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Malware authors employ sophisticated anti-reverse engineering techniques such as 

packing, encryption, polymorphism, etc. For a packed file, when launched, the packed 
executable will reconstruct the code of the original program. The OEP (Original Entry 
Point) is the address indicating the beginning point of the original code. Previous work or 
conventional unpacking tools provide a relatively large set of OEP candidates and some-
times OEP is missing among candidates. In this paper, we present an efficient OEP de-
tection scheme for x86 Windows environments. This scheme is designed to find exact 
one OEP by using three methods. First, we enhanced Isawa et al.’s work by examining 
branch instructions. Our second method is to track the system parameters relevant to the 
main function in stack memory to refine OEP candidates. Our third method is that we 
track the startup function calls to find the installation routine for exception handling. To 
evaluate feasibility, we implemented our algorithm and then conducted experiments on 
16 commercial representative packers and 6 previous unpacking tools/schemes. Experi-
mental results show that even though our scheme produces a single OEP candidate for 
each packed file, accuracy is the highest (up to 14 times higher than the previous work).  
 
Keywords: anti-reverse engineering, malicious code analysis, code obfuscation, program 
analysis, computer security 
 
 

1. INTRODUCTION 
 

Malware is becoming more and more advanced with deploying diverse anti-reverse 
engineering techniques. According to AV-TEST [1], more than 92% of malware is com-
pressed, encrypted, or packed. Such protection techniques often cause a major inconven-
ience in malware analysis and response. 

Packing is the obfuscation method that uses compression or encryption to hide the 
original code from analysts. Packed programs cannot be statically analyzed in detail be-
cause the original program is encrypted or compressed. Dynamic analysis, e.g., analysis 
after decompressing or decrypting the packed program, can give more information. 
When the packed file is executed, first the unpacking routine reconstructs the original 
code in the memory and then transfers the control flow to the beginning point of the re-
constructed code. We call this point (the address indicating the beginning point of the 
original code) OEP (Original Entry Point). If the analyst finds the OEP, he/she can dump 
the original program in the memory for further analysis. 

The unpacker is an automatic tool to help find the OEP and dump the original pro-
gram in the memory. However, commercial unpackers have their own limitations. For 
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example, PEiD [2] gives various information for the program including entry point, 
packer name, import table address, etc. However, for the packed program it cannot find 
the OEP. Universal PE unpacker [3] is a plug-in module for IDA Pro for generic auto-
matic unpacking. Shortcomings of Universal PE unpacker is that a prior knowledge 
about the possible range of the OEP should be given. PinDemonium [4] is a generic un-
packer, which is based on Pin [5], finds OEP candidates and uses Scylla to dump the 
memory and to reconstruct the library function table used by the program. However, the 
number of OEP candidates provided by PinDemonium is large and the task of identify-
ing OEPs depends entirely on the capabilities of the malware analysts. 

In this paper, we present a new scheme for finding OEP for diverse packers. First, it 
tracks both WrittenAndExecuted (which will be explained in Section 2) addresses and 
branch instructions for finding the OEP candidates set. Then, it refines the OEP candi-
dates set by looking up the command-line parameters of the main function. Then, it 
tracks the system startup function calls up to the main function to find the SE handler 
installation routine. Finally, it regards the address closest to the SE handler as the OEP. 

To test feasibility of our scheme, we have implemented the proposed scheme and 
the previous work and then conducted experiments for OEP detection with various rep-
resentative commercial packers. Our scheme produces a single OEP candidate for each 
packed executable and nonetheless accuracy is the highest (up to 14 times higher than 
the previous work). 

The remainder of this paper is organized as follows. Section 2 explains related work 
and Section 3 describes the property of the OEP and the proposed scheme. We deal with 
implementation issues in Section 4 and show experimental results in Section 5. Section 6 
concludes the paper. 

2. RELATED WORK 
 
For malware analysis and binary code analysis, a significantly large amount of re-

search work has been done up to now [6-10]. However, topics relevant to generic un-
packing and OEP detection techniques have not drawn strong interest from academic 
researchers. In this section, we briefly explain recent research work on generic unpack-
ing and OEP detection techniques. 
 
