
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 53-73 (2020)
DOI: 10.6688/JISE.202001 36(1).0004

Design Pattern Analysis with Software Evolution Data

NIEN-LIN HSUEH
Department of Information Engineering and Computer Science

Feng Chia University
Taichung City, 407 Taiwan

E-mail: {nlhsueh}@fcu.edu.tw

The influences of design patterns on software quality have a ttracted i ncreasing atten-
tion in the area of software engineering, as design patterns encapsulate valuable knowledge
to resolve design problems, and more importantly to improve the design quality. Since
most design patterns are designed to enhance the maintainability, a system with such de-
sign patterns is expected to have lower maintenance load in its further evolution. How-
ever, sometimes design patterns are over applied or mis-used in many systems, which will
cause another maintenance problem or impair the system performance. Therefore, lots of 
researchers proposed their approaches to evaluate the quality of design patterns or their de-
ployment. However, there is no approach taking the software evolution into concern, even
it is the major issue a design pattern addresses. In this paper, we propose a new approach
to formulate the evaluation of a design pattern’s utilization using the evolution data. We
also conduct our approach to 11 design patterns over 15 projects which provide software 
evolution data. The analysis results show that the utilization of deployed design patterns
does not have significant difference among the design patterns in the evolution of software
design.

Keywords: design pattern, software evolution data, software quality, software design, open
source software

1. INTRODUCTION

Software change is inevitable. Successful software systems must evolve to satisfy 
changing requirements. How to design a flexible architecture to accommodate changes 
becomes an important design problem in the area of software engineering. Recently, many 
design patterns have been proposed to solve such problems and improve software quality 
[8, 9, 26]. A growing number of practitioners have shown great interests in using design 
patterns towards high-quality software [4, 10, 11, 27, 34].

Although design patterns have been widely applied, its contribution is questioned 
and various approaches are proposed to validate the correctness of design pattern appli-
cation [21, 23, 24, 32] and its value in quality improvement [1, 13, 33]. To achieve that, 
most of these researches analyze the programs with a given quality model [2, 13, 15, 30]. 
However, the analysis is conducted based on a static structural model, i.e., a snapshot of 
the software product in its development life cycle. As we know, most patterns address

Received July 19, 2018; accepted September 17, 2018.
Communicated by Jung-Hsien Chiang.
* This research was supported by the Ministry of Science and Technolody, Taiwan, under grants MOST 106-
2221-E-035-MY2.

53



54 NIEN-LIN HSUEH

the maintainability issues, therefore the evaluation should be based on all versions in its
software evolution, not only a specific version.

In this paper, we propose an analysis method for evaluating the deployed design pat-
terns in software evolution. Since most design patterns provide more flexible architecture
to enhance maintainability. Such patterns should be inspected to see if they can be utilized
to meet the original design purpose. As shown in Fig. 1, if a developer deploys a Strategy
design pattern d p1 in version v1 and it intends to extend the Strategy in the future, but no
Strategy objects are added or removed to the original design for the extension from v1 to
v10 in the evolution. We may consider the application of the pattern is less utilized in the
evolution. On the other hand, Fig. 2 illustrates a case that the design patterns are more
utilized. From v1 to v2, a Strategy class is removed; from v2 to vn, another Strategy class
is added. The Strategy design pattern contributes to the design evolution since it allows us
to embrace a lot of design changes by extending rather than modification. The expected
utilization represents the hot spot for change in the evolution.

We perform experiments on 11 design patterns over 15 open source software (OSS)
projects which have totally 296 software evolutions. The open source software source
code and the associated data can be archived in a public version control system which
provides a transparent way for researchers to evaluate software quality. SourceForge has
provided 3.7 million registered users to create powerful software in over 430,000 projects
until the first quarter of 2014. The huge amount of open source software can provide
world-wide software developers valuable design experiences. We conduct the experi-
ments on OSS systems to validate our approach and our research’s objectives include:

• Proposing an approach to evaluate the utilization of design patterns using the soft-
ware evolution data;

• Developing a tool to support the proposed approach;

• Applying our approach to some well-known open source systems which provide
software evolution data; and

• Investigating whether the utilization of deployed design patterns are correlated with
the software projects or with the types of design patterns.

The remainder of this paper is structured as follows: Section 2 discusses background
work. Section 3 introduces our approach to measure the utilization of the design patterns
in software evolution. In Section 4, we demonstrate the system design approach and
report our experimental results. Our analysis and discussion are presented in Section 5.
Finally, conclusion remarks are given in Section 6.

2. BACKGROUND WORK

A number of researchers have applied different methods to evaluate the design pat-
terns from different motivation. In section 2.1, we introduce and compare these re-

Fig. 1. Less utilized design pattern application in software evolution.



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 55

Fig. 2. Utilized design pattern application in software evolution.

searches. In section 2.2, we introduce the two pattern detection work since they are
important background techniques for the pattern evaluation researches.

2.1 Evaluation of Design Pattern Application

Gamma et al. [9] propose twenty-three design patterns which are aimed for solving
software design problems. They advocate that design patterns can reduce system com-
plexity by naming and defining abstractions. Diverse techniques are applied to evaluate
the quality of deployed design patterns in related studies.

Software metric is a measure of defined property of a piece of software and a com-
mon way to evaluate software quality. Huston [15] describes the effects of some patterns
on object-oriented software metrics. His study concludes that different metrics may pro-
duce diverse and sometimes conflicting results on programs deployed with design pat-
terns. Hsueh etal. [13] propose a validation approach to help developers check if a design
pattern is well-defined. A quantitative method is proposed to measure the effectiveness of
the quality improvement to meet their functional and quality requirements.

Controlled experiment is also a way to evaluate the role of design patterns in soft-
ware design. Prechelt et al. [23] test whether the use of some specific design patterns is
helpful for participants with different backgrounds. Prechelt et al. [24] study the problem
of quality of design patterns from another perspective. They examine whether documen-
tation of deployed design patterns improve the functional quality in maintenance actions
to perform software changes. Similar related study by Ng et al. [21] discusses the usage
of design patterns and its importance for software maintenance.

