
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 969-984 (2013) 

969  

Log Based Recovery with Low Overhead  
for Large Mobile Computing Systems* 

 
PARMEET KAUR JAGGI1 AND AWADHESH KUMAR SINGH2 

1Department of Computer Science 
Jaypee Institute of Information Technology 

NOIDA, UP 201307, India  
2Department of Computer Engineering 

National Institute of Technology 
Kurukshetra, Haryana, India 

 
The article proposes a recovery protocol for applications in large mobile computing 

environment by combining movement based checkpointing with message logging.  
Since checkpointing is expensive, the focus of the scheme is to add only a low overhead 
to the normal application execution by reducing the number of checkpoints taken by a 
mobile host. For accomplishing this, the mobile system is divided into regions and a 
checkpoint is taken once when a mobile node enters a region and at most once while it 
moves within that region. The simulation results show that the scheme works well for 
large systems where the inter region movement of mobile hosts will be less as compared 
to intra region movement The recovery scheme is free from domino effect and aims to 
reduce the number of recovery related messages exchanged over the wireless media as 
well as the size of recovery related data stored with a mobile host. We show the correct-
ness and effectiveness of our protocol in this presentation and demonstrate the simula-
tion results.   
 
Keywords: mobile hosts, checkpointing, message logging, recovery, region 
 
 

1. INTRODUCTION 
 

Distributed systems usually use checkpointing and message logging along with 
rollback recovery for providing fault tolerance. In the checkpoint-based recovery 
approach, the state of each process and the communication channel is stored onto stable 
storage i.e. checkpointed frequently during error free operation. At the time of failure, the 
system can be restored to a global and consistent checkpoint which will be a set of local 
checkpoints. There is no need to detect, log, or replay any non-deterministic events. On 
the other hand, the log based recovery schemes make it possible to continue the compu- 
tation beyond the latest checkpoint. Such schemes consider the receipt of messages by 
any process and events internal to the process as non-deterministic events. The corres- 
ponding determinants of such events are logged into stable storage during normal execu- 
tion. Checkpoints can also be taken to reduce the extent of rollback during recovery. At 
the time of recovery, the processes use the checkpoints and logged determinants to rerun 
the corresponding non-deterministic events to achieve a consistent state for the system.  

A local checkpoint is a snapshot of a local state of a process. A local state of a pro- 
cess pi is defined by the initial state of pi and the sequence of events that have occurred at 

Received May 12, 2011; revised September 26, 2011 & January 30, 2012; accepted March 18, 2012.  
Communicated by Ce-Kuen Shieh. 
* An earlier version of the work appeared in Proceedings of the 2nd International Conference on Advances in 

Communication, Networks and Computing, CNC 2011, Bangalore, India, March 10-11, 2011. 

admin
打字機文字
DOI:10.1688/JISE.2013.29.5.10



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

970 

 

pi. These events could be internal to pi or the sending and receiving of messages from 
other processes by pi. In a distributed system with N processes, a global checkpoint 
corresponds to a global state of the system and is formed by a set of local checkpoints, 
one from each process in the system. A global state is consistent if it denotes a state that 
could have been reached in the execution of the system. When considering the con- 
sistency of a global checkpoint G, we take into account a special category of messages 
called the orphan messages. These are the messages that have been recorded as delivered 
in G but not recorded as sent. A global checkpoint G is consistent only if there is no 
orphan message with respect to it i.e. there is none such message that is sent by a process 
after taking its local checkpoint but is received by another process before taking its local 
checkpoint. Thus an arbitrary set of local checkpoints at processes may not form a con- 
sistent global checkpoint. In order to solve the problem of capturing a consistent global 
state of a distributed system, Lamport’s happened before relation [3], , is used to cap- 
ture the causal relationships between events. Lamport’s happened before relation [3] on 
events, , is defined for events a, b and c as;   

   
 a  b if a and b are within the same process and a occurred before b, 
 a  b if a is the send event of a message and b is the corresponding receive event of 

the same message by some other process, 
 if a  b and b  c then a  c.  
 
Each checkpoint of a process is assigned a unique sequence number. Let Ci,k (0  i  N  
1, k  0) denote the kth checkpoint at a process pi. If S(m) is the send and R(m) is the 
receive event of a message m, then S(m)  Ci,k if m was sent by pi before taking Ci,k and 
R(m)  Cj,l if m was received and processed by a process pj before taking Cj.l. A global 
checkpoint G is a set of checkpoints and may be defined as 

G = {0iN-1i Ci,k} and is consistent if it satisfies the following condition:  
 
m: if i: R(m)  Ci,k then j: S(m)  Cj,k. (1) 
 