Generic Unpacking using Entropy Analysis [11]: In [11], Jeong et al. proposed a gen-
eral unpacking mechanism for finding OEP using entropy analysis. Entropy is a measure 
of uncertainty in a series of numbers or bytes [12]. When a general executable is packed 
(encrypted or compressed), the degree of disorder in the executable increases, causing 
the entropy value to increase [12]. Entropy measurements are done by measuring the 
entropy of the memory section. Comparing with other sections having a high entropy 
value, the section having a relatively low entropy value is determined as unpacked, i.e., 
original binary code is written. The equation for obtaining the entropy value of a specific 
section x, H(x), is as follows: 
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The entropy measurement of section x is done through a statistical experiment. 
Suppose that the section x is a byte array where the length is s and that we observe each 
byte value in the array. The sample space of the experiment is a set of values that 1 byte 
can have and the event i is one of the values from 0x00 to 0xff. p(i) is the probability that 
event i occurs, that is, the probability of having the value i when observing a specific 1 
byte. The base of the log is 2 according to [12]. 

The method of finding the OEP in [11] is as follows. First, it runs the program until 
the branch (e.g., JMP, JCC, CALL, or RET) instruction is executed. Then, the program 
execution is paused, and the entropy of the target section is analyzed. If it has a low en-
tropy value but previously it had high one, this algorithm regards the target address as 
the OEP. However, if it is not, it continues to execute the next instruction. The entropy 
threshold value, which is determined to be an unpacked section, is 4.1-4.6 [11]. As in 
Section 5, experimental results show that this approach is not so accurate for finding 
OEP compared with other methods, i.e., it has high false positives/negatives. 
 
OEP Detection Method with Candidate-Sorting [13]: In [13] Isawa et al. proposed a 
new dynamic analysis scheme to identify OEP. It monitors program execution and me- 
mory writes and checks whether the code is generated at runtime or not. This method is 
divided into two parts: ‘tracking the decoding routine’ and ‘sorting the OEP candidates.’ 

Suppose that memory is divided into pages (4K Bytes). [13] uses the following 
terms. A generating page is the memory page that writes some data into another memory 
page, where this data will be executed later, and a sharing page is a memory page that 
writes some data to the generating page or the sharing page. 

This scheme has two array lists (W, X). Initially, it marks all the pages as R/X, 
where R/X means that it is possible to read and execute data on this page. First, the 
packed program is loaded into memory and then executed. A write page-fault exception 
occurs when writing data to the R/X page. Then, (src, dst) address pair for the write in-
struction is put to the array W. For this page, it changes the mark as W/NX, meaning that 
it is possible to write data but impossible to execute it. If an instruction on the W/NX 
page is subsequently executed, an executing page-fault exception will occur. For each 
exec page-fault, the corresponding address, e, is put to the array X. An exec page-fault 
exception occurred means that the instruction at e, which is being executed, was written 
before. Then, this page is changed back to R/X. We call this address (e) WrittenAndExe-
cuted throughout this paper. Array X can be viewed as the list of WrittenAndExecuted 
addresses. This marking process is continued until the packed program stops executing. 

‘Tracking the decoding routine’ is performed as follows. First, it sorts each pair of 
elements in the W array in chronological order. Then, it checks the time whether the in-
struction at the dst address is executed later by comparing the execution time of the ele-
ment address in X. If so, the page with the src address paired with the dst address is re-
garded as the generating page, judging the page and src as part of the unpacking routine 
and marking them as U. Then, again, each pair of elements in the W array is sorted in 
chronological order. If the dst address is marked U, the page with the src address of the 
pair is the sharing page and we mark the page and src as U. After the packed program 
execution is finished, we list all the addresses of the X array and all the src addresses of 
W array in chronological order. Among the listed addresses, the address in the X array, 
which is closest to the last U marked address, is selected as the optimal OEP candidates. 



GYEONG-MIN KIM, JUHYUN PARK, YUN-HWAN JANG AND YONGSU PARK 

 

890

 

‘sorting the OEP candidates’ sorts OEP candidates that are from ‘tracking the de-
coding routine,’ from the most likely to the least likely. We omit detailed algorithm for 
lack of space. 
 