Some researchers apply tools to examine the costs of design pattern applications.
Aversano et al. [2] analyze how frequently the deployed design patterns are modified.
Vokáč [30] tries to find a relation between the presence of specific design patterns in
software and the number of defects. Izurieta et al. [16] introduce the notion of design
pattern grime and perform a study of the effects of decay on three open source software.

Recently, there are papers which survey the effective usage of deployed design pat-
terns. Ng et al. [20] study whether maintainers utilize deployed design patterns and the
commonly performed tasks when they do the maintenance. Their study conclude that the
delivered code is significantly less faulty than the code deployed without utilizing design
patterns regardless of the type of tasks performed by maintainers. Cheng et al. [32] in-
vestigate how extensive usage of design patterns has been subjected to empirical study by
conducting a systematic literature review in the form of mapping study. Cheng et al. [33]
investigate the usage of design patterns which expert users consider as useful for software
development and maintenance. They conclude that three patterns are regarded as useful
and one quarter of patterns gain lower approval.

Hsueh et al. [12] propose an analysis method for the effectiveness of deployed design
patterns in software evolution. Their study propose two different measurement ways for
the application of design patterns including occasion and effectiveness analysis. A web-
based pattern effectiveness analyzer is developed and an open source project JAXE is



56 NIEN-LIN HSUEH

Table 1. Summary of researches of evaluation of design patterns.
Research Motivation Method Code

Analysis
Subjects

Huston [15] Analyze the compatibility between design
patterns and design metrics

Analysis Yes Design Patterns

Hsueh [13] Validate if a design pattern well-designed Quantitative
Method

No Design Patterns

Izurieta and Bieman
[16]

Examine the extent to which software de-
signs decay, rot, and accumulate grime

Tools Yes Software

Zhang and Budgen
[32]

Investigate how extensively the use of de-
sign patterns and how and when they can
provide effective mechanism for knowl-
edge transfer

Survey No Research Papers

Zhang and Budgen
[33]

Identify which design patterns are consid-
ered to be useful by experienced users

Survey No Human

Prechelt et al. [23] Investigate whether using design patterns
is beneficial even the actual design is sim-
pler

Controlled Ex-
periments

No Human

Prechelt et al. [24] Test if the design patterns in the program
code are documented explicitly can help
the maintainer

Controlled Ex-
periments

No Human

Aversano et al. [2] Analyze how frequently patterns are mod-
ified, to what changes undergo and what
classes co-change with the patterns

Tools Yes Software

Vokáč [30] Investigate if design with properly applied
patterns reduces defect frequency

Self-developed
Tool

Yes Software

Ng et al. [20] Analyze how maintainers utilize the design
patterns to complete anticipated changes in
software

Experiments Yes Software

Ng et al. [21] Identify factors with contributions to the
maintenance of programs with deployed
design patterns

Experiments No Human

Hsueh [12] Evaluate the effectiveness of deployed de-
sign pattern in software evolution

Self-developed
Tool

Yes Software

analyzed. From the experimental results, they find that most of the patterns are effective
in the late stage of their software evolution.

We summarize the researches and classify them by four criteria in Table 1. The first
criterion, called motivation, describes briefly the research topic of each paper. Then, we
can observe the studies of design pattern usage from different perspectives. The second
criterion, called method, lists the technique applied in each paper research. The method
reflects the way that researchers used for identifying the motivation of their studies. The
third criterion, called code analysis, distinguishes the method applied by each study if it
analyzes the program source code or not. The fourth criterion, called subjects, specifies
the research targets of each study. The subjects among the listed researches are design
patterns, software, research papers and human being.

From the summary, we observe that there is still a dearth of research which evaluates
the deployed design patterns over software evolution by an automatic method. In this
paper, we develop an automatic evaluation tool to assess the utilized usage of deployed
patterns when software evolves. This is a pioneer study of quality evaluation of deployed
design patterns in software evolution.

2.2 Design Pattern Detection

In our work, we apply the pattern detection technique developed by Tsantalis etal.
[28] to identify the deployed design patterns for evaluation. Tsantalis etal. [28] use sim-
ilarity scoring algorithm between graph representations to automatically detect modified



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 57

Fig. 3. Utilization evaluation of design patterns.

design patterns. Initially, they represent important aspects of the software and the de-
sign patterns static structure as graphs and matrices. Next, a graph similarity algorithm
is applied to identify the instances of candidate design patterns. Dong etal. [6] propose
a DP-Miner toolkit to recover instances of design pattern based on the use of matrix and
weight. DP-Miner builds a matrix from source code instead of the graph representation
to improve the accuracy of pattern detection. It can perform static behavioral analysis, but
does not support pattern deviations and dynamic analysis.

Experienced developers apply design patterns in software development to solve de-
sign problems and reduce software maintenance costs. However, software systems evolve
over time, increasing the chance that the design patterns in its original form will be bro-
ken. Pattern detection is a kind of reverse engineering technique for recognizing patterns
from source code [19] or design [5]. Some works [6, 28] recognize patterns in the legacy
system by matrix-based approach. The matrix-based approach maps all classes in the
system to the rows and columns of a matrix, and the value of the corresponding cell is the
relationship between each couple of classes.

3. UTILIZATION EVALUATION OF DESIGN PATTERNS

This section presents the methodology to evaluate the utilization of deployed design
patterns which is shown in Fig. 3. Since not all design patterns are proposed for address-
ing maintenance problems, our approach starts from analyzing the design patterns. The
left part of the figure is to analyze the design patterns and define the expected utilization
of the pattern deployment. The right part of the figure is to perform experiments on real
software projects based on the definitions of the deployed pattern utilization from the left
part of this figure.

From the left part of Fig. 3, the design patterns are analyzed from different per-



58 NIEN-LIN HSUEH

spectives at first. Since not all the design patterns are expected to be utilized during the
evolution, we have to classify the patterns in section 3.1. After the first step of analyis, we
have identified quality-improver patterns and discuss them in section 3.2. When a pattern
is identified as a quality-improver, its intent can be separated into FR-intent (functional
requirement intent) and NFR-intent (nonfunctional requirement intent). The expected
utilization of the quality improver patterns from the FR-intent and the NFR-intent are
discussed in section 3.3.

