LGBM in which high-confident predictions(HCP) are excluded. Augmented pre-
dictions are used to replace the low-confident predictions so that they are combined
with HCP to form a revised complete top-K predictions as shown in Eq. (1).

4. EXPERIMENT

In our experiment, the transaction dataset is from an Asia-based regional bank
whose service targets include individuals and corporations, with service domains
extended to digital banking and AI-enabled financial services. Our research aims
to detect any account suspicious of criminal activities from transaction records
and put it into an alert list. By conducting a series of online experiments, we have
validated the effectiveness of our model. We also compare our approach with state-
of-the-art competitors, including anomaly detection and imbalanced classification
algorithms.

4.1 Transaction Dataset

The transaction records span the period from July 2018 to May 2019. The
input data include transaction features aggregated by user and date, such as the
number of transactions in the last 24 hours, the amount of money transferred out
in the last 24 hours, etc. Furthermore, the items in a profile of an account owner,
i.e., age, gender, yearly income range, occupation, etc., are also included. We split
the dataset into a training set and a testing set by the record date. The date in
the training set is from July 2018 to December 2018, and the testing set dates
from January 2019 to May 2019. The total number of individual accounts in the
training set is 900,000.

We evaluate the performance of our algorithm by recall@K, which is the ratio
of detected alert accounts over true alert accounts in the top K output list. From
the bank’s perspective, they request to identify as many anomalies as possible in a
restricted resource. Advised by the bank domain experts, the number of K is set
as 350, which shows the realistic condition for the workload allocation of the bank.
We use the predictions each month of the testing set to evaluate the performance.

4.2 Competing Models

We choose ten well-known models for comparison, three of which are from
anomaly detection models, and the rest are from imbalanced classification models.
Besides that, we add two variants of our algorithm to the comparison list.

4.2.1 Anomaly detection

� IForest [15] is an ensemble model that utilizes a random split tree to detect
an anomaly. It uses the path length to find the leaf as the anomaly score.

1198 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

� Deep-SVDD [12] is a one-class SVM-based model that uses a neural network
to replace the kernel function.

� Autoencoder [4] is a model that utilizes a bottleneck autoencoder to learn
the representation of normal data points. It uses reconstruction error as the
anomaly score.

4.2.2 Imbalanced classification

� LightGBM(LGBM) [6] is an ensemble model based on decision trees. The
implementation includes sampling and cost-sensitive methods which use a
histogram mechanism.

� XGBoost [33] is a gradient boosting decision tree model that utilizes a pre-
sorting mechanism to speed up computation.

� Weighted-MLP(wMLP) [35] is a neural network method that takes weighted
cross-entropy as a loss function for misclassification of the minority class.

� Leaf-wMLP is a weighted MLP model in which the input is transformed from
leaf features generated by LGBM. It demonstrates the effect of leaf feature
transformation.

� RUS-LGBM is a model based on LGBM, but with preprocessed dataset. The
majority class is downsampled to balance the uneven population distribution
among classes.

� SMOTE-LGBM [22] is an LGBM-based model with preprocessed dataset
by SMOTE to oversample the minority class to increase the number of their
data points.

� TU-LGBM [28] is another LGBM-based model with preprocessed dataset
by TU, which is a trainable undersampling method that trains a sampler by
a recurrent neural network.

4.2.3 Reduced SADEM

� SADEM-NoAuto is based on our proposed model with the autoencoder being
removed. It used one-hot encoded leaf features as the input of our Boost
Predictor module.

� SADEM-NoCost is also based on our proposed model, removing the cost-
sensitive learning. All the class weights are equally set to 1 in Boost Predic-
tor.