The rollback recovery protocols based on checkpointing and message logging for 

wired distributed systems are not directly applicable to mobile computing systems due to 
the differences in the environment in which these systems operate. In a mobile com- 
puting system the mobile hosts face the additional constraints of limited battery power 
and data storage. Their location is not fixed and it may happen that a mobile host 
recovers in a cell different from which it crashed in. The mobile devices may even lose 
connection with other systems voluntarily or involuntarily. [1] Due to the above reasons, 
fault tolerance schemes for the mobile computing systems should meet additional con- 
ditions as compared to the distributed systems with only fixed hosts. A mobile host (MH) 
needs to be located before a message can be delivered to it. The recovery procedure 
needs to be aware of the location of the mobile device to reduce the ‘search cost’ [2]. 
Some nodes may not be available at the time of recovery. The recovery of the application 
state should not be affected by the unavailability of some nodes. The data storage on the 
mobile hosts is limited, so usually the storage at Base Transceiver Station (BTS) in 
mobile computing systems is used for storing the checkpoints and message logs of MHs 
in its cell. However the bandwidth of the wireless link between the MH and the BTS is 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

971

 

Fig. 1. A region. 

relatively less than that of the fixed links in the static network. A recovery protocol that 
reduces the size of messages stored on the mobile hosts or decreases the number of 
messages passed over the wireless media will be efficient [2].  

In our work, we employ movement based checkpointing and sender based message 
logging for the consistent recovery of a mobile host subsequent to a failure. The recovery 
protocol is free from domino effect as the global checkpoint is taken in a coordinated 
fashion. We define the parameters Checkpoint Expense and Control Expense to evaluate 
the overhead caused to normal application execution by our recovery scheme. A pre- 
liminary version of the work presented here has appeared in [4]. This paper is organized 
as follows. The system model is described in the next section. Related work done in the 
area of message logging is discussed in the subsequent section. Then we present the 
proposed message logging, checkpointing and recovery protocols for mobile computing 
systems. Storage management issues at the BTS are discussed. We evaluate our protocol 
to compare with other contemporary protocols and give its proof of correctness. Finally 
we conclude the presentation.    

2. SYSTEM MODEL 

We consider a typical mobile computing environment consisting of mobile hosts 
and a wired network of some fixed computers. The fixed host may be a regular host or a 
Base Transceiver Station (BTS), also referred to as the Mobile Support Station. The 
communication between the MHs and the wired network takes place through the base 
transceiver stations. A Base Transceiver Station manages the mobile hosts within its cell. 
A cell is defined as the geographical area covered by a BTS. To communicate with an 
MH that is not in the same cell, the source MH sends a message to its local BTS using 
wireless links. This BTS forwards the message over the fixed or wired network to the 
BTS of the destination MH. The receiving BTS sends the message to the destination MH 
over the wireless media.  

It is assumed that each MH runs a single process and the processes are fail-stop. We 
use the terms node, host and process interchangeably. The processes communicate with 
each other only by exchanging messages. The underlying fixed network is FIFO, asyn- 
chronous and reliable with unpredictable but finite transmission delays. No message will 
be lost in the channel. The mobile hosts may move between cells, thus, necessitating a 
transfer of control from one mobile support station to another. A number of BTSs are 

 

    RCS 

BTS IBTS BTS 

MH MH MH

 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

972 

 

controlled by a single switch, the Mobile Switching Centre (MSC).We define a region as 
the set of all BTSs controlled by a MSC as shown in Fig. 1. The concept of a region is 
used for the mobile environment such that a given fixed host keeps track of the mobile 
hosts present in its region. This reduces the cost to locate any mobile device as the region 
based hierarchical approach helps us to decrease the recovery related information being 
carried by the MH at any given time.  

3. RELATED WORKS 

Log-based rollback-recovery (also referred to as the message logging) protocols 
ensure that there are no orphan processes in the system after the recovery process. There 
will not remain any process whose state depends on a nondeterministic event that cannot 
be reproduced during recovery. Various protocols differ in the failure-free performance 
overhead, number of messages exchanged, the recovery process and garbage collection. 
There has been substantial amount of work done in the past to achieve an efficient 
scheme for recovery of applications in the mobile computing systems. Some of the work 
involves only checkpoints, while others employ message logging. 

The work presented in [1] describes an uncoordinated checkpointing scheme for 
mobile hosts where multiple MHs can arrive at a global consistent checkpoint by using 
application messages and without extra coordination messages. An MH checkpoints local 
state whenever it moves to a new cell, prior to disconnecting from the network or when 
required by the protocol. The application messages are piggybacked with control infor- 
mation. The checkpointing algorithm can select a set of local checkpoints which form a 
consistent global checkpoint and obtain the location of these local checkpoints. However, 
this paper does not describe how failure recovery is achieved. A failure recovery scheme 
for mobile database applications based on movement-based checkpointing and logging is 
employed in [5]. A checkpoint is taken only after a threshold of mobility handoffs has 
been exceeded. The optimal threshold is determined dynamically. But this paper doesn’t 
consider the case where a mobile host may not be moving much within cells. The pro- 
tocol described by [6] uses time to indirectly coordinate the creation of new global state 
without the use of message exchanges. A hybrid checkpoint recovery scheme is proposed 
in [7]. The fixed hosts take a coordinated checkpoint while the mobile stations take local 
checkpoints asynchronously. A mobile host leaves an agent on every MSS it registers 
with. These agents help in achieving a consistent global state for the system.  