After the stage of analyais shown in the left part of Fig. 3, we can define a deployed
design pattern declared to be utilized if the original design purpose can be met as the
software evolves. To perform experiments on software projects, we have to define the
design pattern application context in a design which is defined as a Pattern Application
Context (PAC) and is described in section 3.4. In section 3.5, we introduce the expected
utilized application context of a pattern in a software evolution as an Expected Pattern
Utilization (EPU) and the utilization analysis of design pattern applications is presented.

3.1 Pattern Analysis

Patterns are designed for different purposes. In this step, a design pattern is ana-
lyzed from different perspectives to see how it can facilitate design activities, handle non-
functional requirement, solve design problems and resolve design conflicts [14]. Based
on the analysis, design patterns are classified as activity-facilitator for facilitating de-
sign activities; quality-improver for handling non-functional requirements and improving
software quality; problem-solver for solving design problems; and conflict-resolver to
resolving design conflicts.

Activity-facilitator. During system design, various design activities are performed to
reduce the gap between analysis models and the final executable system. A design activity
is a common and recurring task for a specific objective during system design. As design-
ing a system is not algorithmic, each involved activity is usually facilitated with heuristic
knowledge or well-known patterns. A design pattern is viewed as an activity-facilitator
if it can facilitate a specific design activity like decomposition, object allocation, access
control, control flow and component composition.

Quality-improver. Non-functional requirements are not easy to handle because they
are subjective, relative and interacting [7, 17]. Design patterns provide a possible way to
deal with non-functional requirements since they provide solutions to satisfy functional
requirements as well as better solutions to meet non-functional requirements [31]. In other
words, besides providing a basic, functional solution to a problem, a design pattern plays
as a quality-improver to offer a qualified, non-functional improvement to that solution.

Conflict-resolver. Finding the right balance for conflicting requirements is important in
achieving successful software requirements and products [3, 18]. Exploring conflicts is
not easy, resolving conflicts is even harder. Conflicts resulting from competing resource
and divergent expectation can be resolved by specializing resource, involving agents or
their behavior, or introducing an arbitrator to dispatch the resource. Conflicts arising
from side effects are more difficult to handle since the involved requirements do not have
a common interest they are concerned about. It is even worse that side effect conflicts
occur frequently in design phase. To resolve conflicts more efficiently, a design pattern
plays as a conflict-resolver to resolve conflicting requirements.



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 59

Problem-solver. In addition to the fundamental activities of performance, and quality
and conflicting problems to deal with during object design, we also need to examine
boundary conditions or possible exceptions to system reliability. Analysing design pattern
from a problem view is performed to examine how a design pattern can solve design
problems and prevent possible exceptions such as model inconsistency, data corruption or
connection failure. A design pattern plays the role of problem-solver to solve a specific
design problem. From this perspective, Observer design pattern is used to resolve the
inconsistency problem between a set of objects (said observers), which have a common
interest on a subject object. By requiring the observers to register on the subject before
operating, observers can be notified whenever the subject changes its status.

3.2 Pattern Quality Analysis

After the first step analysis, the quality-improver patterns are identified. The identi-
fied quality-improver pattern’s intent is separated into FR-intent and NFR-intent so as to
highlight its quality contribution. The FR-intent describes what the pattern does, and the
NFR-intent concentrates on the extension to the FR-intent to describe how well this pat-
tern can contribute to quality attributes, such as reusability, maintenance, or extensibility.

Unlike a NFR-intent, which is realized in a complex structure, FR-intent is realized
in a more simple structure called FR-structure [14]. Fig. 4 left part illustrate the FR-
structure and its corresponding NFR-structure of Strategy design pattern. In Fig. 4 right
part, a new role Strategy is defined to declare an interface for implementing algorithms.
Essentially, NFR-structure is an extension of FR-structure designed to satisfy the asso-
ciated NFR-intent. The extension plays an important role in helping us transfer a basic
model to an extension model that is compatible with the NFR-structure.

Fig. 4. FR- and NFR-structure of Strategy design pattern.

In this step, we verify the design patterns by examining if the structure can satisfy the
NFR-intent. Since we have defined a deployed design pattern is declared to be utilized if
the original design purpose can be met as the software evolves. The utilization of a design
pattern is evaluated according to the degree of satisfaction of non-functional requirements.
The kinds of design patterns is classified as quality-improver.

3.3 Expected Utilization Definition

In the previous step, the quality-improver patterns are examined if the structure can
satisfy the NFR-intent. To verify the quality contribution of deployed design patterns
in software design, the patterns should be inspected over its evolution according to their
expected utilization. The expected utilization of a deployed design pattern is defined to
be the improved operation over the pattern deployment evolution.

Take Strategy pattern as an example, the functional intent of the Strategy pattern is
for an object class to use an algorithm to resolve a specific problem. The non-functional
intent of the Strategy pattern is to easily replace a new one algorithm for enhancing exten-
sibility. By observing the non-functional intent, we can identify the utilization of Strategy



60 NIEN-LIN HSUEH

pattern can be satisfied by adding ConcreteStrategy class with a new algorithm or remov-
ing ConcreteStrategy class with the unnecessary algorithm.

3.4 Pattern Application Analysis

In the previous section, a deployed quality-improver design pattern is declared to be
utilized if the original design purpose can be met as the software evolves. In order to
inspect whether the deployed quality-improver design patterns can meet the definitions
of expected utilization. We have to define the structure of pattern application context in
software design.

Pattern Application Context is to describe an application context design pattern dp
in a design D. Design D includes a design element element and a participation role r. We
define a PAC as:

PAC(d p,D) = {< element,r >}. (1)

For example, we may apply a Strategy pattern in a design for data compression. The
Strategy pattern contains design elements DataCompression, CompressionTool, RAR and
ZIP which play the roles of Context, Strategy and Concrete Strategy, respectively. The
PAC of Strategy pattern in a design D can be defined as:

AC(Strategy,D) = {< DataCompression,RC >,

<CompressionTool,RS >, (2)
< RAR,RCS >,< ZIP,RCS >},

where RC, RS, RCS denotes the role of Context, Strategy, Concrete Strategy respec-
tively.

3.5 Utilization Analysis of Pattern Application

According to the definition of expected utilization of deployed quality-improver de-
sign patterns and the definition of pattern application context in software design. We can
determine a deployed quality-improver design pattern is utilized in software evolution if
its pattern deployment can meet the expected pattern utilization.