4.3 Implementation Detail

4.3.1 SADEM

In the implementation, we set the hyper-parameters of SADEM as follows.
The r of RUS is 100. We randomly undersample the normal data according to that
ratio. The threshold τ is 0.9. We only extract predicted probability higher than

An Effective Supervised Anomaly Detection Ensemble Model 1199

0.9 to be high-confident predictions. The weight factor λ is 0.9995 following the
ratio ‘anomaly : normal=1 : 2000’. We use the official package2 of LightGBM for
Python interface as our LGBM implementation. The setting of hyper-parameters
for LightGBM are ‘num leaves = 31’, ‘n estimators = 50’, and the rest remain the
default settings. For one-hot encoder and Logistic Regression, we use the imple-
mentation in scikit-learn [48]. TensorFlow [49] is used to develop our neural net-
work modules, including Autoencoder and MLP. The encoder of the Autoencoder
has two hidden layers, and their sizes are 100 and 250. The decoder dimensions
are the reverses of the encoder. The wMLP contains two hidden layers, with the
hidden units for each layer being 100 and 80, respectively. All the neural networks
use a fully-connected layer with a sigmoid function as the activation function. Our
objective is optimized by the Adam algorithm [50]. The length of the watch list,
K, is 350, and so is the setting of K in our evaluation metric recall@K. We set K
to a specific value to meet the constraint of maximum workload per inspector in
a real-world scenario.

4.3.2 Reduced SADEM

The implementation of SADEM-NoAuto is identical with SADEM. The only
difference is the removal of leaf features encoding with an autoencoder. We instead
use the one-hot encoded leaf index as the input for Boost Predictor. The reduced
SADEM-NoCost is done by disabling the cost-sensitive learning in Boost Predictor
of full SADEM. We remove the weight factor term in the loss function for wMLP.

4.3.3 Competing models

For IForest [15], we use ‘IsolationForest’ in scikit-learn [48] for our exper-
iment. For Deep-SVDD, we use the implementation from the author’s GitHub
repository3. We use the exact implementation of LGBM and Autoencoder as in
SADEM, and both of them output the top 350 data points with the lowest re-
construction errors. For wMLP, we developed a neural network with the same
model shape and training parameters as the one we did for SADEM. For RUS-
LGBM, we randomly downsample normal data points to 100 times the number
of anomalies and then use them for training LGBM. For SMOTE-LGBM, we use
the implementation of the Python package ‘imbalanced-learn’ [51] to sample our
training set and train the LGBM on the sampled dataset. For TU-LGBM, we use
the implementation of the sampler from the author’s GitHub repository for data
sampling, and then train the LGBM to detect alert accounts.

4.4 Results

There are three parts of evaluations: (a) comparisons with baseline anomaly
detection models; (b) comparisons with baseline imbalance classification models;
and (c) validation of the effectiveness of our model design.

2https://pypi.org/project/lightgbm/
3https://github.com/lukasruff/Deep-SVDD-PyTorch

1200 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

Table 1. Recall@350 of anomaly detection vs. SADEM.

Test Time Period (2019)

Method Jan Feb March Apr May Avg.

IForest 0.2400 0.2917 0.4098 0.3068 0.2800 0.3057

Deep-SVDD 0.2800 0.1250 0.0984 0.2500 0.1400 0.1787

Autoencoder 0.3600 0.2500 0.3443 0.4205 0.3200 0.3389

SADEM 0.7600 0.7500 0.7705 0.7841 0.7800 0.7689

4.4.1 Anomaly detection models

We compare our model with state-of-the-art anomaly detection algorithms,
which do not utilize any label information in model training. We observed that
those unsupervised learning models perform poorly in our dataset in which the
data points of alert accounts mixed with those of normal accounts. Deep-SVDD
[12] performs even worse and we suspect the reason is their learning for mixed-
type data points. The objective of Deep-SVDD is to minimize the volume of
hypersphere enclosing the transformed data points, in which it assumes the normal
data points are enclosed within the hypersphere while the anomaly ones fall outside
of it. This learning goal does not guarantee a better representation to distinguish
anomaly from normal data points, especially when they are uniformly mixed in
original data space. As we can observe from Table 1, on contrary to Deep-SVDD,
the Autoencoder [4] algorithm focuses on learning better representation of normal
data in that it can better distinguish the normal data from unseen data, which
are the anomaly data points in our dataset. With the combining strength in both
classification and representation learning, our model SADEM outperforms all the
other anomaly detection methods by up to 59%.

Table 2. Recall@350 of imbalanced classification v.s. SADEM.

Test Time Period (2019)

Method Jan Feb March Apr May Avg.