A detailed study of pessimistic, optimistic and causal message logging protocols is 
provided in [8]. The consistency requirement of the system after recovery is expressed in 
the terms of orphan processes and an always-no-orphans condition is derived. A recovery 
scheme utilizing independent checkpointing and optimistic message logging for reliable 
as well as unreliable systems is proposed in [9]. A causal message logging protocol with 
independent checkpointing for mobile nodes is presented in [10]. It deals with the con- 
straints of the mobile nodes and describes a low-cost failure-free mechanism for check- 
pointing. A mobile node only maintains the latest checkpoint of each process during its 
handoff process. The protocol uses two garbage collection schemes to remove log 
information of mobile nodes.  

Three sources of overhead due to message logging have been identified in [11] 
Firstly, each message needs to be copied to the local memory of the process. Secondly, 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

973

 

the volatile log is regularly flushed to stable storage to free up space. Thirdly, message 
logging nearly doubles the communication bandwidth required to run the application for 
systems that implement stable storage via a highly available file system accessible 
through the network. The authors consider sender based logging more efficient than 
receiver-based logging because the copying of log to stable storage can take place after 
sending the message over the network. Additionally, it is suggested that by combining 
the message logging with the implementation of the communication protocol, the over- 
head of logging can be removed. The authors in [12] show that the sender based message 
logging technique has a very low overhead in providing fault tolerance in distributed 
systems. Further, it has been shown in [13] that the failure-free performance of coordi- 
nated checkpointing and message logging is better than of uncoordinated checkpointing 
and message logging. The work in [14] presents a communication-induced checkpointing 
protocol and an asynchronous recovery scheme. The recovery protocol uses selective 
message logging at the mobile support station to handle the messages lost due to rollback. 
Recently, fault tolerance schemes employing checkpointing and message logging in 
mobile computing systems have been studied and analyzed in [15, 16]. The authors have 
described the challenges due to the mobile environment and compared the application of 
coordinated, uncoordinated, communication induced and log based checkpointing proto- 
cols in such systems.  

4. PROPOSED SCHEME 

The scheme proposed in this paper employs sender based message logging along 
with movement based checkpointing to reduce the number of checkpoints taken by a 
mobile host. The mobility of a node is used for deciding when it needs to take a 
checkpoint. We utilize the storage at a Base Transceiver Station to store the checkpoints 
and message logs of the mobile hosts. Moreover sender based logging scheme avoids the 
extra copying of the message to the BTS. If the message logging is combined with the 
underlying communication protocol, then no extra overhead is placed for logging the 
messages at the sender BTS. The size of the information stored at the mobile host is kept 
at a low as compared to [5, 9] and few messages are exchanged via the wireless media. 
At most one checkpoint is required to be stored at a BTS per MH. 

 We define a region as the set of all BTSs controlled by a MSC.A fixed host is 
introduced as the Regional Coordinator System (RCS) for a region. This RCS may be the 
MSC or any other fixed host specifically designated for this purpose. An MH entering 
the cell of a BTS is registered with that BTS. However, the first BTS with which the 
mobile host registers when it enters a region is designated as the InitialBTS (IBTS). 
When a mobile host moves to a new region, the first BTS with which it registers 
becomes the new IBTS for the MH. The IBTS will be responsible for managing the 
message log of the MH till the MH is in the same region. In addition to the message log, 
the IBTS also maintains a list of processes from which the MH has received messages 
since the last checkpoint. This list is designated as RCVD_LIST. 

The RCS maintains a list of the mobile hosts in the region at any given time by 
using a data structure, CURRENT_REGISTRATIONS, of the form <MH, current BTS 
of the MH>. This data structure has to be updated by a BTS when an MH registers with it. 
An MH identifies itself to any BTS with <own MH id, id of its initial BTS of the region, 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

974 

 

id of its previous BTS>. The size of this data stored at the MH is less than storage 
required at the MH in protocols like [5, 9] where the entire log set, containing a list of all 
the previous BTSs after the last checkpoint, is stored at the MH. We use a log unification 
scheme such that the complete list of BTSs with which the MH has registered after the 
last checkpoint need not be stored with the MH. The message logging and unification 
scheme is described next.  