Expected Pattern Utilization of a quality improver pattern is defined to describe the
expected application utilization context of a pattern in a software evolution. A EPU is
defined as:

EPU(d p) = {< role,operator >}. (3)

For a design pattern, role is the element in a design pattern dp and operator is the expected
operation applied to a design when conducting the pattern. The operator may be add (+)
or remove (-). Take Strategy pattern for example, we expect to add a new component
or remove an existing component without modifying other design elements. In other
words, we expect to add/remove a design element which plays the “Concrete Strategy”
role to/from the design. Thus, we can define the EPU of Strategy pattern as:

EPU(Strategy) = {< RCS,+>,< RCS,−>}. (4)

Again, the RCS denotes for the role of Concrete Strategy.
According to the definition of PAC and EPU, a design pattern is declared to be uti-

lized when its PAC evolves conform to the EPU. We define the predicate utilized(dp,



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 61

Fig. 5. Utilized pattern application.

D j+1) to represent if a design pattern dp is utilized at certain version D j+1. The formal
definition is as below:

utilized(dp, D j+1)⇔
∃ D j,∆(PAC(dp, D j),PAC(dp, D j+1)) (5)

conforms to EPU(dp),

where ∆(PAC(dp, D j),PAC(dp, D j+1)) denotes the difference between PAC(dp, D j) and
PAC(dp, D j+1). The design D j and D j+1 deploy the same design pattern dp. As presented
in Fig. 5, the design D j deploys a Strategy pattern. The intent behind the application of
applying a Strategy pattern is to provide flexible alternatives to inheritance to combine
class behavior with new functionalities [9]. Adding “7-zip”, a data compression tool,
in a later version of D j+1, is to utilize the design pattern Strategy to satisfy the quality
requirement of the extensibility.

The utilization analysis is to calculate the percentage of utilization of a design pat-
tern’s application in a software evolution. A higher percentage means frequent pattern ap-
plication and implies greater contribution to the evolution. However, it is hard to identify
that the deployed application is useful or not. It relies on the developers’ active intervene.
The degree of utilization over a period of evolution (denoted as DoU) can be defined as:

DoU =
#o f utilized applications

#o f patternevolution
(6)

The DoU can help us understand the utilized status of design pattern application. Take
Fig. 6 as an example. There are eight versions (V1-V8) and five design pattern instances
(d p1-d p5) for that software. The black triangle means a design pattern is deployed at that
version. “X” means that the design pattern is removed from that version. The number
of utilized applications includes the counts of changes between software versions. The
number of evolution is the total number of versions minus one. A design pattern instance
d p1 is deployed at V1 and stays alive consecutively for eight versions. The number of
evolution is seven and the number of utilized applications is two for (V3-V4) and (V4-
V5). The DoU of d p1 is 2/7. Pattern instance d p2 is deployed at V1 and stays alive
consecutively for eight versions. The number of evolution is seven and the number of
utilized applications is three for (V3-V4), (V4-V5) and (V6-V7). The DoU of d p2 is 3/7.
Pattern instance d p3 is deployed at V3 and stays alive consecutively for six versions. The
number of evolution is five and the number of utilized applications is one for (V4-V5). The
DoU of d p3 is 1/5. Pattern instance d p4 is removed after two versions. The number of
evolution is two and the number of utilized application is one for (V3-V4). So the DoU of
d p4 is 1/2. Pattern instance d p5 is not utilized at any version. The DoU of d p5 is 0/5.



62 NIEN-LIN HSUEH

Fig. 6. Utilization analysis of five instances during eight versions.

4. SYSTEM DESIGN AND EXPERIMENTAL RESULTS

The emergence of open source software has changed the way of researches on soft-
ware quality. The open source software source code and the associated data are archived
in the version control system for researchers to evaluate software quality in a transparent
way. We consider fifteen open source software which had developed for a long period of
time and through a certain versions of release for our experiment evaluation.

4.1 Context Description

The context of this study consists of fifteen OSS projects. Table 2 lists the basic
project information of these evaluated OSS projects including the project name, the num-
ber of evolution, the versions and the development time interval.

JHotDraw is a two-dimensional graphics framework for structured drawing editors
that is written in Java. JHotDraw is a Java GUI framework for technical and structured
Graphics. It has been developed as a “design exercise” but is already quite powerful.
Its design relies heavily on some well-known design patterns. JHotDraw is a popular
evaluated software in many researches [1, 21, 22, 28]. It is based on Erich Gamma’s
JHotDraw, which is copyright 1996, 1997 by IFA Informatik and Erich Gamma.

JUnit is also a popular evaluated project in some researches [22, 28]. JUnit is a sim-
ple framework for writing and running automated tests. As a political gesture, it celebrates
programmers testing their own software. Like JHotDraw as a graphic tool, FreeMind is a
premier free mind-mapping software which is written in Java language.

We randomly choose other 12 open source projects including HtmlUnit, Jaxe, JCon-
vert, jEdit, Jena, jGnash, jMemorize, LatexDraw, PDFsam, Pixelitor, TuxGuitar and
Weka. HtmlUnit is a “GUI-Less browser for Java programs”, which allows high-level
manipulation of web pages, such as filling forms and clicking links. Jaxe is a free Java
XML editor with a configurable GUI, using XML schemas for validation and XSL for
exports in HTML or XML. JConvert is a free unit conversion program that has a friendly
user interface and can also be used with external applications.

JEdit is a multi-platform mature programmer’s text editor which is written in Java.
Jena is a Java toolkit for developing semantic web applications based on W3C recommen-
dations for RDF and OWL. It provides an RDF API; ARP, an RDF parser; SPARQL, the
W3C RDF query language; an OWL API; and rule-based inference for RDFS and OWL.
JGnash is a cross platform personal finance application written in Java. JMemorize is



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 63

written in Java and uses Leitner flashcards to make memorizing facts not only more effi-
cient but also more fun. JMemorize manages your learn progress and features categories,
Unicode flashcard texts, statistics and an intuitive interface.