LGBM 0.7000 0.6667 0.7049 0.7386 0.7200 0.7060

XGBoost 0.5600 0.4167 0.6066 0.5454 0.5800 0.5417

wMLP 0.3525 0.3438 0.4098 0.3537 0.4100 0.3740

Leaf-wMLP 0.4400 0.5417 0.5738 0.4773 0.4200 0.4905

RUS-LGBM 0.7200 0.625 0.7213 0.7272 0.7600 0.7107

SMOTE-LGBM 0.7000 0.6250 0.6885 0.7272 0.72 0.6921

TU-LGBM 0.6400 0.5833 0.5246 0.6818 0.58 0.6019

SADEM 0.7600 0.7500 0.7705 0.7841 0.7800 0.7689

An Effective Supervised Anomaly Detection Ensemble Model 1201

Table 3. Recall@350 of SADEM and the reduced versions.

Test Time Period (2019)

Method Jan Feb March Apr May Avg.

SADEM-NoAuto 0.7400 0.7083 0.7377 0.7614 0.7800 0.7455
SADEM-NoCost 0.6600 0.6250 0.6721 0.6932 0.6800 0.6661

SADEM 0.7600 0.7500 0.7705 0.7841 0.7800 0.7689

Table 4. Recall of high-confident predictions (HCP) and augmented pedic-
tions (AP) in top 350 restriction.

Test Time Period (2019)

Method Jan Feb March Apr May Avg.

HCP 0.6000 (30/50) 0.5000 (12/24) 0.6066 (37/61) 0.5909 (52/88) 0.6400 (32/50)
AP 0.4000 (8/20) 0.5000 (6/12) 0.4167 (10/24) 0.4722 (17/36) 0.3889 (7/18)
SADEM 0.7600 (38/50) 0.7500 (18/24) 0.7705 (47/61) 0.7841 (69/88) 0.7800 (39/50) 0.7689

4.4.2 Imbalance classification models

We compare with supervised learning models focusing on the class imbal-
anced problem. LGBM [6] is less complex than the neural network model in
terms of model complexity, and it performs better when they both apply the cost-
sensitive approach. As shown in Table 2, LGBM achieves a better result than the
weighted-MLP(wMLP) [35]. As for the data level methods, RUS-LGBM under-
samples normal data points randomly, which helps to balance the loss update of
both classes and reduce the size of the dataset. Its performance is even better
than the original LGBM. As for the SMOTE-LGBM, adding more anomalies by
interpolation would potentially increase difficulties in identifying the anomalies
when the anomalies uniformly mixed with normal data points. TU-LGBM [28]
trains an RNN to learn how to undersample the dataset, but it requires longer
training epochs to train the sampler, and the trained model suffers overfitting and
results in low performance in testing. When comparing wMLP with Leaf-wMLP,
we could find that the Leaf-wMLP is better than wMLP, which is also an evidence
that the leaf features are a better representation than original data features as used
for distinguishing anomaly data points. Our method adopts distinguishable data
features, and we utilize the strong approximation property of a neural network to
learn such data representation and adjust the weights of learning criteria between
classes so that the model gains improved performance. Our improvement is about
6% when compared with the best baseline model RUS-LGBM.

4.4.3 Effectiveness

In Table 3, we compare the SADEM with reduced versions that aim to check
the effectiveness of the model design. The comparison with SADEM-NoAuto shows
that Autoencoder helps the Boost Predictor achieve better results because reduc-
ing the feature dimension lowers the risk of overfitting. Without cost-sensitive

1202 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

learning, SADEM-NoCost performs worse than SADEM, and it is even worse than
LGBM. The reason for this result is that in SADEM-NoCost, both the majority
and the minority classes share equal weight to penalize the error when the model
falsely makes a prediction. However, it would discourage the model from learning
the data features of the minority class due to the population imbalance. We could
further observe two groups of the minority class, as shown in Fig. 3 (b): the easy
group and the tricky group. The easy group comprises distinguishable points, i.e.,
anomaly points distancing from normal points, while the tricky group includes
the indistinguishable ones, i.e., those lying mixed within normal data points. The
SADEM-NoCost model had learned well on the anomaly points in the easy group.
Therefore the model outputted only partial cases of high-confident predictions of
LGBM mainly from them. Since such cases had been removed from entering low-
confident prediction learning (See Fig. 4), the Boost Predictor suffered from even
imbalanced data distribution. It then led to a worse result for SADEM-NoCost.
Thus we incorporate weight factor λ to control the portion of loss contribution
from normal and anomaly classes to counteract this effect. The SADEM-NoAuto
and SADEM-NoCost help validate the importance of dimension reduction and
cost-sensitive learning in an imbalanced dataset classification problem.