PinDemonium [4]: DBI (Dynamic Binary Instrumentation) is a way to analyze the be-
havior of binary applications by inserting executable code at runtime. The PinDemonium 
[4] is the unpacker using Intel’s DBI tool, Pin. The PinDemonium uses Scylla [14] to 
dump the memory when WrittenAndExecuted occurs. It relies on the heuristic method 
for the dumped memory to judge whether unpacking has finished or not and to find the 
OEP. The heuristic methods include entropy analysis, LongJump, JumpOuterSection, 
and Yara rule. 

The entropy analysis method is to find the OEP by measuring the entropy of the 
memory section, where entropy calculation is very similar to [11] or [12]. The program 
is loaded into memory and the entropy value is calculated from how many times the byte 
values from 0x00 to 0xff appear in the memory section. If the difference between the 
entropy value measured at WrittenAndExecuted and the firstly measured entropy value 
(when loading the program into memory) is greater than the threshold, the most recently 
executed WrittenAndExecuted address is regarded as the OEP. 

LongJump is the branch such that the difference in between the current EIP and the 
previous one is above the threshold (e.g., 0x200 [4]). JumpOuterSection is the branch 
where the memory section name of the previous EIP is different from that of the current 
EIP. If the target address of JumpOuterSection or LongJump is WrittenAndExecuted, 
PinDemonium regard this as the OEP candidate. 

The Yara rules are predefined patterns for classifying malicious code, where YARA 
[15] is the tool to classify/identify malware. PinDemonium uses the Yara rules to find the 
OEP for the dumped files. Whenever WrittenAndExecuted address appears, it dumps the 
memory region and then matches the Yara rules. If there is a match found, PinDemonium 
regards this as the end of unpacking. However, this approach is unable to find the OEP if 
there is no match on unpacking stub. 
 
PolyUnpack [16]: [16] provides a behavior-based approach to automate the process of 
extracting hidden-code from unpack-executing malware. Unpack-executing malware is 
program that has an obfuscation mechanism that makes malicious parts of code look like 
data at compile-time rather than instructions, and then transforms them into executable 
code at run-time. The scheme proposed in [16] is composed of static analysis and dy-
namic analysis. First, it performs a static analysis on malware to extract the static code 
view. Then, malware is executed to perform dynamic analysis. If a new instruction se-
quence that was not found in the static code view appears in dynamic analysis, PolyUn-
pack regards this as hidden-code and automatically extracts the corresponding code 
chunk for further analysis. This approach does not require a clear prior knowledge of un- 
packing techniques applied to malware, but it has a disadvantage in that it requires con-
siderable resources for analysis compared with the static code analysis. 

3. PROPERTY OF THE OEP AND PROPOSED SCHEME 

In Section 1, we defined the OEP as the point at which the packer decompresses the  
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original executable program and passes control to it. We have learned that the OEP has 
the following property through experiments using the programs that are packed with 
various (commercial) packers. 
 
3.1 Property of the OEP 
 
(A) The system startup function calls after the OEP 

Generally, when programs written in high-level programming language are com-
piled to binary code, compiler-specific system startup functions are added. Startup func-
tions initialize resources, set up the environment, and etc. for preparing the execution of 
the main function. Comparing these system functions for the packed program and the 
original one, we observed that the function callings of two programs are identical. Also, 
all these functions are called immediate after the OEP. Hence, we can track these func-
tion calls to find the OEP. 

Fig. 1 shows the execution flow in the program, which was compiled with TDM- 
GCC and packed by UPX [17]. After the unpacking routine is completed, a series of 
system startup functions are called before the main function. 

 

 
Fig. 1. An example for the system startup functions calls after the OEP. 

 

Although it is compiler/operating system dependent, system startup functions can be 
roughly classified as follows. First, getting system environment values (e.g., process ID, 
current time, OS version, …), second, memory allocation and function pointer table ini-
tialization, third, setting application type, screen info, or file handles, forth, setting envi-
ronment variables. Table 1 shows system startup functions for major compilers (after the 
OEP is executed). This data can be used to identify the compiler and to find the SE han-
dler installation routine, which will be explained later. 

