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Feature extraction plays an important role in facial expression recognition. Canoni-

cal correlation analysis (CCA), which studies the correlation between two random vec-
tors, is a major linear feature extraction method based on feature fusion. Recent studies 
have shown that facial expression images often reside on a latent nonlinear manifold. 
However, either CCA or its kernel version KCCA, which is globally linear or nonlinear, 
cannot effectively utilize the local structure information to discover the low-dimensional 
manifold embedded in the original data. Inspired by the successful application of spec-
tral graph theory in classification, we proposed spectral supervised canonical correlation 
analysis (SSCCA) to overcome the shortcomings of CCA and KCCA. In SSCCA, we 
construct an affinity matrix, which incorporates both the class information and local 
structure information of the data points, as the supervised matrix. The spectral feature of 
covariance matrices is used to extract a new combined feature with more discriminative 
information, and it can reveal the nonlinear manifold structure of the data. Furthermore, 
we proposed a unified framework for CCA to offer an effective methodology for non- 
empirical structural comparison of different forms of CCA as well as providing a way to 
extend the CCA algorithm. The correlation feature extraction power is then proposed to 
evaluate the effectiveness of our method. Experimental results on two facial expression 
databases validate the effectiveness of our method.    
 
Keywords: spectral supervised canonical correlation analysis, spectral classification, 
feature fusion, feature extraction, facial expression recognition 
 
 

1. INTRODUCTION 
 

Facial expression conveys visual human emotions, which makes the facial expres-
sion recognition (FER) plays an important role in human-computer interaction, image 
retrieval, synthetic face animation, video conferencing, human emotion analysis [1, 2]. 
Due to its wide range of applications, FER has attracted much attention in recent years. 
Generally speaking, a FER system consists of three major components: face detection, 
facial expression feature extraction and facial expression classification [1, 2]. Since ap-
propriate facial expression representation can effectively alleviate the complexity of the 
design of classification and improve the performance of the FER system, most researches 
currently concentrate on how to extract effective facial expression features. 

A variety of methods have been proposed for facial expression feature extraction 
[3-7], and there are generally two common approaches: single feature extraction and fea-
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ture fusion. Single feature extraction is based on a particular method, i.e. principal com-
ponent analysis (PCA) [3], fisher’s linear discriminant (FLD) [4], locality preserving 
projection (LPP) [5], etc., to obtain the facial expression feature. Feature fusion is based 
on the selected single features and a fusion strategy, i.e. serial strategy [8], parallel strat-
egy [8], canonical correlation analysis (CCA) [7, 9], etc., to create a new feature vector 
which is more effective for classification. 

CCA is a major method of feature fusion [9], which seeks to utilize paired dataset to 
find projections from each feature space that maximize the correlation between the pro-
jected representations. However, as a linear feature fusion technique, CCA can only re-
veal the linear correlation relationship between two sets of data, and it fails to discover 
the nonlinear correlation relationship between them. In contrast, its kernel-based nonlin-
ear version, KCCA [7, 10], can overcome such a drawback, and has been adopted in fa-
cial expression recognition [7]. 

In KCCA [7, 10], the original facial expression features sets are mapped into a 
higher, possibly infinite dimensional feature space via implicit nonlinear mapping, i.e. : 
x  (x) and : y  (y), for X and Y respectively, then the traditional CCA is per-
formed in the feature space using kernel trick [7, 10-12]. Therefore, a nonlinear problem 
in the original space can be transformed into another more possibly linear one in the fea-
ture space in order to discover the nonlinear correlation between the original data sets. 
However, the global kernelization of CCA cannot necessarily guarantee the transforma-
tion from a nonlinear problem into a linear one in the feature space, especially when the 
nonlinearity only exists in certain local spaces. Furthermore, the choice of kernel func-
tion and its parameter(s) according to different research problems is still a tough problem 
[11-13]. 