 
4.1 Message Logging 
 
(1) When an MH enters a network 

Action taken by an MH 
 MH registers with a BTS. As there is no previous BTS entry in its own data struc-

ture, the current BTS becomes its IBTS for the current region. 
 The MH updates its own data structure to denote the current BTS as its IBTS. 
Action taken by the IBTS 
 IBTS updates the CURRENT_REGISTRATIONS data structure at the RCS to in-

form that the MH is currently registered with it. 
 Further messages being sent by the MH are logged at the IBTS. No additional 

work needs to be done for this logging because the messages are sent through the 
BTS only. The senders of any messages destined to the MH are put in the corres- 
ponding RCVD_LIST. 

(2) When there is a handoff from the IBTS to another BTS within the same region. 
Action taken by the MH 
 The MH updates its own data structure to save the id of the previous BTS, which 

is the IBTS in this case. 
Action taken by the IBTS 
 A tentative checkpoint is taken at the IBTS.   
Action taken by the current BTS 
 The current BTS updates the entry for the MH at the RCS to show that the MH is 

registered with it. 
 Further messages sent by the MH are logged at its current BTS using sender based 

logging and the senders of the messages received by the BTS destined for the MH 
are saved in the corresponding RCVD_LIST. 

(3) When there is a handoff from any BTS to another BTS within the same region. Con-
sidering the handoff pattern of an MH within a region like.  
 
IBTS  BTSi  BTSj  BTSk  

 
Say the MH has moved from BTSj to BTSk, 
Action taken by the MH 
 The MH updates its own data structure to show the id of the previous BTS. Here 

the MH will make BTSj its previous BTS.     
Action taken by the current BTS 
 If the previous BTS as identified by the MH in the handoff pattern is the IBTS, 

then no control message is passed. 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

975

 

 But if the previous BTS as identified by the MH in the handoff pattern is not the 
IBTS, then the current BTS sends a delete_log message to the previous BTS. So in 
this case, BTSk sends a delete log message to BTSj. 

 The current BTS updates the CURRENT_REGISTRATIONS at the RCS to in-
form the presence of the MH with it. 

Action taken by the previous BTS 
 On receiving the delete_log message, the previous BTS then appends its log and 

the RCVD_LIST for the MH at IBTS and deletes its own copy of the log and the 
RCVD_LIST. In this case, BTSj appends its log for the MH to the IBTS and de-
letes its own copy of the log and the RCVD_LIST. 

 
As a special case, we consider the scenario that the next BTS with which a mobile 

host is registering is the same as its previous BTS. In such a case, the present log and the 
RCVD_LIST are appended to previous’ log and RCVD_LIST for the MH and then own 
copy is deleted. Thus the next BTS will not have an entry for the previous BTS. Thus, 
whatever be the movement pattern of an MH within a region, at a given instant only the 
message logs at the current and previous BTS are not available at the IBTS. The message 
logging ensures that the log at any other BTS is logged at the IBTS as the MH moves. 
 
(4) When there is a handoff from a BTS in one region to a BTS outside the region. 

The first BTS with which it registers becomes the initial BTS. 
Action taken by the MH 
 The MH updates its data structure to show that the id of the IBTS for the region. 

Previous BTS is set to null. 
Action taken by the new IBTS 
 A tentative checkpoint is taken at this BTS which then logs further messages be-

ing sent by the MH and maintains the RCVD_LIST for the MH.    
 The IBTS stores the record of this MH at the RCS of this region.   
Action taken in the previous region 
 The previous IBTS deletes its tentative checkpoint for the MH.   
 The RCS of the previous region deletes the record of this MH in its CURRENT_ 

REGISTRATIONS.     
Hence, at any time at most one tentative checkpoint is maintained for an MH.  

 
(5) On disconnection of an MH from the current BTS 

If an MH wants to disconnect voluntarily, it sends a disconnect message to its cur-
rent BTS. The BTS will save this information till either the MH reconnects again with 
the same BTS or a checkpoint request reaches the BTS. While the MH is disconnected, if 
a checkpoint request reaches the BTS, it participates in the message log unification for 
the MH When the MH reconnects; the BTS changes its status to connect. 

 
4.2 Global Checkpoint 

 
A global checkpoint is taken in a coordinated fashion and each such checkpoint is 

assigned a unique sequence number. The checkpointing can be initiated by any RCS as 
follows: 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

976 

 

 An RCS sends a checkpoint request to all the other RCSs and fixed hosts F1…Fn. 
Actions taken on receipt of this request 
 Fixed hosts take tentative local checkpoints and return a message to inform when 

they have taken their check points.  
 Every RCS sends a message to its BTSs. 
 The current BTS of the mobile host sends a message to previous BTS of the MH to 

append the log and the RCVD_LIST for this MH at the initial BTS of the MH. 
 The present BTS also unifies its own message log and the RCVD_LIST at the ini-

tial BTS. 
 A reply is then sent back to the initiator RCS.   
Actions taken on receipt of reply from the hosts 
 The RCS asks the hosts to finalize the checkpoints. 
 The fixed hosts and the BTSs make their checkpoints permanent. 