There are two representative functions that handle command-line parameters of 
main() in Microsoft compilers: __getmainargs() and __wgetmainargs(). They invoke 
command-line parsing and copies the arguments to int main(int argc, char *argv[]) back 
through the passed pointers. The __getmainargs() has five parameters: int *_Argc, char 
***_Argv, char ***_Env, int _DoWildCard, and _startupinfo *_StartInfo [18]. Among 
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them, we focus on second argument, _Argv, which is an array of strings from command- 
line parsing. For example, we can track _Argv[0], which contains the full path name of 
the target program. 

 

Table 1. System startup functions for major compilers. 
Compiler  

name 
SE Handler 
installation ProcessID, Version, Time

MemoryAlloc, 
Initialize the table 

of function pointers

AppType, 
Screen Infor-

mation

Handling command-line 
args, environment setting 

MSVC 
6.0 fs:[0] GetVersion 

HeapCreate 
RtlAllocate-
Heap 
VirtualAlloc 

GetStartupIn-
foA 
GetStdHandle
GetFileType 
SetHandleCo
unt 

GetCommandLineA 
GetEnviron-
mentStringsW 
FreeEnviron-
mentStringsW 
GetACP 
GetCPInfo 
MultiByteToWideChar 
LCMapStringW 
GetModuleFileNameA 

MSVC 
8.0 fs:[0] GetVersion 

HeapCreate 
RtlAllocate-
Heap 
VirtualAlloc 

GetStartupIn-
foA 
GetStdHandle
GetFileType 
SetHandleCo
unt 

GetCommandLineA 
GetEnviron-
mentStringsW 
WideCharToMultiByte 
FreeEnviron-
mentStringsW 
GetACP 
GetCPInfo 
GetStringTypeW 
MultiByteToWideChar 
LCMapStringW 
GetModuleFileNameA 
IsBadReadPtr 

MSVC 
2010 fs:[0] 

Get-
Sys-
temTimeAsFileTime 
GetCurrentThreadId 
GetCurrentProcessId 
QueryPerfor-
manceCounter 

_initterm_e __set_app_ty
pe 

RtlEncodePointer 
_CRT_RTC_INITW 
_controlfp_s 
_initterm_e 
__crtSetUnhandledException
Filter 
_initterm 
RtlDecodePointer 
__getmainargs 

MSVC 
2013 fs:[0] 

Get-
Sys-
temTimeAsFileTime 
GetCurrentThreadId 
GetCurrentProcessId 
QueryPerfor-
manceCounter 

_initterm_e 
_initterm 

__set_app_ty
pe 

RtlEncodePointer 
_controlfp_s 
_initterm_e 
_initterm 
__crtSetUnhandledExce
ption 
RtlDecodePointer 
__getmainargs 

TDM 
- 

GCC 
fs:[0] 

Get-
Sys-
temTimeAsFileTime 
GetCurrentProcessId 
GetCurrentThreadId 
GetTickCount 
QueryPerfor-
manceCounter 

_initterm 

__set_app_ty
pe 
_initterm 
__lconv_init 
__gconv_init 

_initterm 
__getmainargs 

 

(B) The command-line parameters that are used by the main function 
Since the main function is called after the OEP execution, we can rule out all the 

OEP candidates after the main() execution. To do so, we track the functions which han-
dle command-line parameters of main() because the parameters of system startup func-
tions for the packed file and original one are identical. 
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(C) OEP w.r.t. LongJump/JumpOuterSection 
Recall that the OEP is one of the destination addresses at which the program execu-

tion flow has changed, i.e., a branch has occurred. We identify LongJump and JumpOu- 
terSection to find out the OEP, as follows. 

LongJump is the branch where the case where the difference value between the 
current EIP and the previous EIP is more than threshold (0x200) [4]. JumpOuterSection 
is the branch with the case where the memory section name of the current EIP is differ-
ent from the memory section name of the previous EIP. 