Recent studies show that facial expression images often reside on a low dimensional 
manifold [14, 16]. The analysis and recognition of different facial expressions will be 
facilitated on the manifold. Both CCA and KCCA can discover the low dimensional ma-
nifold where the high dimensional data lies, to some extent, but in a global way. They 
cannot effectively guarantee that the similar expressions locate on local neighborhoods 
on the manifold. 

Our work here is motivated by the successful application of spectral graph theory in 
dimensionality reduction, i.e. locally linear embedding (LLE) [15, 16], LPP [5], spectral 
feature analysis (SFA) [17], etc. LLE [15, 16] which is proposed by Roweis and Saul, is 
based on the assumption that one point can be represented by the linear combination of 
its local neighbors and this linear relationship still holds in low dimensional manifold 
embedded in the ambient space. He and Niyogi also propose LPP [5] to optimally pre-
serve the neighborhood structure of the data set based on spectral graph theory. Recently, 
SFA [17] is proposed to utilize the spectral feature of the affinity matrix to extract dis-
criminative information for classification. These approaches mentioned above are nonli-
near in nature, but they can be achieved using linear mapping technology, based on the 
idea that the global nonlinear structure is locally linear. Meanwhile, these approaches 
share a common characteristic that they utilize the specific local structure information to 
reveal the low dimensional manifold embedded in the original high dimensional space. 

As in classification, the class labels of the data points are available. Utilizing the 
class information, a new supervised feature extraction method, named supervised ca-
nonical correlation analysis (SCCA), is proposed. SCCA can maximize the ratio of the 
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between-set covariance and the within-set covariance, which ensures that the fusion fea-
ture contains more discriminative information for classification. 

Furthermore, inspired by the successful application of spectral graph theory in clas-
sification, we propose a more effective feature fusion method called spectral supervised 
canonical correlation analysis (SSCCA) to tackle the previously mentioned problems in 
CCA and KCCA. In SSCCA, we construct an affinity matrix, which incorporates both 
the class information and local structure information of the data points, as the supervised 
matrix. The spectral feature of covariance matrices (within-set covariance matrices and 
between-set covariance) is used to extract a new combined feature, which can be more 
discriminative, and the local structure information existed in the original data points can 
be preserved in the feature space. 

Moreover, we provide a unified framework for CCA to offer an effective method-
ology for non-empirical structural comparison of different forms of CCA as well as pro-
viding a way to extend the CCA algorithm. The correlation feature extraction power is 
also introduced to evaluate the performance of different forms of CCA. 

Our method is particularly suitable for classification because of the following prop-
erties: 
 
(1) SSCCA utilizes the class information of the data points to construct the affinity ma-

trix. Class information is important for classification, so the features extracted from 
SSCCA have more powerful discriminative information for classification. 

(2) SSCCA can reveal the intrinsic nonlinear manifold structure hidden in the original 
data. By incorporating the linear structure information of local neighbor, the global 
nonlinearity structure can be fully displayed in the low-dimensional manifold. 

(3) SSCCA can have more correlation feature extraction power. The correlation feature 
extraction power is directly related to the discriminating power in recognition prob-
lem, so the SSCCA algorithm is more suitable for classification.  

(4) SSCCA can effectively extract the fusion features from the testing samples as well 
as the training samples. 
 
The rest of the paper is organized as follows. Section 2 introduces some related 

works. Section 3 describes SCCA and SSCCA in detail. Section 4 provides a unified 
framework of CCA, and the correlation feature extraction power is also introduced in this 
section. Experimental results are presented in section 5. Finally, the conclusions are 
drawn in section 6. 

2. RELATED WORKS 

2.1 Canonical Correlation Analysis (CCA) 
 
CCA is a multivariate statistical analysis method that studies the correlation prob-

lem of two multidimensional random variables. It converts the correlation research of 
two multidimensional random variables into that of a few pairs of unrelated variables 
[18]. 