 
4.3 Storage Management at the IBTS  

 
If many mobile hosts register with the same BTS for the first time in a region, that 

BTS may get overloaded and exhaust its storage. To avoid overloading of any BTS 
acting as the IBTS, the IBTS for any given MH can be reallocated. Any IBTS can send a 
Relocate_MH (list of MHs) message to the RCS of the region. The RCS finds the BTS 
with minimum number of entries in its CURRENT_REGISTRATIONS. For every MH 
included in the Relocate_MH message sent to the RCS, the log is unified at the previous 
IBTS by the approach described above. A new tentative local checkpoint is taken at the 
new IBTS by using the tentative checkpoint at the previous IBTS along with the unified 
message log. Then the previous checkpoint and message log at the previous IBTS are 
discarded. This is possible even if the MH is currently disconnected. The MH will 
change its ID to reflect the allocation of the new IBTS.  
 
4.4 Handling Unreliable BTSs 

 
In mobile computing systems, each BTS broadcasts its advertisement message via 

its wired or wireless network interface every few seconds. Therefore, a RCS can detect if 
any BTS has failed. The RCS takes over the failed BTS and restores the recovery related 
information about all the MHs earlier registered with the failed BTS from its stable 
storage. After that, the RCS informs the MHs registered with the failed BTS and other 
BTSs in the region that it has replaced the failed BTS. The RCS performs the role of the 
failed BTS till it recovers and resumes normal operation. Therefore, the protocol handles 
the BTSs’ failures effectively assuming reliable RCS.  

5. RECOVERY 

The recovery related data of a process is distributed amongst its IBTS, last BTS and 
the previous to last BTS at the time of failure. This data includes the MH’s latest check- 
point and a list of processes, the RCVD_LIST, from which it had received messages after 
its latest checkpoint. The recovery related data can be located as follows: 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

977

 

 If the MH recovers in the same region in which it crashed, then the RCS of the region 
has a record of the MH and its BTS before the crash in its region. The log at that BTS 
and its previous BTS are unified at the IBTS of the MH in the region. 

 If the MH recovers in a region different from the region in which it crashed, then the 
RCS of the current region sends a locate_MH message to other RCSs. The RCS with 
the latest record of the MH informs the current RCS using a message over the fixed 
media for the recovery process.  

 
Once the recovery related data is obtained, the MH rollbacks to the latest checkpoint. 

The current BTS sends a message to each process in the RCVD_LIST to resend the 
messages sent to this MH after the latest checkpoint. As a sender based logging scheme 
is used, the processes in the RCVD_LIST have a log of the messages sent to the MH at 
their BTSs. The message log of each sender process is unified at its corresponding IBTS 
and required messages are resent to the MH. The MH plays these messages and recovers 
to a consistent state. During recovery, it may resend out messages which may have been 
earlier received at their destinations. Such messages can be discarded at the destination 
based on message sequence numbers. 

 

   
 

 

 

 

Fig. 2. Recovery process. 
 

The recovery process at process pi is shown in Fig. 2. Once the process pi needs to 
recover after the failure, it obtains its latest checkpoint and RCVD_LIST from its IBTS 
prior to failure. Then pi rollbacks to its latest checkpoint, here Ci,2, and replays the logged 
messages. Hence any process pk that received messages from pi before pi’s failure need 
not rollback. However, the message log of a process such as pj, which is in pi’s RCVD_ 
LIST is unified at its corresponding IBTS. Then the messages such as m, sent by pj after 
its latest checkpoint Cj,2 but un-received due to the roll back by pi, are resent. 

6. PERFORMANCE STUDY 

6.1 Parameters for Evaluation  
 

To evaluate the overhead caused to the application execution because of the recovery 

pi 

pj 

Ck,1 Ck,2 

Cj,1 

Ci,1 

m 

m' 

pk 

Time 

Ci,2 

Cj,2 

Failure 

Checkpoint at a  
process 

message 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

978 

 

protocol, we define two parameters as follows:   
 
Definition 1: Checkpoint Expense(Chk_exp) 

It is the increase in execution expense of a process due to a single checkpoint taken 
at a BTS. 
 
Definition 2: Control Expense(Control_exp) 

It is the increase in execution expense of a process due to the control messages ex-
changed during the checkpointing process. 
 
6.1.1 Calculation of Chk_exp 

 
A tentative checkpoint is taken at the IBTS when there is a handoff from the IBTS 

to another BTS in the same region or if the MH moves to a new region. The expense for 
taking a single tentative checkpoint = 1 * Ew; where Ew is the expense of sending a 
message on the wireless media from an MH to its BTS. The expense for unification of 
log at the IBTS by the any other BTS = 1 * Ef; where Ef is the cost of sending a message 
across a fixed network. Hence, for a single MH in one region, say Rx 

 
Chk_exp = Ew + (Nx  1) * Ef. (2) 
 

Here Nx is the number of registrations for an MH in the region Rx (this can vary from one 
region to another).  