Based on these two, there are four cases of branch, as shown in Fig. 2. In case (a), 
the difference between current EIP and previous EIP is less than the threshold value and 
memory section name is not changed. In case (b), the difference between current EIP and 
previous EIP is greater than or equal to the threshold value, so this is LongJump. Me- 
mory section name is not changed. Case (c) is not LongJump but JumpOuterSection. 
Case (d) is both LongJump and JumpOuterSection. From our experience, for cases (b), 
(c), and (d), there is a possibility that the target address of the jump is OEP, especially 
case (d) has the highest probability. However, for case (a), we have found no occurrence. 

 

 
      (a)                (b)                  (c)                (d) 

Fig. 2. LongJump and JumpOuterSection. 
 

(D) WrittenAndExecuted 
In Section 2, we already defined WrittenAndExecuted as the memory address at 

which the instruction is executed, where the instruction was previously written. Let 
WrittenAndExecuted page denote the page containing this WrittenAndExecuted. Since 
the original code of the packed program is decrypted/decompressed by the unpacking 
routine, then executed, the OEP is necessarily located in the WrittenAndExecuted page 
set. Moreover, if we consider that the original code is fully unpacked before it gets exe-
cuted, then the OEP is the first execution in a WrittenAndExecuted page that happens 
after the last write (end of unpacking) in this WrittenAndExecuted page set [19]. 

 
(E) Entropy of memory region containing OEP 

As we already explained in Section 2, we can measure entropy values for memory 
regions to judge whether they are packed or not. When a general executable file is pack- 
ed (encrypted or compressed), the degree of disorder in the file increases, causing the 
entropy value to increase [12]. Entropy measurements are performed by measuring the 
entropy of the memory region. To find the OEP, for each branch we can measure the 
entropy value of the target memory region, i.e., measuring the difference between the 
initially measured entropy value and currently measured one. If the difference is above 
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the threshold value, we can judge that unpacking is completed and that the target address 
can be regarded as the OEP candidate. 

3.2 Proposed Scheme 

(A) Overview of the proposed scheme 
Fig. 3 shows the overview of the proposed scheme. The proposed scheme has 8 

steps, which is explained as follows. 
 

 
Fig. 3. Overview of the proposed scheme. 

 
1. First, it uses the enhanced Isawa et al.’s work to get the initial OEP candidates (①). 

The detailed procedure is described in Section 3.2.2. 
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2. It records the API trace log of the target program. 
3. It splits the API trace log into 2 parts: the first part is from the beginning to just before 

the main() call and the second one is from the main() call to the end. The procedure 
for finding the main() call is described in Section 3.2.3. 

4. From the OEP candidates set, it excludes the candidates after the main() call that was 
found in Step 3 (②). 

5. It finds the system startup function calls (which is described in Section 3.2.4) from the 
first part of the log in Step 3. 

6. From the OEP candidates set, it excludes the candidates after the system startup func-
tion calls found in Step 5 (③). 

7. It records the instruction trace log up to the beginning of the system startup function 
calls of the target program. 

8. It finds the address of the SE handler installation routine (which is described in Sec-
tion 3.2.4) in the instruction trace log. 

9. From the OEP candidates set, it excludes the candidates after the SE handler installa-
tion routine found in Step 8. 

10. Among the OEP candidates filtered through the steps above, it selects the address 
which is closest to the address found in Step 8 and regards it as the OEP (④). 

 
(B) Enhanced Isawa et al.’s work 

We have improved Isawa et al.’s work [13] to correctly identify the OEP candidates. 
This method is based on the property of the OEP in Sections 3.1.3 and 3.1.4. Our method 
has two steps. The first step is to find the unpacking routine and the destination address-
es of branch instructions. The second step is to rule out the all addresses relevant to the 
unpacking routine. 

 
We track every write operation and WrittenAndExecuted to find all OEP candidates, 

as follows. 
 

(a) For each memory write operation, we put (src, dst), the source and destination ad-
dresses in W. 

(b) For each WrittenAndExecuted, we put the address in X. 
(c) For each branch instruction which is not applied to LongJump, we mark the destina-

tion address as NL. 
(d) For each branch instruction which is not applied to JumpOuterSection, we mark the 

destination address as NJ. 
 