Concretely, given n pairs of centered data, (xi, yi), xi  Rp, yi  Rq, i = 1, …, n which 
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come from two information channels X and Y, respectively, CCA aims to find a pair of 
directions x and y so that the correlation between the projections T

xx and T
yy is maxi-

mized [18]. The correlation can be expressed as 
 

cov( , )
( , , , )

var( ) var( )

T T T
x y x xy y

x y T T T T
x y x xx x y yy y

x y C
x y

x y C C

   
  

     
  


    (1) 

 
where Cxx = E(xxT) = XXT and Cyy = E(yyT) = YYT are the within-set covariance matrices 
of X and Y respectively, Cxy = E(xyT) = XYT is the between-set covariance matrix of X and 
Y. 

Due to the scale invariance of x and y, the pair of projection (x, y) can be ob-
tained by solving the following optimization problem 

 

,
max

. . 1, 1.

x y

T
x xy y

T T
x xx x y yy y

C

s t C C

 
 
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 (2) 

 
Adopting the optimization strategy described in [9], this optimization problem can 

be solved by the following generalized eigenvalue problem 
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    (3) 

 
where the eigenvalue  is just the canonical correlation coefficient. Once the canonical 
correlation vector pairs (i

x, 
i
y), i = 1, …, d, d  min(p, q) are obtained, the following 

two linear transformations (4) and (5) can be adopted as the feature fusion strategy [9] to 
extract the fusion features for classification.  
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    (5) 

2.2 Spectral Classification 

The spectral classification algorithm derives from spectral clustering [17]. Therefore, 
we first give a brief review on spectral clustering. Spectral clustering [19, 20] refers to a 
class of techniques which rely on the eigenstructure of affinity matrix to partition points 
into disjoint clusters with points in the same cluster having high similarity and points in 
different clusters having low similarity. Normalized cut (Ncut) algorithm [19] is one of 
the most effective spectral clustering methods. 

Given the data set {x1, x2, …, xM}, with each xi  Rd, we can construct the affinity 
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matrix K by one of the ways described in [20], with its element kij represents the similar-
ity between Xi and Xj. Considering the general c clustering problem, we separate the data 
set into c clusters {A1, A2, …, Ac}, such that Ai  Aj = , i  j and c

i=1Ai = A. The Ncut 
criterion is defined as 

 

1 2
1

( , )
( , ,..., )

( )

c
i i

c
i i

cut A A
Ncut A A A

Vol A

     (6) 

 
where cut(Ai,Ai) = iAi,jAikij, Vol(Ai) = iAi,jAkij. 

Define Z as the indicator vector of data points for clustering, and then Eq. (6) can be 
relaxed to the following optimization problem: 

 
T

Z T

Z KZ
J

Z DZ
  (7) 

 
where D is a diagonal matrix with entries are row sums of the affinity matrix K. 

The optimization problem of Eq. (7) can be solved using the Rayleigh-Ritz theorem, 
so the optimal Z is the solution of the following generalized eigenvalue problem: KZ = 
DZ. The first d columns of Z are kept for clustering. Each row of Z, Z  Rnd, is the 
embedding projection of the corresponding original data pattern to spectral space, then 
the classical clustering algorithm such as k-means algorithm can be performed on the 
spectral feature space to cluster the points {z1, z2, …, zn} into c clusters. 

Besides for clustering, the spectral feature can also be used for classification, lead-
ing to the spectral classification [17]. However, traditional spectral clustering algorithms 
can only extract the spectral features of training set, and they cannot handle the testing 
data. To solve this problem, Kamvar and Klein [21] construct a Markov matrix to de-
scribe the transition probabilities between different data using the data similarities or 
supervisory information when the class labels are available. Eigen decomposition is then 
performed on the matrices constructed from both training and test sets. Wang and Zhang 
[17] indicate that spectral feature extraction is a special case of weighted kernel principal 
component analysis (WKPCA). Therefore, the spectral feature can be obtained from both 
training and testing sets using the kernel function. 

Compared with the spectral clustering, the characteristics of the spectral classifica-
tion lie on: (a) the class label information is available; (b) the spectral feature can be ex-
acted from both training and testing sets; (c) a classifier is followed instead of a cluster-
ing algorithm. 

3. SPECTRAL SUPERVISED CCA 

In this section, we firstly propose SCCA by utilizing the class information. Sec-
ondly, the proposed feature fusion method SSCCA is demonstrated in detail. 