LatexDraw is a multi-platform graphical drawing editor for LaTeX which can be
used to generate PSTricks code and directly create PDF or PS pictures. LaTeXDraw is
developed in Java and runs on top of Linux, Windows, and Mac OS X. PDFsam (PDF
Split and Merge) is an easy to use tool to merge and split PDF documents. The GUI is
written in Java Swing and it provides functions to select files and set options.Pixelitor is a
free and open source image editing software that supports layers, image effects, multiple
undo. TuxGuitar is a multitrack guitar tablature editor and player written in Java-SWT.
It can open GuitarPro, PowerTab and TablEdit files. Weka is a collection of machine
learning algorithms for solving real-world data mining problems. It is written in Java and
runs on almost any platform. The algorithms can either be applied directly to a dataset or
called from your own Java code.

4.2 System Design and Application Approach

In this study, we develop a web-based tool Pattern Utilization Analyzer (PUA) to
demonstrate our proposed approach. Fig. 7 shows the system architecture of our devel-
oped tool PUA. There are three system modules for PUA including version control, PAC
and EPU modules. PUA applies a pattern detection tool, developed by Nikolaos Tsan-
talis [29], to detect the pattern application in software source code. The version control
module is designed for managing the collected source code. The PAC module is designed
for collecting the pattern application context for different design patterns after applying
design pattern detection tool. The EPU module is for verifying if the PAC conforms to
the EPU between consecutive versions of each OSS project.

In the following, we introduce the processes to apply our tool and our approach. The

Table 2. Evaluated OSS projects information.
Project Name # of Evolution Versions Time Interval

FreeMind 16 0.0.2-0.9.0 June 2000 to February 2011

HtmlUnit 28 1.0.0-2.9.0 May 2002 to August 2011

Jaxe 38 1.0-3.5 June 2002 to June 2011

JConvert 9 1.0.0-1.1.0 August 2007 to May 2011

JEdit 27 2.3-4.5.1 January 2000 to March 2012

Jena 17 2.0-2.6.4 August 2003 to December 2010

JGnash 26 1.0.1-1.10.5 January 2003 to March 2006

JHotDraw 8 5.2-7.6 February 2001 to January 2011

JMemorize 12 0.7.0-1.3.0 October 2004 to March 2008

JUnit 19 3.4.0-4.10.0 December 2000 to September 2011

LatexDraw 24 1.0.2-2.0.8 January 2006 to March 2010

PDFsam 14 1.0.0-2.2.1 August 2007 to July 2012

Pixelitor 34 0.1.0-1.1.2 November 2009 to November 2010

TuxGuitar 11 0.2-1.2 June 2006 to November 2009

Weka 13 3.0.1-3.7.5 February 2002 to August 2012



64 NIEN-LIN HSUEH

Fig. 7. System architecture of Pattern Utilization Analyzer.

steps are accompanied with a real case of JHotDraw open source project and Observer
pattern.

Step 1: Collecting source code files. The first step is to collect source code files of
JHotDraw software. We collect them from the SourceForge web site. Those files are then
imported to our PUA tool and are managed by the version control module.

Step 2: Detecting deployed design patterns in the software. The second step is to
detect the deployed patterns in each version of the collected OSS projects. The tool iden-
tifies design patterns by using a graph-matching based approach proposed by Tsantalis
etal. [28], which is based on similarity scoring between graph vertexes. The tool can de-
tect design patterns for: Creational design patterns (Factory Method, Prototype), Struc-
tural design patterns (Adapter-Command, Composite, Decorator) and Behavioral design
patterns (Observer, State-Strategy, Template method, Visitor).

The detected results of each version are managed by the version control module of
the PUA. The PAC module stores the defined context of each design pattern and the EPU
module identifies whether the deployed pattern conforms the related EPU.

Step 3: Performing utilization analysis by the PUA. In this step, the utilization anal-
ysis of design patterns in the evolution are evaluated by the detected design patterns of
each version of selected open source software. A design pattern is declared to be utilized
when its PAC evolves conforms to the EPU. The DoU is evaluated by the PAC and EPU
modules of PUA.



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 65

Fig. 8. The analysis results of Observer pattern for JHotDraw.

Step 4: Evaluating the DoU of design patterns in software evolution. In the final
step, the analysis results are generated to show the degree of utilization of each deployed
design pattern in the evolution.

In Fig. 8, there are six Observer design pattern instances (d p1-d p6) deployed for
version 5.2, 5.3, 5.4b1, 5.4b2 and 6.0b1 of JHotDraw software. A design pattern d p1 is
deployed at version 5.2 and stays alive consecutively for five versions. The number of
evolution is four and the number of utilized application is one for version 5.3 to 5.4b1.
The DoU of d p1 is 1/4.

Patterns d p2, d p3 and d p4 are all deployed at version 5.2 and stays alive consecu-
tively till version 6.0b1. The number of evolution is four for each pattern instance and
the number of utilized applications are zero, three and one for d p2, d p3 and d p4. The
evaluated DoU of d p2, d p3 and d p4 is 0/4, 3/4 and 1/4 respectively.

Pattern instances d p5 and d p6 are both deployed at version 5.3 and stays alive con-
secutively till version 6.0b1. The number of evolution is three for each pattern and the
number of utilized applications is one and zero for d p5 and d p6. The DoU of d p5 and
d p6 is 1/3 and 0/3, respectively.

4.3 Experimental Results

Table 3 shows the DoU experimental results for the fifteen open source projects.
Abbreviations of Design Pattern column refers to the following: FM=Factory Method,
P=Prototype, AC=Adapter-Command, C=Composite, D=Decorator, O=Observer, SS=
State-Strategy, TM=Template Method, V=Visitor.

The experimental results show that most of the DoU results are universally not as
high as expected in comparison with the maximum value 0.35. The blank field indicates
the relative pattern is not deployed in the project and the zero value means the pattern
is deployed but not utilized. Referring to Table 3, we can observe the design patterns
are commonly utilized in the projects as Jena, JGnash, JHotDraw and JMemorize. The
JHotDraw project performs well than the other three projects. The highest DoU among
these projects and patterns is 0.350 of Observer pattern for the JHotDraw project.

For the FreeMind project, the evaluated results are relatively higher than all the other
projects. Prototype, Command and Visitor patterns are not deployed in FreeMind project
and Decorator, Observer and State-Strategy patterns are performed well as the DoU val-
ues are larger than 0.3. HtmlUnit is another project that the design patterns are commonly
deployed in the project. Composite and Visitor patterns are not deployed in HtmlUnit
project. The highest DoU value is 0.196 of Decorator pattern.