In Table 4, the first two rows are the recall of HCP and AP in the final top 350
watch list. This table demonstrates that both HCP and AP contribute to the final
result, and it shows the effectiveness of the Augmented Predictions. Furthermore,
in the third row, SADEM, the combination of the output of HCP and AP, achieves
a better result than LGBM, as shown in Table 2.

5. CONCLUSION

In this paper, we propose the model SADEM that can solve the alert account
detection problem in the banking industry. We proposed an ensemble model to
take advantage of machine learning algorithms and neural network models. The
low-confident predictions are enhanced by the Boost Predictor, which learns the
better representation of leaf features from the gradient boosting decision tree mod-
els. Indeed, it helps to distinguish between anomalies and normal ones. We further
strengthen our model to tackle the imbalanced dataset problem with the sampling
method and cost-sensitive learning. It has shown improvements in online exper-
iments with a real-world dataset from the regional banking industry. Compared
with other competitors, i.e., anomaly detection models and imbalanced classifica-
tion models, the result shows that our model SADEM improves performance by
up to 59% at Recall@350.

REFERENCES

1. D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of
deep learning-based network anomaly detection,” Cluster Computing, Vol. 22,
2019, pp. 949-961.

An Effective Supervised Anomaly Detection Ensemble Model 1203

2. R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A sur-
vey,” arXiv Preprint, 2019, arXiv:1901.03407.

3. Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through stacking
dilated convolutional autoencoders,” Security and Communication Networks,
Vol. 2017, 2017.

4. R. C. Aygun and A. G. Yavuz, “Network anomaly detection with stochasti-
cally improved autoencoder based models,” in Proceedings of IEEE 4th In-
ternational Conference on Cyber Security and Cloud Computing, 2017, pp.
193-198.

5. M. Renström and T. Holmsten, “Fraud detection on unlabeled data with un-
supervised machine learning,” Master Thesis, KTH, School of Engineering
Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engi-
neering and Health Systems, Health Informatics and Logistics. 2018.

6. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in Advances in
Neural Information Processing Systems, 2017, pp. 3146-3154.

7. F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” Technical Report, Cornell Aeronautical Lab Inc., Buffalo,
NY, 1961.

8. J. A. Nelder and R. W. Wedderburn, “Generalized linear models,” Journal of
the Royal Statistical Society: Series A (General), Vol. 135, 1972, pp. 370-384.

9. J. Jiang and L. Yasakethu, “Anomaly detection via one class svm for protec-
tion of scada systems,” in Proceedings of International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, 2013, pp. 82-88.

10. D. M. Tax and R. P. Duin, “Support vector data description,” Machine learn-
ing, Vol. 54, 2004, pp. 45-66.

11. K. M. Ting, B.-C. Xu, T. Washio, and Z.-H. Zhou, “Isolation distributional
kernel: A new tool for kernel based anomaly detection,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2020, pp. 198-206.

12. L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, and M. Kloft, “Deep one-class classification,” in Proceedings of
International Conference on Machine Learning, 2018, pp. 4393-4402.

13. R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using one-
class neural networks,” arXiv Preprint, 2018, arXiv:1802.06360.

14. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proceedings of
the 8th IEEE International Conference on Data Mining, 2008, pp. 413-422.

15. F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,”
ACM Transactions on Knowledge Discovery from Data, Vol. 6, 2012, pp. 1-39.

16. H. Xiang, Z. Salcic, W. Dou, X. Xu, L. Qi, and X. Zhang, “Ophiforest: Or-
der preserving hashing based isolation forest for robust and scalable anomaly
detection,” in Proceedings of the 29th ACM International Conference on In-
formation and Knowledge Management, 2020, pp. 1655-1664.