3.1 Supervised CCA (SCCA) 

As in classification, the class label is available, and the features which incorporate 
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the class information can be more discriminative for classification. By incorporating the 
class information to construct the supervised matrix, we propose a novel algorithm, 
called Supervised CCA (SCCA). The objective function of SCCA can be formulated as 
the following optimization problem 

 


 
,

max

. . 1, 1.

x y
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x xy y
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x xx x y yy y
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    (8) 

 
Incorporating the class information, 

xxC and 
yyC denote the within-set covariance 

matrix of X and Y respectively, 
xyC denotes the between-set covariance matrix of X and Y, 

The details are described as follows. 
Given two sets of mean-normalized samples X and Y, let 
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where S denotes the supervised matrix, it can be defined as 
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As it reveals, S is block-diagonal to make sure that the samples from the same class 
stay close and the samples from different classes are away from each other. Furthermore, 
the elements lie on the block-diagonal of S are 1, the others are 0. Similarly, 

yyC  = YSYT, 


xyC = XSYT. 
The optimization problem of (8) is similar with that of (2), so it can be solved by 

adopting the same optimization strategy described in [9]. Once the basis vector pairs (i
x, 

i
y), i = 1, …, d, d  min(p, q) are obtained, the dimensionality reduction can be per-

formed in the form of T
xx and T

y, and then the fusion strategy (4) or (5) can be adopted 
to extract the fusion features for classification. 

3.2 Spectral Supervised CCA (SSCCA) 

The supervised matrix constructed in SCCA can only explain the local structure of 
original data roughly, and it fails to accurately reveal the local neighborhood information 
of the samples in the same class. Fortunately, the goal of constructing affinity matrix in 
spectral classification is to model the specific of the local neighborhood relationship be-
tween the data points. Therefore, inspired by the successful application of spectral graph 
theory in classification, we propose a more effective feature fusion method called spec-
tral supervised canonical correlation analysis (SSCCA). In the following two sections, 
the definition and derivation of SSCCA are described in detail respectively.  

3.2.1 Definition of SSCCA 

In SSCCA, we construct an affinity matrix, which incorporates both the class in-
formation and local structure information of the data points, as the supervised matrix. 
Utilizing the class information, the construction of the affinity matrix  

, 1

nx
xx ij i j

K k


 and 
 

, 1

ny
yy ij i j

K k


 can be defined as 
 

2
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= ,
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= .
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y i j y i j
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  



    (16) 

 
Compared with SCCA, we replace S with the affinity matrix Kxx and Kyy as the su-

pervised matrix in SSCCA. Accordingly, we have the following definition 
 
 T

xx xxC XD X , T
yy yyC YD Y ,  T

xy xyC XK Y     (17) 
 

where Dxx(Dyy) is a diagonal matrix whose entries are row (or column, since Kxx or Kyy is 
symmetric) sum of the matrix Kxx(Kyy). Kxy = Kxx + Kyy represents the supervised matrix 
of between-set correlation. By incorporating the class information and local neighbor 

information of samples, xxC andyyC
 
denote the supervised within-set covariance matri- 

ces of X and Y respectively, xyC denotes the supervised between-set covariance matrix of  
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X and Y. 
The canonical correlation coefficient of SSCCA can be expressed as 
 



 SSCCA
( , , , ) .

T T T
x xy y x xy y
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x xx x y yy y x xx x y yy y

XK Y C
x y

XD X YD Y C C

   
  

       
      (18) 

 
SSCCA aims to seek pairs of projection (x, y) such that the canonical correlation 

coefficient
SSCCA

( , , , ),x yx y    which is the ratio of the between-set covariance and the  

within-set covariance, is maximized. Therefore, the objective function of SSCCA is the  
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From the optimization problem described in Eq. (19), we can see that it has the 

similar form with the optimization problem of spectral classification stated in Eq. (7). 
Therefore, it can be seen as a dualistic expansion of Eq. (7). The solving process of 
SSCCA will be detailed in the following section. 