66 NIEN-LIN HSUEH

The DoU evaluation results are poorly performed in Jaxe, JConvert and JEdit. There
are also few patterns utilized in these three projects. Adapter-Command pattern is utilized
in Jaxe and JEdit projects. State-Strategy pattern pair is utilized in Jaxe and JConvert
projects. Template method pattern is utilized in JConvert.

Composite pattern performs better than other patterns for LatexDraw project. Fac-
tory Method pattern plays an important role for TuxGuitar project. For Weka, the State-
Strategy pattern pair is the highest utilized pattern pair. There are only three patterns
deployed in PDFsam project but only State-Strategy pattern pair is utilized. The DoU
results are relatively low or not applicable for JUnit and Pixelitor projects.

5. ANALYSIS AND DISCUSSION

The deployment of design patterns is expected to enhance the design flexibility to
reduce the subsequent maintenance effort. But the experimental results reveal that the
DoU results are not as good as expected. Further statistical analysis is conducted to
investigate the following research questions.

5.1 Research Questions

RQ1: Is there any statistical difference between the DoU of deployed patterns and
their type?

Programmers deploy design patterns and wish to reuse them in subsequent designs.
The DoU should be higher for the deployed design patterns if they were correctly de-
ployed and effectively utilized in the software evolution. This question is concerned with
investigating whether there will be significant differences between the utilization of de-
ployed design patterns and their type.

Table 3. DoU results of evaluated open source projects.
FM P AC C D O SS TM V

FreeMind 0.161 0.165 0.333 0.333 0.301 0.263

HtmlUnit 0.082 0 0.042 0.196 0.032 0.129 0.101

Jaxe 0 0.007 0 0 0.014 0

JConvert 0 0 0.158 0.125

JEdit 0.091 0

Jena 0.056 0.060 0.014 0.056 0.076 0.071 0.093 0.047 0

JGnash 0.012 0.001 0.023 0 0.023 0.017 0.041 0.017

JHotDraw 0.143 0.004 0.044 0.063 0.162 0.350 0.176 0.104 0

JMemorize 0.010 0 0.020 0 0.010 0.040 0.030 0.030

JUnit 0 0.016 0.045 0 0 0.120 0.026

LatexDraw 0 0.005 0.058 0.261 0.174 0.073 0.075

PDFsam 0 0.029 0

Pixelitor 0.011 0 0.007 0.020 0.016 0.029

TuxGuitar 0.200 0.009 0.062 0 0.125 0.051 0.032

Weka 0.068 0 0.052 0.145 0 0.315 0.013



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 67

Fig. 9. Box plots of the DoU analysis results for different patterns.

RQ2: Is there any statistical difference between the DoU of deployed patterns and
the open source project?

The design of a project may affect the choice of deployed design patterns accord-
ing to different application domains. The DoU should be significantly different for some
specific project evaluation. This question concerns whether there will be significant dif-
ferences between the utilization of deployed design patterns and the design of open source
projects.

5.2 Relationship Between DoU and Design Patterns

To answer RQ1, a one way analysis of variance is performed to analyze the rela-
tionship between DoU and design patterns. Table 4 presents the statistical results thereof.
Fig. 9 graphically plots the results of the experiment. In this box plot, the x-axis repre-
sents the utilization on the graphical scale, and the y-axis represents the design pattern.
To complement the graphical presentation, a number of statistical results were obtained.
In all tests, a significance level of 0.05 was used.

Table 4. Statistics description: One Way ANOVA of DoU for Multiple design patterns.
SS df SS/df F-distribution P-value

Between 0.090 8 0.011 1.569 0.146

Within 0.626 87 0.007

Total 0.716 95

Null Hypothesis All pairs of patterns will have the same means (µ) to the degree of
utilization of deployed design patterns. H0: µ1 = µ2 =...= µi (where i depicted a total of i



68 NIEN-LIN HSUEH

different design patterns)

Alternate Hypothesis Each pair of patterns will have a difference mean (µ) degree of
utilization from that of the deployed design patterns. H1: µ1 6= µ2 6= ... 6= µi (where i
depicted a total of i different design patterns)

Statistical Analysis ANOVA yielded the following results. Since (p-value= 0.146 >
0.05 = α), the null hypothesis cannot be rejected, suggesting that the degree of utiliza-
tion of deployed design patterns do not depend on the type of deployed design pattern.
The DoU evaluation results do not have significant differences between different types
of design patterns and the mean values are universally less than 0.2. It indicates that the
utilization of design patterns could not meet the original expected design purposes. Possi-
ble reasons for the inference could be: (1) Although design patterns have widely varying
complexities and applicability, the deployment of design patterns in software design is
still affected by various factors, such as human habits and program comprehension [21].
(2) In software design, programmers are likely to choose the patterns with which they are
familiar. Sometimes, the structural complexity influences the willingness of programmers
to apply design patterns [30].

5.3 Relationship Between DoU and Open Source Projects

To answer RQ2, a one way analysis of variance method is used to analyze the rela-
tionship between DoU and design of open source projects. Table 5 presents the statistical
results thus obtained. Fig. 10 graphically plots results of the experiment.

The finding of a statistically significant effect in ANOVA is commonly followed up
with at least one other tests either to assess which groups differ from which other groups
or to test various other hypotheses. Follow-up tests are distinguished by whether they are
planned (a priori) or post hoc.

Table 5 presents the mean values of variables that were analyzed using an ANOVA.
The variables are then assigned a letter, provided as a superscript, based on a Scheffé con-
trast (ref. Table 6). Values that vary significantly based on the post-hoc Scheffé contrast
have different superscripts.

Table 5. Statistics description: One Way ANOVA of DoU for Multiple open source pro-
jects.

SS df SS/df F-distribution P-value

Between 0.356 14 0.025 5.704 <0.001

Within 0.361 81 0.004

Total 0.716 95

Null Hypothesis All pairs of software projects have same mean (µ) degree of utilization
of deployed design patterns. H0: µ1 = µ2 =...= µ j (where j depicted a total of j different
software projects)

Alternate Hypothesis Each pair of software projects’ deployed design patterns will
have different mean (µ) degrees of utilization. H1: µ1 6= µ2 6= ... 6= µ j (where j depicted



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 69

Fig. 10. Box plots of the DoU analysis results for different projects.