As explained in Section 3.1, the OEP is in WrittenAndExecuted address set. How-

ever, this set is too large, and we need to refine it to reduce the size by detecting the un-
packing routine. 
(a) We sort W in chronological order. 
(b) For each pair (src, dst), we check the followings. 

i. We compare dst with the addresses in X to see if it was executed. If the dst address 
is executed, src address is marked as U. 

ii. If dst is marked as U, the src address is also marked as U. 
(c) Repeat (b) until there is no more change.  
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(d) List all the elements in X in chronological order. 
(e) If any of the listed addresses are marked as both NL and NJ, they are excluded from X. 
(f) If any of the listed addresses are marked as U, they are also excluded from X. 
(g) Now, X contains the OEP candidates. 

 
Note that this algorithm is similar to [13], Isawa et al.’s work. The difference is that 

[13] manages memory in the unit of page whereas our algorithm processes each address 
independently, which provides fine grained information. Also, [13] does not track every 
write instruction since its algorithm is based on the page fault handling, e.g., the first 
write on page A is tracked but subsequent writes on the same page cannot be tracked. 
Another point is that, unlike [13], our algorithm tracks LongJump and JumpOuterSection, 
which produces a smaller OEP candidates set. 
 
(C) The method for tracking command-line parameters 

This method is based on the property of OEP in Section 3.1.2. From instruction 
trace log, we detect system startup function calls related with the command-line parame-
ters. For example, __getmainargs(), __wgetmainargs(), or getCommnadLineA(). In these 
functions, one of the arguments contains the point to the string, the full path name of the 
target program. If we find startup function calls through theses parameters, we split the 
API trace log based on the first invoke of the calls. Then, we rule out the OEP candidates 
after this call. 

 
(D) Pattern-matching on the startup functions and SE handler installation routine 

The goal of this step is to find the address of SE handler installation routine, which 
is the last write instruction on fs:[0] (explained in Table 1) in the instruction trace log. 
The following shows this algorithm, which is based on the property that system startup 
function calls of the packed programs (after the OEP) are same as those of the original 
program. 

 
1. Suppose that database w.r.t. startup functions (described in Section 3.1.1) has already 

been built. In the database, each table contains information of startup functions for 
each compiler. In the table for each compiler, the record consists of ‘name’ to specify 
the name of the startup function and ‘count’ that is initialized to be 0. 

2. Read the first part in API trace log, which was generated from the method in Section 
3.2.3. For each API call in the trace, if there is a match in the database, we increase the 
count value by one. 

3. Once the API trace log has been read, calculate the sum of all count values in each 
table and find the table with the largest value. We regard that the program has been 
compiled by this compiler. 

4. Find the address of the first executed function of the identified compiler in the instruc-
tion trace log. 

5. Read the instruction trace log and search for SE handler installation routine which is 
closest to the address found in Step 4. 

6. Regard the WrittenAndExecuted address closest to the SE handler installation routine 
as the OEP value. 
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4. IMPLEMENTATION 

We implemented the proposed scheme using the unpacker, PinDemonium [4], 
which relies on the Pin [5]. Pin is a DBI framework and supports the android, Linux, OS 
X, Windows operating systems and executables for IA-32, x86-64 and MIC instruc-
tion-set architectures. Pin allows a plugin tool to insert arbitrary code, which is written in 
C/C++, in arbitrary places in the executable. For further information, refer to [5]. 

For LongJump/JumpOuterSection, PinDemonium already has the relevant code and 
we omit the implementation. In Section 4.1, we describe implementation of enhanced 
Isawa et al.’s work. In Sections 4.2 and 4.3, we explain implementation of finding SE 
handler installation routine and tracking command-line parameters, respectively. 

 
4.1 Implementation of Enhanced Isawa et al.’s Work 

 
This section describes the implementation of enhanced Isawa et al.’s work in Section 

3.2.2. In PinDemonium, the function to find the OEP is IsCurrentInOEP(). First, we pre- 
pared five markers: W_src, W_dst, X, NL, and NJ. We used Pin’s INS_IsMemoryWrite() 
function to find out whether the current instruction is memory write or not. For each 
write, the address of instruction is marked as W_src and target address of memory write 
is marked as W_dst. Then, we update X that contains the address for WrittenAndExe-
cuted. Also, we used PinDemonium’s LongJumpHeuristic() and JumpOuterSection() 
function to find out whether the target address of branch instruction can be OEP candi-
date or not. For each branch instruction, if the difference between the previous EIP and 
the current EIP is less than threshold, the target address of the branch instruction is 
marked as NL, and if the memory section name of the previous EIP and the current EIP 
is same, the target address of the branch instruction is marked as NJ. 