Thus only one additional wireless message, due to recovery procedure, is passed 
only at the time of taking a tentative checkpoint at a BTS i.e. is O(k) where k is the no of 
regions in which the MH moves. 

If an MH moves in k regions, then 
 
Total_Chk_exp = k*Ew + x=1

kΣ(Nx  1)*Ef. (3) 
 

As compared to the proposed scheme, if checkpoints are taken periodically, such as in 
[9], then the Total number of checkpoints = x=1

kΣNx/t; where t is the time period between 
consecutive checkpoints.       

 
Total_Chk_exp= (x=1

kΣNx/t)* Ew (4) 
 

Further, if checkpoints are taken based on mobility rates as in [5], then Total number of 
checkpoints = x=1

kΣNx/M; where M is a factor dependent on mobility  
 
Total_Chk_exp= (x=1

kΣNx/M)* Ew. (5) 
 

If checkpoints are taken each time an MH moves out of a cell as in [1], then Total num-
ber of checkpoints = x=1

kΣNx 
 
Total_Chk_exp= (x=1

kΣNx)* Ew. (6) 
 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

979

 

Since k < x=1
kΣNx, the overhead due to the proposed scheme is lower than the other 

schemes discussed above. 
 
6.1.2 Calculation of Control_exp 

 
If Nx is the number of registrations for an MH in the region Rx, the following messages 

contribute to the Control_exp in the region Rx. 
 
 The updating of current BTS of an MH at the RCS = Nx. 
 Delete_log messages passed = Nx  3.  
 Control messages from the RCS to the BTSs in the region to take a global checkpoint 

= Nx in a region. 
 The message passed from the current to previous BTS in a region for the unification of 

log at the IBTS at the time of global checkpoint = 1.  
 The search by an RCS of the last RCS of an MH at the time of recovery = (number of 

RCSs  1) * Ef. 
 
If k is the no of regions in which the MH moves, then 

 
Control_exp = x=1

kΣ(Nx * Ef + (Nx  3) * Ef + Nx * Ef + Ef) + (number of RCSs  1) * Ef. 
 

Thus, 
 
Control_exp= x=1

kΣ((3Nx  2) * Ef) + (number of RCSs  1) * Ef.  (7) 
 

6.2 Proof of Correctness 
 

The correctness of our protocol is guaranteed by the following two theorems. 
 
Theorem 1: No orphan messages can be generated by the system. 
 
Proof: For nondeterministic event, e, of the receipt of a message at the process p, define: 
(1) Depend(e) is the set of processes affected by the nondeterministic event e. This set 

consists of p, and any process whose state depends on the event e according to Lam- 
port’s happened before relation. 

(2) Log(e) is the set of processes that have logged a copy of e’s determinant in their 
volatile memory. 

(3) Stable(e), a predicate that is true if e’s determinant is logged on stable storage.  
 

A process p becomes an orphan when p itself does not fail and p’s state depends on 
the execution of a nondeterministic event e whose determinant cannot be recovered from 
stable storage or from the volatile memory of a surviving process. Formally 

 
(e): Stable(e)  Depend(e)  Log(e). (8) 
 
This property is called the always-no-orphans consistency condition [8]. 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

980 

 

In the proposed recovery scheme, if a BTSj has logged the receipt of a message for 
an MH registered with it, then some BTSi must have logged the message content and the 
corresponding send event in its stable storage. This is because sender based pessimistic 
logging is utilized along with the communication protocol itself. Hence the determinant 
of a nondeterministic event is always available upon recovery and there can not be any 
orphan messages. Thus our protocol satisfies the always-no-orphans condition.  
 
Theorem 2: The recovery of a mobile host is consistent assuming reliable BTSs and is 
free from domino effect. 
 
Proof: The message logging scheme ensures that the message log gets unified in the 
correct sequence, as per the handoff pattern for the MH, at the IBTS. Upon recovery, the 
latest checkpoint of the MH is available at the last IBTS of the MH. This IBTS may be in 
the current region of the MH or any other region. However, the IBTS can be located and 
then the message log is unified at that IBTS. This data is sent to the current location of 
the MH. To reconstruct the state as before failure, the processes from which the MH had 
received messages prior to failure are requested to resend the messages. The MH roll- 
backs to its latest checkpoint and replays those messages to recover to a consistent state. 
Thus recovery of the MH is consistent assuming reliable BTSs. Further no other process 
is required to rollback and thus domino effect of unbounded rollback propagation is not 
possible.  
 
6.3 Comparison with Other Related Work 
 

The protocol proposed above combines movement based checkpointing with sender 
based message logging for achieving independent recovery of a mobile host. To evaluate 
the performance of the proposed recovery protocol, we have compared our scheme with 
the scheme proposed in [5], the periodic checkpointing scheme for a system with reliable 
BTSs in [9] and the communication induced checkpointing and selective message log- 
ging in [14]. Table 1 summarizes the salient features of a checkpointing and rollback 
based recovery protocol across the three schemes. 
 