Table 6. The one-way analysis of variance (ANOVA) method with a post-hoc test.
Scheffé’s method

(I) OSS (J) OSS Group mean SD P-value 95% confidence interval
difference (I-J) Lower bound Upper bound

Jaxe 0.255833∗ 0.038531 0.001 0.06156 0.4501
Jena 0.206778∗ 0.035174 0.006 0.02943 0.38412

jGnash 0.242583∗ 0.036042 <0.001 0.06086 0.42431
FreeMind jMemorize 0.241833∗ 0.036042 <0.001 0.06011 0.42356

jUnit 0.229762∗ 0.037129 0.002 0.04256 0.41697
PDFsam 0.249667∗ 0.047191 0.028 0.01173 0.4876
Pixelitor 0.245500∗ 0.038531 0.001 0.05123 0.43977

TuxGuitar 0.190905∗ 0.037129 0.04 0.0037 0.37811
∗ Group mean difference at P-value<0.05 level is significant

a total of j different software projects)

Statistical Analysis The ANOVA-test for equality of means in the 15 software projects
yields a very small value (p-value= 0.000 < 0.05 = α), so the hypothesis of equal mean
scores of projects is rejected. Restated, the degrees of utilization of deployed design pat-
terns varied significantly among different application domain software projects. Scheffé’s
method1 subsequently applied contrasts projects in a non pairwise manner. The post-hoc
test results reveal that the FreeMind software project differs significantly from another
eight software projects.

According to the experimental results herein, in the JHotDraw project, the highest
DoU is 0.350 for the Observer pattern. In the FreeMind project the highest DoU is 0.333
1Frequently, superscript letters are used to indicate which values are significantly different using the Scheffé
method. For example, when mean values of variables that have been analyzed using an ANOVA are presented
in a table, they are assigned a different letter superscript based on a Scheffé contrast.



70 NIEN-LIN HSUEH

for the Observer and Decorator patterns, indicating that the Observer pattern is crucial
to MVC user interface design. In JHotDraw and FreeMind, Observer patterns are used
to implement the notification-listening mechanism that manages the updating of figure
visualization following changes [2]. Since the DoU values in FreeMind are commonly
higher than often exceeds those in other projects, the deployment of design patterns in the
FreeMind project is frequently examined and the design goals associated with the selected
patterns are satisfied in the evolution of the software.

5.4 Threats to Validity

This section discusses threats to validity that can affect the results reported in this
paper following a well-known template [25].

Threats to construct validity concern the relationship between theory and observa-
tion. They can be due to the evaluation performed, in particular related to design pattern
identification. We are aware that our results can be influenced by the precision and recall,
of the Tsantalis etal. tool [28]. However, in their work Tsantalis etal. [28] showed that
for JHotDraw which is the only open source project where design patterns are well doc-
umented. The precision of design pattern identification is 100% and recall is 100%. To
further inspect other researches which apply the tool to preform experiments. In the work
of Aversano etal. [1], the tool precision inspection is overall above 85%. The tool limits
the influence of false positives on our results.

Threats to internal validity can be due to the influence of external factors on the
relationship object of the study, that is, the relationship between design pattern utilization
degree and the projects and the types of design patterns. We analyzed the influence of
two external factors, that is, the project and the kind of pattern, by means of a one-way
ANOVA. The results indicate that the project factor has a significant influence and that
the pattern factor has no significant influence.

Threats to external validity are the degrees to which the results are generalizable. We
select fifteen open source software systems from different domains and different sizes.
Nevertheless, it would be desirable to analyze further systems to draw more general con-
clusions. Due to the research purpose, we consider a subset of 9 out of the 23 patterns
from the Gamma etal. catalogue which emphasize on the defined quality-improver pat-
terns in our previous work [14].

Regarding reliability validity, the evaluated source code of the fifteen software sys-
tems and the design pattern detection tool is publicly available. The experiment procedure
for the analysis is described in detail in Section 4.2, and we make raw data available to
allow for replicating statistical analysis.

6. CONCLUSION

Software is constantly evolving over time because it must meet changing require-
ments. The deployment of design patterns provides a flexible architecture that makes the
software system reusable and extensible. Although applying design patterns can improve
system quality, the utilization of their deployment must be examined.

As we mentioned, most patterns address the maintainability issues, the evaluation
should be base on all versions in its software evolution. In our study, we propose a
methodology to classify design patterns and analyze their utilization. We also develop
an evolutionary analysis method to observe the utilization of deployed design patterns be-
tween consecutive versions in the evolution instead of a single version snapshot. Experi-



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 71

ments are performed on fifteen open source software to realize the utilization of deployed
design patterns during their software evolution.

A t-test followed by ANOVA method is used to better judge if the DoU effect of
the deployed design patterns is really significant in the software evolution. The analysis
results show that the utilization of deployed design patterns does not have significant
difference among the design patterns in the evolution of software design. Most of the
deployed design patterns are not utilized against the original design, such that design
effort is less utilized. Many of these deployed design patterns are not even reused after
their initial deployment.

The innovative approach presented herein is to assess whether deployed design pat-
terns can satisfy the original design requirements. Our proposed evaluation can

• help developers know the status of deployed design pattern applications during the
project evolution;

• assist analysts to assess the status of deployed design patterns for enhancing soft-
ware maintenance actions, for example, refactoring to utilized pattern, or to remove
design pattern;

• suggest managers where to locate the problems in function planning if the require-
ment changes do not meet the original design purpose.

In future work, we plan to implement the tool as a cloud service to improve the
computation performance. We also plan to add more types of design patterns to enhance
the capability of design pattern detection. With an improved tool, we will have efficient
evaluation tool and perform experiments on more open source software systems.

REFERENCES

1. L. Aversano, L. Cerulo, and M. Di Penta, “Relationship between design patterns
defects and crosscutting concern scattering degree: an empirical study,” IET Software,
Vol. 3, 2009, pp. 395-409.

2. Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Mas-
similiano Di Penta, “An empirical study on the evolution of design patterns,” in Pro-
ceedings of the 6th Joint Meeting of European Software Engineering Conference and
ACM SIGSOFT Symposium on Foundations of Software Engineering, 2007, pp. 385-
394.