 
4.2 Implementation of Finding SE Handler Installation Routine 

 
First, we have prepared information for system startup functions for major compil-

ers, which is in Table 1 of Section 3.1.1. Then, we have implemented instruction trace 
routine and API trace routine. We used Pin’s RTN_FindNameByAddress() for imple-
menting API trace routine and INS_InsertCall() for implementing instruction trace rou-
tine. For pattern-matching of the function call, we compare only the function name and 
ignore parameter values.  

For finding SE handler installation routine, we should track the write operation on 
fs:[0]. To do so, we used Pin’s INS_IsMemoryWrite() for tracking the write operation 
and we have recorded changes in the register values in execution. From this and instruc-
tion trace logs, we can find the instruction to write on fs:[0]. Because there are many 
cases for this during execution, we carefully select such operation between the unpack-
ing routine and the main function call. 

 
4.3 Implementation of Tracking Command-Line Parameters 

 
This section describes the implementation of tracking command-line parameters 

which is explained in Section 3.2.3. We used the Pin to hook up read/write on ESP-10h 
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when __getmainargs() function is called because it contains the pointer to the full path 
name of the target program. Generally, __getmainargs() is called several times because it 
reads each byte of the path at a time. In this implementation, we copy the path string to 
another array and then find out whether it is the same as the name of the target program. 

If we use getCommnadLineA() instead of __getmainargs(), this function copies the 
address of the program execution path from the data segment to the EAX register. That 
means, we should hook up EAX and follow this address. This function is also called 
multiple times because it accesses each byte of the full path name at a time. We hook this, 
store it in the array and find whether there is the string that is the same as the target pro-
gram name. If we have found the target program name, we can split the API trace log. 

5. EXPERIMENTAL RESULTS 

In Section 5.1 we briefly explain environments for our experiments. Then, experi-
mental results are shown in Section 5.2. 

 
5.1 Environments 

 
In the experiment we chose the most widely used (commercial) 16 packers: UPX 

1.02, PECompact, ASPack 2.0, ASProtect 1.2, Obsidium 1.3, Themida 2.3, VMProtect 
2.0, WWPack, Packman, petite, MEW, Enigma 4.03, mpress, nspack, yoda 1.3, and 
Safengine 3.09. For each packer, we used default option settings. 

The test program used in our experiment was compiled with TDM-GCC, where it 
displays a simple text to the console window. The experiment was conducted under the 
following environments. OS: Windows 7 SP1, CPU: Intel i7 3.4 GHz and Memory: 14 
GB DDR3 DRAM. The version of Pin was 2.14, and Pin’s plug-in was compiled with 
Visual Studio 2010. We have implemented our scheme using the source code of PinDe-
monium [4], whose release date is July 2016. 

 
5.2 Experimental Results 

 
Compared unpacking schemes are as follows: PinDemonium [4], Isawa et al.’s 

scheme [13], Jeong et al.’s scheme [11], PEiD, QuickUnpack2.2, and AbstersiverA. For 
[11] and [13], since our experimental environments are different from them, we have 
also implemented [11, 13] on PinDemonium. Table 2 shows the experimental results. In 
this table, column A means the number of the OEP candidates that are produced from 
each scheme and column B indicates correctness, i.e., whether the OEP is in the OEP 
candidates or not. In the bottom row, cell A has the average value of the OEP candidates 
for each scheme while cell B has the detection rate, which is calculated by the number of 
packers for which the scheme has successfully found the OEP, divided by the number of 
all packers. 