6.4 Simulation Model and Results 

 
We have used a mobile computing system with the mesh cell configuration, con- 

sisting of N  N [N = {4, 5, 6}] cells where all cells are of the same size [9]. Each cell has 
eight neighboring cells and all MHs in this cell are assumed to be registered with the 
same BTS. An MH may move from one cell to another neighboring cell. We select the 
next cell for the MH’s movement out of the eight possible neighbors randomly. The time 
interval between two handoffs follows an exponential distribution with an average of 1/λh 

where λh = 0.05 as in [9]. We have simulated our scheme as well as the movement based 
scheme of [5] and a periodic checkpointing scheme such as in [9]. The interval between 
checkpoints in the scheme of [5] depends on the number of handoffs experienced by the 
MH. Each mobile host maintains a handoff counter and takes a checkpoint when the 
counter exceeds a threshold M. We use M as 3 which has been given as an optimal value 
of M in [5]. In any scheme using periodic checkpointing, such as in [9], the number of  



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

981

 

Table 1. Log based recovery schemes for mobile computing systems. 

Parameters 
Proposed 
scheme 

Movement based 
checkpointing & 

logging [5] 

Optimistic log-
ging based 
scheme [9] 

Communication 
induced check-
pointing and se-
lective message 

logging [14] 
Con-
tents 

<current 
BTS, pre-

vious BTS>

Complete set of 
BTSs with which 
the MH has reg-
istered since the 
last checkpoint 

Complete set of 
BTSs with 

which the MH 
has registered 
since the last 
checkpoint 

The BTS has a data 
structure, hist, 

which keeps track 
of the id of the BTS 

in which a given 
checkpoint of an 

MH is stored. 

Recovery 
related data 
Structure at 

the MH 

Size Less More More Nil 

MH can recover at a 
BTS different from 

where it crashed 
Yes Yes Yes Yes 

Number of BTSs 
involved in recovery 

of an MH 

Max 3 
{IBTS, 
current 

BTS, pre-
vious BTS )

All BTSs in the 
log set , the num-
ber depends on 

mobility threshold

All BTSs in the 
log set 

All BTSs in the 
array hist which 
may have some 

checkpoint related 
data of an MH 

No of BTSs to which 
recovery related 
control messages 

sent 

3 
All BTSs in the 

log set 
All BTSs in the 

log set 

All BTSs in the 
system if the MH 
recovers in a dif-
ferent cell after 

failure 
 

checkpoints depends on the frequency of checkpointing. We have used the time interval 
between checkpoints as 10 seconds for the simulation. 

Since our scheme is a movement based scheme, our simulation experiments have 
compared the number of checkpoints taken by an MH with respect to the number of hand- 
offs experienced by it. Till the time an MH is in a particular region, no checkpoints are 
taken. Only when there is a movement from one region to next, a checkpoint is taken.  
As a result of the experiments, we have observed that for MHs with less inter region 
movement, (i.e. those moving mostly between the BTSs of a region) there is a significant 
reduction in the number of checkpoints as compared to the other schemes. The scheme 
employed by [5] uses a threshold to initiate the checkpointing process. If an MH moves 
frequently, the checkpoints will be taken rapidly but if it does not move frequently, the 
size of the message log will increase at the BTS. Taking M as 3, we observe that the 
number of checkpoints increase linearly with the number of handoffs. Further, the num- 
ber of checkpoints taken in the simulated periodic scheme is independent of the move- 
ment of the MH.   

The simulation results are presented next. It can be seen in Fig. 3 that the number of 
checkpoints taken as per the proposed algorithm (with region size 4  4) is less than the 
number of checkpoints taken as per [5] with M = 3 or as compared to a periodic check- 
pointing scheme of [9]. Further, Fig. 4 demonstrates that as the region size is increased, 
the number of checkpoints taken by a mobile host decreases.  



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

982 

 

0
10
20

30
40
50

24 47 70 93

Number of handoffs
N
um

be
r 
of
 c

he
ck

po
in
ts

Our approach
(region sixe 4*4)

Movement based
checkpointing[4]

Peridic
checkpointing[8]

 
Fig. 3. Comparison of proposed approach with [5] and [9]. 

0

10

20

30

24 47 70 93
Number of handoffs

N
um

be
r 
of

 c
he

ck
po

in
ts

region size 4 X 4

region size 5 X 5

region size 6 X 6

 
Fig. 4. Effect of increase in region size on the number of checkpoints. 