3. B. Boehm and H. In, “Identifying quality-requirement conflicts,” IEEE Software, Vol.
13, 1996, pp. 25-35.

4. L. Chung, K. Cooper, and A. Yi, “Developing adaptable software architectures using
design patterns: an nfr approach,” Computer Standards & Interfaces, Vol. 25, 2003,
pp. 253-260.

5. J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns in their applications
and compositions,” IEEE Transactions on Software Engineering, Vol. 33, 2007, pp.
433-453.

6. J. Dong, D. S. Lad, and Y. Zhao, “Dp-miner: Design pattern discovery using matrix,”
in Proceedings of the 14th Annual IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, 2007, pp. 371-380.

7. C. Ebert, “Putting requirement management into praxis: dealing with nonfunctional
requirements,” Information and Software Technology, Vol. 40, 1998, pp. 175-185.



72 NIEN-LIN HSUEH

8. M. Fowler, “Patterns,” IEEE Software, Vol. 20, 2003, pp. 56-57.
9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Software, Addison-Wesley, MA, 1994.
10. A. R. Graves and C. Czarnecki, “Design patterns for behavior-based robotics,” IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.
30, 2000, pp. 36-41.

11. D. Gross and E. Yu, “From non-functional requirements to design through patterns,”
Requirements Engineering, Vol. 6, 2001, pp. 18-36.

12. N. L. Hsueh, L. C. Wen, D. H. Ting, W. Chu, C. H. Chang, and C. S. Koong, “An
approach for evaluating the effectiveness of design patterns in software evolution,” in
Proceedings of IEEE 35th Annual Computer Software and Applications Conference,
2011, pp. 315-320.

13. N. L. Hsueh, P. H. Chu, and W. Chu, “A quantitative approach for evaluating the
quality of design patterns,” Journal of Systems and Software, Vol. 81, 2008, pp. 1430-
1439.

14. N. L. Hsueh, J. Y. Kuo, and C. C. Lin, “Object-oriented design: A goal-driven and
pattern-based approach,” Software and Systems Modeling, Vol. 8, 2009, pp. 67-84.

15. Brian Huston, “The effects of design pattern application on metric scores,” Journal
of Systems and Software, Vol. 58, 2001, pp. 261-269.

16. C. Izurieta and J. M. Bieman, “A multiple case study of design pattern decay, grime,
and rot in evolving software systems,” Software Quality Journal, Vol. 21, 2013, pp.
289-323.

17. E. Yu L. Chung, B.A. Nixon, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishing, NY, 2000.

18. J. Lee and J. Y. Kuo, “New approach to requirements trade-off analysis for complex
systems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, 1998,
pp. 551-562.

19. A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern recovery through
visual language parsing and source code analysis,” Journal of Systems and Software,
Vol. 82, 2009, pp. 1177-1193.

20. T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, “Do maintainers utilize deployed
design patterns effectively?” in Proceedings of IEEE 29th International Conference
on Software Engineering, 2007, pp. 168-177.

21. T. H. Ng, Yuen Tak Yu, S. C. Cheung, and W. K. Chan, “Human and program factors
affecting the maintenance of programs with deployed design patterns,” Information
and Software Technology, Vol. 54, 2012, pp. 99-118.

22. N. Pettersson, W. Lö andwe, and J. Nivre, “Evaluation of accuracy in design pattern
occurrence detection,” IEEE Transactions on Software Engineering, Vol. 36, 2010,
pp. 575-590.

23. L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, “A controlled exper-
iment in maintenance: comparing design patterns to simpler solutions,” IEEE Trans-
actions on Software Engineering, Vol. 27, 2001, pp. 1134-1144.

24. L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy, “Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance,” IEEE Transactions on Software Engineering, Vol. 28, 2002, pp. 595-
606.

25. R. K. Yin, Case Study Research: Design and Methods, SAGE Puclications, NY, 2002.
26. D. C. Schmidt, “Using design patterns to develop reusable object-oriented communi-

cation software,” Communications of the ACM, Vol. 38, 1995, pp. 65-74.



DESIGN PATTERN ANALYSIS WITH SOFTWARE EVOLUTION DATA 73

27. L. Tahvildari and K. Kontogiannis, “A software transformation framework for
quality-driven object-oriented re-engineering,” in Proceedings of IEEE International
Conference on Software Maintenance, 2002, pp. 596-605.

28. N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis, “Design pattern
detection using similarity scoring,” IEEE Transactions on Software Engineering, Vol.
32, 2006, pp. 896-909.

29. N. Tsantalis, “Design pattern detection using similarity scoring,” http://java.uom.-
gr/nikos/pattern-detection.html, 2011.

30. M. Vokáč, “Defect frequency and design patterns: an empirical study of industrial
code,” IEEE Transactions on Software Engineering, Vol. 30, 2004, pp. 904-917.

31. T. Winn and P. Calder, “Is this a pattern?” Software, IEEE, Vol. 19, 2002, pp. 59-66.
32. Cheng Zhang and David Budgen, “What do we know about the effectiveness of soft-

ware design patterns?” IEEE Transactions on Software Engineering, 2012, Vol. 38,
pp. 1213-1231.

33. C. Zhang and D. Budgen, “A survey of experienced user perceptions about software
design patterns,” Information and Software Technology, Vol. 55, 2013, pp. 822-835.

34. J. Zhu and P. Jossman, “Application of design patterns for object-oriented modeling
of power systems,” IEEE Transactions on Power Systems, Vol. 14, 1999, pp. 532-537.

Nien-Lin Hsueh is a Professor in the Department of Infor-
mation Engineering and Computer Science at Feng Chia Uni-
versity in Taiwan, and the Director of the Department of Infor-
mation Engineering and Computer Science at FCU since 2018.
Prof. Hsueh is currently the Chairman of of Software En-
gineering Association Taiwan (SEAT; https://www.seat.org.tw)
since 2017. His research interests include software engineer-
ing, object-oriented methodologies, software process improve-
ment, and e-learning. He was the technology consultant in the
CMMI-based process improvement project of Office of Infor-

mation Technology at Feng Chia University. He received his Ph.D. in Computer Science
from National Central University in Taiwan.