17. J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with au-
toencoder ensembles,” in Proceedings of SIAM International Conference on
Data Mining, 2017, pp. 90-98.

1204 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

18. S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using
replicator neural networks,” in Proceedings of International Conference on
Data Warehousing and Knowledge Discovery, 2002, pp. 170-180.

19. C.-H. Mao, H.-M. Lee, D. Parikh, T. Chen, and S.-Y. Huang, “Semi-supervised
co-training and active learning based approach for multi-view intrusion detec-
tion,” in Proceedings of ACM Symposium on Applied Computing, 2009, pp.
2042-2048.

20. S. K. Wagh and S. R. Kolhe, “Effective intrusion detection system using
semi-supervised learning,” in Proceedings of IEEE International Conference
on Data Mining and Intelligent Computing, 2014, pp. 1-5.

21. G. Pang, C. Shen, and A. van den Hengel, “Deep anomaly detection with
deviation networks,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019, pp. 353-362.

22. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of Artificial Intelligence
Research, Vol. 16, 2002, pp. 321-357.

23. I. Mani and I. Zhang, “kNN approach to unbalanced data distributions: a
case study involving information extraction,” in Proceedings of Workshop on
Learning from Imbalanced Datasets, Vol. 126, 2003, pp. 1-7.

24. N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special issue on learning from
imbalanced data sets,” ACM SIGKDD Explorations Newsletter, Vol. 6, 2004,
pp. 1-6.

25. X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), Vol. 39, 2008, pp. 539-550.

26. H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions
on Knowledge and Data Engineering, Vol. 21, 2009, pp. 1263-1284.

27. M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-
level image representations using convolutional neural networks,” in Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 1717-1724.

28. M. Peng, Q. Zhang, X. Xing, T. Gui, X. Huang, Y.-G. Jiang, K. Ding, and
Z. Chen, “Trainable undersampling for class-imbalance learning,” in Proceed-
ings of AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 4707-
4714.

29. K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,” in
Proceedings of the 17th International Conference on Machine Learning, 2000,
pp. 983-990.

30. B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by cost-
proportionate example weighting,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Data Mining, 2003, pp. 435-442.

31. Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with meth-
ods addressing the class imbalance problem,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 18, 2005, pp. 63-77.

An Effective Supervised Anomaly Detection Ensemble Model 1205

32. Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser, “SVMs modeling for
highly imbalanced classification,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), Vol. 39, 2008, pp. 281-288.

33. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785-794.

34. H. Luo, X. Pan, Q. Wang, S. Ye, and Y. Qian, “Logistic regression and random
forest for effective imbalanced classification,” in Proceedings of IEEE 43rd
Annual Computer Software and Applications Conference, Vol. 1, 2019, pp.
916-917.

35. Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, and A. P. Braga, “Learn-
ing from imbalanced data sets with weighted cross-entropy function,” Neural
Processing Letters, Vol. 50, 2019, pp. 1937-1949.

36. J. H. Friedman, “Greedy function approximation: a gradient boosting ma-
chine,” Annals of Statistics, 2001, pp. 1189-1232.

37. N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in Proceedings of
European Conference on Principles of Data Mining and Knowledge Discovery,
2003, pp. 107-119.

38. T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Comparing boosting
and bagging techniques with noisy and imbalanced data,” IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 41,
2010, pp. 552-568.

39. J. Zhang, X. Wu, and V. S. Shengs, “Active learning with imbalanced multiple
noisy labeling,” IEEE Transactions on Cybernetics, Vol. 45, 2014, pp. 1095-
1107.

40. S. Pan and X. Zhu, “Graph classification with imbalanced class distributions
and noise,” in Proceedings of the 23rd International Joint Conference on Ar-
tificial Intelligence, 2013, pp. 1586-1592.

41. S. Pan, J. Wu, and X. Zhu, “Cogboost: Boosting for fast cost-sensitive gra-
ph classification,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 27, 2015, pp. 2933-2946.

42. Q. Dong, S. Gong, and X. Zhu, “Class rectification hard mining for imbalanced
deep learning,” in Proceedings of IEEE International Conference on Computer
Vision, 2017, pp. 1851-1860.