3.2.2 Derivation of SSCCA 

With the introduction of  ,xx yyC C and,xyC  the maximization of 
SSCCA

( , , , )x yx y    

in Eq. (19) can be reformulated as the optimization problem in Eq. (8). Then it can be 
further solved by the following generalized eigenvalue problem: 
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Since xxC and yyC  in Eq. (17) are both positive definite, we can obtain 
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For simplifying the further deduction, we define 
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Let  1/ 2 1/ 2
,xx xy yyH C C C

 
 then Gx = HHT, Gy = HTH. We can find that Gx and Gy  

have the same nonzero eigenvalues 2 2 2
1 2, ,..., , ( )r xyr rank C    . Applying singular value  

decomposition (SVD) theorem to matrix H, we get
1
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i i ii
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
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1  2

2  … 

2
r are the nonzero eigenvalues of Gx and Gy, ui and vi(i = 1, 2, …, r) are the normalized 

orthogonal eigenvectors of Gx and Gy corresponding to the nonzero eigenvalue 2
i respec-

tively. It would be important to note that the derivation presented here is motivated by 
[9]. 

Furthermore, the spectral of H, i.e. 
1 2, ,..., , ( )r xyr rank C    are just the canonical 

correlation coefficients of SSCCA. We can obtain the basis vector pairs (i
x and i

y) from  

the spectral feature vectors ui and vi(i = 1, 2, …, r) by  1/ 2 1/ 2
,i i

x xx i y yy iC u C v 
 

  , i = 1, 
2, …, r, and then either the fusion strategy (4) or (5) can be adopted to extract the fusion 
feature in the form of T

xx and T
y. By incorporating the class information and local struc-

ture information, the combination feature extracted from our algorithm can be more dis-
criminative and the local structure information of the original data space can be pre-
served in the feature space. We will validate the effectiveness of SSCCA in the FER ex-
periments. 

4. ANALYSIS AND DISCUSSION 

In this section, we first present a unified framework for CCA. Then the correlation 
feature extraction power is introduced to evaluate the performance of different forms of 
CCA. 

4.1 A Unified Framework for CCA 

The CCA algorithm and all of its derivative algorithms can be expressed in a unified 
framework. All the derivative algorithms of CCA, including CCA algorithm itself, fol-
low the same procedure, which can be explained as follows: extract two groups of feature 
vectors of the same problem; establish the correlation criterion function under certain 
conditions; extract uncorrelated canonical variates according to this criterion. Therefore, 
the correlation of two sets of variables can be studied through a few pairs of canonical 
variates. 

Given two sets of mean-normalized multivariable vectors X  Rpn, Y  Rqn, pairs 
of basis vector (x, y) are the projection directions of X and Y respectively. The objec-
tive function of the unified framework of CCA is to maximize the correlation between 
the projections T

xx and T
yy, so it can be described by Eq. (8). With different construction 
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of ,xx yyC C  andxyC the framework leads to different algorithm, e.g., CCA, KCCA, local-
ity preserving CCA (LPCCA) [12], SCCA and SSCCA. We will briefly list the construc-
tion of  ,xx yyC C andxyC for these algorithms as follows. 

 
CCA: 

In original CCA algorithm, the construction the three covariance matrix are directly 
based on the original mean-normalized vector X and Y, so we obtain: 

 
  , , .T T T

xx yy xyC XX C YY C XY    
 

KCCA: 
Suppose there are two implicit nonlinear mapping, : x (x) and : y  (y), 

which project the original data sets of X and Y to corresponding feature space x and y, 
then the CCA is performed in the feature space x and y. Let (X) = [(x1), …, (xn)] 
and (Y) = [(y1), …, (yn)], using the kernel trick, we obtain (Kx)ij = (xi)

T(xj) and 
(Ky)ij = (yi)

T(yj), then according to the dual representation theorem, we obtain:  
 
  2 2, , .xx x yy y xy x yC K C K C K K    

 
LPCCA: 

Let LN(xi) and LN(yi) denote the samples set of the local neighbor of xi and yi, res- 
pectively, we define  

, 1

nx
x ij i j

S S


 and  
, 1

ny
y ij i j

S S


 , where 
 

2

2

exp( ), if ( ) or ( )
 = ,

0,                             otherwise

exp( ), if ( ) or ( )
 = .