7. CONCLUSION 

In this paper, we have proposed a recovery protocol for the mobile computing 
environment which adds only a low overhead to the normal application execution. An 
MH can be located by passing messages only to the fixed hosts called the RCSs, which 
are fewer in number than the MHs, over the fixed media. A checkpoint can be taken only 
by initially passing message to the current BTS of the MH. A small number of messages 
are passed over the wireless media and the size of recovery related data stored at the MH 
is lower than in many other contemporary protocols. At any given time, it is required to 
keep only one checkpoint for an MH. The recovery algorithm does not lead to domino 
effect and a failed process needs to roll back to its latest checkpoint. In large networks 
with large region size, most of the movement of the mobile node will be within its region 
itself, thus reducing the number of checkpoints that need to be taken. This observation 
has been reinforced by the simulation performed.  

REFERENCES 

1. A. Acharya and B. R. Badrinath, “Checkpointing distributed applications on mobile 
computers,” in Proceedings of the 3rd International Conference on Parallel and Dis- 
tributed Information Systems, 1994, pp. 73-80.      

2. B. R. Badrinath, A. Acharya, and T. Imielinski, “Designing distributed algorithms for 
mobile computing networks,” Computer Communications, Vol. 19, 1996, pp. 309-320.      

3. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” 
Communications of ACM, Vol. 21, 1978, pp. 558-565.     

4. A. K. Singh and P. Kaur, “Log based recovery with low overhead for mobile com-
puting systems,” in Proceedings of the 2nd International Conference on Advances in 



RECOVERY IN LARGE MOBILE COMPUTING SYSTEM 

 

983

 

Communication, Network and Computing, 2011, CCIS 142, pp. 637-642.      
5. S. E. George, I. Chen, and Y. Jin, “Movement based checkpointing and logging for 

recovery in mobile computing systems,” in Proceedings of the 5th ACM Interna-
tional Workshop on Data Engineering for Wireless and Mobile Access, 2006, pp. 51- 
58.   

6. N. Neves and W. K. Fuchs, “Adaptive recovery for mobile environments,” ACM 
Press, Vol. 40, 1997, pp. 68-74.     

7. H. Higaki and M. Takizawa, “Checkpoint recovery protocol for reliable mobile sys-
tems,” in Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems, 
1998, pp. 93-99.    

8. L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic, causal, and 
optimal,” IEEE Transactions on Software Engineering, 1998, pp. 149-159.   

9. T. Park, N. Woo, and H. Y. Yeom, “An efficient optimistic message logging scheme 
for the recoverable mobile computing systems,” IEEE Transactions on Mobile Com- 
puting, 2002, pp. 265-277.   

10. J. Ahn, S. Min, and C. Hwang, “A causal message logging protocol for mobile nodes 
in mobile computing systems,” Future Generation Computer Systems, Vol. 20, 2004, 
pp. 663-686.     

11. E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of rollback-re- 
covery protocols in message-passing systems,” ACM Computing Surveys, Vol. 34, 
2002, pp. 375-408.      

12. D. B. Johnson and W. Zwaenepoel, “Sender-based message logging,” in Proceed-
ings of the 17th International Symposium on Fault-Tolerant Computing, 1987, pp. 
14-19.       

13. E. N. Elanozahy and W. N. Zwaenepol, “On the use and implementation of message 
logging,” in Proceedings of IEEE International Symposium on Fault Tolerance Com- 
puting Systems, 1994, pp. 298-307.    

14. T. Tantikul and D. Manivannan, “A communication-induced checkpointing and 
asynchronous recovery protocol for mobile computing systems,” in Proceedings of 
the 6th International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, 2005, pp. 70-74.    

15. R. Tuli and P. Kumar,” Analysis of recent checkpointing techniques for mobile 
computing systems,” International Journal of Computer Science and Engineering 
Survey, Vol. 2, 2011, pp. 133-141.     

16. R. Garg and P. Kumar, “A review of fault tolerant checkpointing protocols for mo-
bile computing systems,” International Journal of Computer Applications, Vol. 3, 
2010, pp. 8-19.       

 
 

Parmeet Kaur Jaggi received B.E. in Computer Science and 
Engineering from P.E.C., Chandigarh, India in 1998 and M.Tech. 
in Computer Science from Kurukshetra University, India in 2008. 
She is currently working in Jaypee Institute of Information Tech- 
nology, NOIDA, India. Her research interests include fault tolerance 
and checkpointing in distributed systems. 

 



PARMEET KAUR JAGGI AND AWADHESH KUMAR SINGH 

 

984 

 

Awadhesh Kumar Singh received B.E. degree in Computer 
Science and Engineering from Gorakhpur University, Gorakhpur, 
India in 1988. He received M.E. and Ph.D. (Engineering) in the 
same area from Jadavpur University, Kolkata, India. He is an As- 
sociate Professor in Computer Engineering Department, National 
Institute of Technology, Kurukshetra, India. His current research 
interests include distributed algorithms, fault-tolerance, and mobile 
computing. 

 
 
 