43. Q. Dong, S. Gong, and X. Zhu, “Imbalanced deep learning by minority class
incremental rectification,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 41, 2018, pp. 1367-1381.

44. E. M. Hand, C. Castillo, and R. Chellappa, “Doing the best we can with what
we have: Multi-label balancing with selective learning for attribute predic-
tion,” in Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
2018, pp. 6878-6885.

45. P. Jeatrakul, K. W. Wong, and C. C. Fung, “Classification of imbalanced
data by combining the complementary neural network and smote algorithm,”
in Proceedings of International Conference on Neural Information Processing,
2010, pp. 152-159.

1206 Hui-Kuo Yang, Bing-Li Su, Wen-Chih Peng

46. X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich,
S. Bowers et al., “Practical lessons from predicting clicks on ads at facebook,”
in Proceedings of the 8th International Workshop on Data Mining for Online
Advertising, 2014, pp. 1-9.

47. Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduc-
tion,” Neurocomputing, Vol. 184, 2016, pp. 232-242.

48. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Ma-
chine learning in python,” Journal of Machine Learning research, Vol. 12,
2011, pp. 2825-2830.

49. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale ma-
chine learning,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, 2016, pp. 265-283.

50. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv Preprint, 2014, arXiv:1412.6980.

51. G. Lemâıtre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,” Jour-
nal of Machine Learning Research, Vol. 18, 2017, pp. 1-5.

Hui-Kuo Yang received his BS and MS degrees from
the National Chiao Tung University, Taiwan, in 1996 and
1998, respectively. He then joined the Industrial Technology
Research Institute, Hsinchu County, Taiwan, as a Software
Engineer. He was involved in e-commerce and location-bas-
ed projects, where he applied natural language processing
for individual intention analysis. He is working toward his
Ph.D. in Computer Science at National Yang Ming Chiao
Tung University. His research interests include applications
in data mining, and machine learning.

Bing-Li Su received his BS and MS degrees from the
National Chiao Tung University, Taiwan, in 2014 and 2018.
He is currently working at Synopsys as a Software Engineer,
developing and maintaining debug component of the Sys-
temVerilog simulator.

An Effective Supervised Anomaly Detection Ensemble Model 1207

Wen-Chih Peng received his BS and MS degrees
from the National Chiao Tung University, Taiwan, in 1995
and 1997, respectively, and his Ph.D. degree in Electrical
Engineering from National Taiwan University, Taiwan, in
2001. Currently, he is a Professor in the Department of
Computer Science, National Yang Ming Chiao Tung Uni-
versity, Taiwan. Prior to joining the Department of Com-
puter Science, National Yang Ming Chiao Tung University,
he was mainly involved in projects related to mobile com-
puting, data broadcasting, and network data management.

He has served as a PC member in several prestigious conferences, such as IEEE
International Conference on Data Engineering (ICDE), ACM International Confer-
ence on Knowledge Discovery and Data Mining (ACM KDD), IEEE International
Conference on Data Mining (ICDM), and ACM International Conference on Infor-
mation and Knowledge Management (ACM CIKM). His research interests include
mobile data management and data mining. He is a member of the IEEE.

	INTRODUCTION
	RELATED WORK
	Anomaly Detection
	Unsupervised learning
	Semi-supervised learning

	Imbalanced Classification
	Data level
	Algorithmic level
	Hybrid

	PROPOSED MODEL
	Problem Definition
	Supervised Anomaly Detection Ensemble Model (SADEM)
	Random Under-Sampler (RUS)
	LightGBM & High-Confident Prediction
	LightGBM
	High-confident prediction (HCP)

	Leaf Features
	Predict leaves
	Encode leaves
	Reduce dimensions

	Boost Predictor & Augmented Predictions
	Boost predictor
	Augmented predictions

	EXPERIMENT
	Transaction Dataset
	Competing Models
	Anomaly detection
	Imbalanced classification
	Reduced SADEM

	Implementation Detail
	SADEM
	Reduced SADEM
	Competing models

	Results
	Anomaly detection models
	Imbalance classification models
	Effectiveness

	CONCLUSION
	Biographies
	Hui-Kuo Yang
	Bing-Li Su
	Wen-Chih Peng