0,                             otherwise

x i j x j i i j
ij

y i j y j i i j
ij

x x t x  LN x x LN x
S

y y t  y  LN y y LN y
S

    


     



 

 
Then the construction of  ,xx yyC C  andxyC  can be expressed as 
 

 
 

where Sxx = Dxx  Sx  Sx, Syy = Dyy  Sy  Sy, Sxy = Dxy  Sx  Sy, the symbol  denotes an 
operator on two matrices A and B with the same size such that (A  B)ij = AijBij. Dxx(Dyy, 
Dxy) is a diagonal matrix whose entries are row (or column, due to symmetry) sum of the 
matrix Sx  Sx( Sy  Sy, Sx  Sy). 
 
SCCA: 

As defined in Eq. (13), the supervised matrix S, which makes use of the class in-
formation of samples, is block-diagonal, and the elements lie on the block-diagonal of S 
are 1, the others are 0. Then we have the following expressions (please see section 3.1 for 
more details), 

 

  , ,T T T
xx xx yy yy xy xyC XS X C YS Y C XS Y  
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  , , .T T T
xx yy xyC XSX C YSY C XSY  

 
 

SSCCA: 
Incorporating the class information and local neighbor information of samples, the 

construction of  ,xx yyC C  andxyC can be expressed as (please see section 3.2 for more 
details)  

 
  , , .T T T

xx xx yy yy xy xyC XD X C YD Y C XK Y    

4.2 Correlation Feature Extraction Power 

From the framework of CCA, described in Eq. (8), we can see that all the derivate 
algorithms of CCA try to maximize the projection of the correlation matrix on pairs of 
basis vector x and y. In other words, they find pairs of basis vector x and y by maxi-
mizing the canonical correlation coefficients. It is well-known that the correlation of the 
two sets of variables can be studied through a few pairs of canonical variates which are 
corresponding to the first few canonical correlation coefficients in the framework of 
CCA. Therefore, the canonical correlation coefficient (x, y, x, y) reflects the correla-
tion feature extraction power (CFEP) of different algorithms. 

In the CCA algorithm, the eigenvalues in Eq. (3) are just the canonical correlation 
coefficients. Therefore, the eigenvalues of CCA reflect the CFEP of CCA. In our SSCCA 
algorithm, the eigenvalues are also the canonical correlation coefficients, which reflect 
the CFEP of SSCCA too. Following this basic idea, we compare the eigenvalues of CCA 
and SSCCA to evaluate their CFEP, the result is shown in Fig. 1. 

 
Fig. 1. Eigenvalues of CCA and SSCCA. The abscissa is the ranked number of eigenvalue in de-

scending order and the ordinate is the magnitude of eigenvalue. 
 

The data set used for this study is the JAFFE database (please see section 5.1 for 
more details). As shown in Fig. 1, the first few eigenvalues of SSCCA are bigger than 
those of CCA which indicates that SSCCA can have more CFEP than CCA. For classifi-
cation, the CFEP is directly related to the discriminating power, so we expect that SSC- 
CA can obtain better performance than CCA on the FER problem. 
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5. EXPERIMENTAL RESULT 

In this section, we will evaluate the validity of the SSCCA algorithm for FER on 
JAFFE and Cohn-Kanade expression databases. The two groups of features which we 
use for combination are Fisherface feature [4] and Laplacianface feature [5]. The fusion 
strategy (5) is adopted to extract the fusion features for classification. 

Firstly, the SSCCA algorithm is compared with Laplacianface and Fisherface to 
show the advantages of the combined feature to single feature. Then the effectiveness of 
SSCCA algorithm is shown by comparing with CCA, KCCA, LPCCA and SCCA. In 
addition, the nearest neighbor classifier is used throughout the following experiments for 
its simplicity. 