As for correctness (column B), for all packers PEiD cannot find the correct OEP. 
Quickunpack and AbstersiverA successfully find the OEP only for some packers. Isawa 
et al.’s work successfully finds the OEP for 13 packers among 16, which means the de-
tection rate is 81.25%. For PinDemonium and the proposed scheme, they find the OEP 
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for all packers except for yoda and Safengine where the detection rate is the highest, 
87.5%. This is because the yoda and Safengine have anti-reverse engineering techniques 
for detecting the Pin and they abort execution. 
 

Table 2. Experimental results. 

Packer 

Pin- 
Demoni-

um 
[13] [11] 

Our Im-
plementa-

tion of [11]
PEiD 

Quick
Unpack 

2.2 

Abster-
siverA 

(ASPack 
Unpacker) 

Proposed 
scheme 

A B A B A B A B A B A B A B A B 

UPX 1.02 2 O 2 O 1 ▲ many O 1 X 1 O 0 X 1 O 

PECompact 5 O 2 O  n/a many O 1 X 1 O 0 X 1 O 

ASPack 2.0 13 O 2 O 1 O many O 1 X 1 O 1 O 1 O 

ASProtect 1.2 92 O 16 O  n/a many O 1 X 1 X 0 X 1 O 

Obsidium 1.3 68 O 31 X  n/a many X 1 X 1 X 0 X 1 O 

Themida 2.3 592 O 26 O  n/a many X 1 X 1 X 0 X 1 O 

VMProtect 2.0 4 O 2 O  n/a many O 1 X 1 X 0 X 1 O 

WWPack 4 O 3 O  n/a many O 1 X 1 X 0 X 1 O 

Packman 2 O 2 O  n/a many O 1 X 1 O 0 X 1 O 

petite 11 O 5 O  n/a many O 1 X 1 X 0 X 1 O 

MEW 3 O 3 O  n/a many O 1 X 1 O 0 X 1 O 

Enigma 4.03 10 O 9 O  n/a many X 1 X 1 X 0 X 1 O 

mpress 4 O 3 O 1 ▲ many O 1 X 1 X 0 X 1 O 

nspack 4 O 2 O 1 ▲ many O 1 X 1 X 0 X 1 O 

yoda 1.3 0 X 0 X  n/a 0 X 1 X 1 X 0 X 0 X 

Safeingine 3.09 0 X 0 X  n/a 0 X 1 X 1 X  n/a 0 X 

Average value/ 
Detection rate (%) 

50.87 87.5 6.75 81.25 0.25  many 68.75 1 0 1 31.25 0.06 6.25 0.875 87.5 

A: the number of OEP candidates, B: correctness, O: have found the OEP,  
X: cannot find, ▲: have found the OEP only for some cases) 

 

As for the number of the OEP candidates, (our implementation of) [11] has the 
largest number of OEP candidates (for most of cases, more than 1000). Also, PinDemo-
nium and Isawa et al.’s work output a relatively large number of OEP candidates. For all 
packers, the proposed scheme outputs only 1 OEP candidate. Nonetheless, for 14 of 16 
packers the proposed scheme correctly answers the OEP value. 

In summary, some previous unpacking tools/schemes with high detection rates out-
put many OEP candidates while the others with less OEP candidates have low accuracy. 
Compared with the previous schemes, the proposed scheme pinpoints the OEP with the 
highest level of accuracy. 

6. CONCLUSIONS 

In this paper, we presented a new efficient scheme for finding the OEP for diverse 
packers. The demerit of the previous work is that either they cannot find the OEP cor-
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rectly or they produce too many OEP candidates for packers. For latter case, analyst 
should manually analyze further to find the correct OEP, which takes a considerable 
amount of time. 

To find the OEP, our scheme first uses enhanced Isawa et al.’s work to finds the 
OEP candidates. Then, we hook the parameters used in the main function to determine 
whether execution has passed the OEP or not, by which we can minimize the candidate 
set. Then, we match the compiler-specific startup function calls for refining the candidate 
set and find the SE handler installation routine to select the OEP value from the set. We 
conducted experiments on 16 (commercial) packers. Experimental results show that 
compared with the previous schemes including PinDemonium and Isawa et al.’s work, 
our scheme pinpoints the correct OEP whereas others produce many OEP candidates. 
Nonetheless, accuracy is the highest (up to 14 times higher than the previous work). 
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