5.1 FER on the JAFFE Database 

The JAFFE database [22] consists of 213 images from 10 individuals of Japanese 
female, covering seven categories of basic facial expressions (neutral, anger, disgust, fear, 
happiness, sadness and surprise). The original images all have the same size of 256  256 
pixels with 256-level gray scale. The images are cropped automatically to make two eyes 
align at the same position and then resized to 100  100 pixels. Some cropped images are 
shown in Fig. 2. 

 
Fig. 2. Cropped images from the JAFFE facial expression database. 

Except for the neutral expression, we choose 21 images from each of the remaining 
six facial expressions. We adopt the leave-one-out cross-validation technique to verify 
our algorithm. One image is chosen from each expression for testing, while the left twen-
ties are used for training. This should be repeated 21 times, and the average recognition 
accuracy is taken as the final recognition accuracy. 

The single features based on Laplacianface and Fisherface are first calculated re-
spectively, then the combined feature is extracted using SSCCA. The top recognition 
accuracies with their corresponding dimensions of the three methods are shown in Table 
1. Note that, both the Laplacianface method and Fisherface method should adopt the 
PCA algorithm to reduce the dimension of the feature space to avoid the singular prob-
lem, and then the corresponding algorithm, i.e. LPP or LDA, is followed to extract the 
facial expression features respectively. 
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In the unified framework of CCA, when different correlation criterion is adopted, 
the classification performance of the combined feature differs from each other. We com-
pare the performance of different forms of CCA, i.e. CCA, KCCA, LPCCA, SCCA and 
SSCCA, the recognition accuracies and the corresponding dimensions are shown in Ta-
ble 2. The Gaussian function k(x, y) = exp( ||x  y||2/t) is used to define the kernel matrix 
in KCCA and the affinity matrix in SSCCA and LPCCA. The parameters tx and ty in 
SSCCA are chosen to make sure that Sx and Sy are on the same magnitude. In our ex-
periment, the parameters tx and ty in KCCA, LPCCA and SSCCA are adjusted for the 
best performance respectively, and the results are also shown in Table 2. 

Table 1. Experimental results of Laplacianface, Fisherface and SSCCA on JAFFE. 

 Laplacianface Fisherface SSCCA 
Accuracy (%) 92.06 92.86 96.03 
Dimension (d) 7 5 5 

Table 2. Experimental results of different forms of CCA on JAFFE. 

 CCA 
KCCA 

(tx = 10, ty = 10)
LPCCA 

(tx = 1e6, ty = 1e6)
SCCA SSCCA 

(tx = 10, ty = 10) 

Accuracy (%) 93.65 94.44 93.65 94.44 96.03 
Dimension (d) 5 62 5 5 5 

 

As shown in Table 1, the recognition accuracy of the combined feature extracted 
from SSCCA is greatly improved than those of the single feature based methods. After 
combing two single features, the extracted feature contains more effective discriminative 
information, so the recognition accuracy is greatly improved. In addition, the dimension 
of our method is the minimal dimension, that is min(p, q), of the two single feature com-
bined, which indicates that we can obtain more effective facial expression representation 
with the minimal dimension of the single feature. 

From Table 2, we can learn that the recognition accuracies of SCCA and SSCCA 
are higher than those of CCA, KCCA and LPCCA, which shows that the supervised ex-
tension of CCA is more suitable for classification. This can be attributed to the introduc-
ing of class information into the computation of the correlation projection vectors pairs 
(x, y). Furthermore, our experiment results in Table 2 also show that SSCCA can 
achieve better performance than SCCA. This is can be explained that the incorporating of 
local structure information of the samples in the same class to construct the within-set 
covariance matrices xxC andyyC and the between-set covariance matrix xyC makes the 
combined feature more effective to reveal the intrinsic characters of different facial ex-
pressions. 

5.2 FER on the Cohn-Kanade Database 

The Cohn-Kanade (CK) database [23] consists of approximately 500 image se-
quences from 100 subjects. Each image sequence displays distinct facial expressions, 
starting from neutral expression and ending with the peak of the expression. For each 
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expression of a subject, the last eight frames in the image sequences are selected. The 
images are cropped automatically to make two eyes align at the same position and then 
resized to 64  64 pixels. Some cropped images are shown in Fig. 3. 

 
Fig. 3. Cropped images from the CK facial expression database. 

 

Except for the neutral expression, we choose 160 images from each of the remain-
ing six facial expressions, i.e. anger, disgust, fear, happiness, sadness and surprise, for 
training and testing. For each facial expression, we randomly select k(k = 10, 20, …, 80) 
images for training and the remaining 160-k images are used for testing. We repeat the 
experiment 10 times, and the average recognition accuracies are taken as the final recog-
nition accuracies. 

Firstly, we compare the recognition performance of Laplacianface, Fisherface and 
SSCCA, the average recognition accuracies are shown in Fig. 4. Then we compare the 
performance of different forms of CCA, the results are shown in Fig. 5. Finally, we list 
the dimensions of feature corresponding to the top recognition accuracies of different 
forms CCA by setting k = 30 in Table 3. 

 
Fig. 4. Average recognition accuracies of Lapla-

cianface, Fisherface and SSCCA. 
Fig. 5. Average recognition accuracies of differ- 

ent forms of CCA. 
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Table 3. Experimental results of different forms of CCA on CK (k=30). 

 CCA 
KCCA 

(tx = 1e3, ty =1e3)
LPCCA 

(tx = 1e6, ty = 1e6) SCCA 
SSCCA 

(tx = 10, ty = 10) 

Accuracy (%) 88.03 89.87 90.03 89.90 91.26 
Dimension (d) 5 77 5 5 5 

 

Generally, the performances of all these algorithms vary with the size of the training 
dataset. As is shown in Fig. 4, the recognition accuracies of our method are consistently 
higher than those of the single feature based methods. From Fig. 5 and Table 3, we can 
see that SSCCA outperforms other forms of CCA with higher recognition accuracy and 
lower feature dimensionality. With the increase in the number of training samples, the 
KCCA and SCCA methods perform comparatively to SSCCA. Furthermore, the advan-
tage of SSCCA is more obvious when there are less training samples. As a matter of fact, 
we may not have sufficient training samples in the real world’s applications. And the 
superiority of our algorithm is obvious when there are less training samples, so it can be 
more valuable for real world’s applications. 

6. CONCLUSION 

Inspired by the successful application of spectral graph theory in classification, we 
proposed a novel supervised feature fusion method called supervised spectral canonical 
correlation analysis (SSCCA) in this paper. In SSCCA, the affinity matrix, which incor-
porates the class information and local structure information of the data points, is used as 
the supervised matrix, and then the ratio of the between-set covariance and the within-set 
covariance is maximized to seek pairs of projection (x, y). SSCCA utilizes the spectral 
of covariance matrices (within-set covariance matrices and between-set covariance) to 
obtain a new combined feature, which means it can not only extract the effective infor-
mation of each single feature, but also eliminate the redundant information within the 
features, so SSCCA is superior to single feature based method. Further analysis shows 
that the feature extracted by SSCCA has discriminative information, and it can reveal the 
intrinsic nonlinear manifold structure hidden in the original data, which implies that 
SSCCA is suitable for nonlinear recognition problems. Furthermore, a unified framework 
of CCA is proposed to offer an effective methodology for non-empirical structural com-
parison of different forms of CCA as well as providing a way to extend the CCA algo-
rithm. The correlation feature extraction power is also introduced to evaluate the per-
formance of different forms of CCA. 

The experiments on the databases of JAFFE and CK validate the effectiveness of 
our method. From the experiments results we can see that SSCCA not only is superior to 
the single feature based method, but also outperforms other forms of CCA in terms of the 
recognition performance on the FER problem. Furthermore, it should be noticed that 
when the samples in different channels are given with their class labels, the application 
of SSCCA can be extended to various fields such as image retrieval, pattern recognition 
and other fields. 
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