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Compatibility is a decisive and necessary factor which impacts the successfulness and
correctness of establishing connections among services. Reliable service parameter pre-
dictions on compatibility may not only provide assurance on fulfilling workflow, but also
reduce the risk of unexpected wasting on time and expenses. Recent research on service’s
parameter prediction focus on two aspects: Collaborative Filtering and Matrix Factorization.
Both of them faces challenges from data-sparse problem, lack of solid mathematical sup-
port, and weakness on tracking dynamic services. In this paper, we propose Link-ability, a
parameter to reveal the compatibility of a service. Firstly, we propose an architecture called
Topology-Retrievable Service Oriented Architecture (TSOA), which is capable of collect-
ing successful invocation records from service requesters and generate the whole topology
of the service pool in a specific period of time. Secondly, we bring up the Link-ability Gen-
eration Algorithm (LGA) and Markovian mathematical strategies to generate Link-ability
value. The algorithm is supported by solid mathematical proof and capable of solving data-
sparse problems. Both TSOA and LGA are upgraded to adapt the circumstances of services
exiting the service pool (we define it as a Drop-out). Lastly, we design and conduct two
series of experiment to strengthen the reliability and correctness of Link-ability. The result
shows that Link-ability considers comprehensive information of the whole topology and
bring 54.18% reduction in average error rate against Drop-out scenarios.

Keywords: service composition, compatibility prediciton, Markov process, service oriented
architecture, wireless service

1. INTRODUCTION

Wireless services are benefiting more and more people in real-life use cases [1].
Since wireless services come out to cover various kinds of tasks from service requesters,
the growing complexity of application scenarios [2] and the demand for customized so-
lutions [3] are becoming major challenges to researchers [4]. Fortunately, scholars are
inspired to decompose the composite task into basic tasks, design solutions to basic re-
quirements, and reconstruct them into a final composite strategies [5]. That’s how service
composition was born [6]. As the name suggests, service composition is a procedure to
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decompose the complex requirements, select proper services, combine different services
together within expected workflow [7] to cover the requirement of a request from a service
requester. During the process of service composition, parameter-prediction is an impor-
tant academic direction because it helps to foretell the effectiveness and functionality of
the service composition.

Recently, research works in service parameter prediction mainly focus on two as-
pects: Collaborative Filtering (CF) [8] based prediction [9, 10] and Matrix Factorization
(MF) prediction [11]. In order to further improve the prediction accuracy, some more so-
phisticated CF-based quality prediction methods were proposed. They can be categoried
into two approaches. The first category attempts to dig deeper into the user-service ma-
trix so that more information can be extracted to operate predictions [12–16]. The second
category of methods try to request for additional information from users and services to
strengthen the reference of prediction [17, 18].

As one of service’s property parameters, compatibility [19] deserves more attention
in the process of service composition because it guarantees the successfulness and cor-
rectness of the workflow within expectations. In real-life use-cases, the market is compati-
tive, services with same kind compete with each other. If there’s no effective evaluation
on compatibility of the service, service requesters will be confused and exposing them-
selves to risk wrong choices, causing failure to the workflow, and an unnecessary waste of
expenses and time. Therefore, a reliable compatibility prediction strategy is an inelastic
demand of selecting proper services.

Fig. 1. Compatibility problem.

Existence of compatibility problem is inevitable. As is shown in Fig. 1, firstly, there’s
a communication barrier between service providers and requesters. In most use-cases,
there’s no direct communication approaches for providers and requesters. Service re-
questors can only purchase services within UDDI, not directly from providers. Secondly,
it is not realistic to make one on one service for each service requester. Thirdly, service
providers and service requesters possess different standpoint. Unlike service provider
aims to bring up universal services, service requesters are looking for customized candi-
date to fulfil the workflow. Every service requester possesses a specific operating envi-
ronment, a strict I/O match degree, and a specific range of price or time-cost, which is not
possible to be satisfied by every candidate services.

To solve the problems above, this paper propose Link-ability, a Markovian Process-
based mechanism to evaluate and quantify the compatibility of services. The Markovian
perspective focus on the connection between the current service and the coming can-
didates, which maximum the possibility to fit I/O restrictions. On the other hand, the
mechanism collects successful records from other requestors to work on the whole topol-
ogy of the service pool, which weakens the communication barrier and gives a convincing
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reference on the specific operating environment.
Compatibility prediction is quite challenging in three major reasons. Firstly, com-

patibility is impacted by operating environment [20], and at the same time, operating
environment is diverse among different requesters, i.e., two users with the same service
may have a totally different experience because of the distinction of the operating en-
vironment. Secondly, considering huge cost on time and expenses, it is impractical to
inspect each candidate service to make an ultimate selection, especially when the amount
of candidate services is way too large. Thirdly, the compatibility of a service is a subjec-
tive conception for a user to give remarks on [21], that is to say, giving users the authority
to evaluate the compatibility can be misleading because remarks from users are not in the
same standard.

Our research focus on proposing a reliable compatibility prediction strategy. We
firstly propose a topology-retrievable architecture over SOA (Service Oriented Archi-
tecture), which is capable of generating the topology structure of the service pool by
collecting individual invocation records from requesters. Secondly, we propose a param-
eter called Link-ability to evaluate compatibility of services, and Link-ability Generation
Algorithm to to generate the Link-ability. Then, we advance the proposed strategy to
strengthen its feasibility towards Drop-out problems. Lastly we operate two series of ex-
periment to prove our point of view and conclude our research. Table 1 compares our
work with some typical service prediction mechanism. In this paper, our contributions
are included as follows:

• Compatibility Parameters: Link-ability
In the traditional mechanism of SOA, there is no specific parameter to describe the
ability of a specific service to connect other services in a workflow. We create a
definition on the compatibility of a service called ‘Link-ability’. The Link-ability
functions as a parameter that quantize the probability to operate successful con-
nections with other services, and we provide a solid mathematical proof on the
uniqueness and correctness on our proposal.

• Topology-Retrievable SOA (TSOA)
Existing SOA has a dull sense of current invocation situations of the whole service
pool because the mechanism only records split individual invocation history instead
of collecting records together. In this paper, we propose our Topology-Retrievable
SOA which inherits the original functions of SOA, and at the same time optimizes
the interaction procedure with service requesters to enable TSOA itself to evaluate
the current situation of the whole service pool

• Link-ability Generation Algorithm
This paper proposes a Markovian-process-based algorithm to generate the value
of Link-ability. The mechanism makes compatibility predictions with invocation
records collected by Topology-Retrievable SOA. Besides, the algorithm’s reliability
is guarenteed by Markovian property. We also propose a theorem to support and
reveal rationality of the algorithm.

• Drop-out Contingency
In realistic application scenario, services are dynamic. When a service exit the ser-
vice pool, it may cause calculation error in Link-ability mechanism. This paper
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proposes Drop-out contingencies to fix this calculation error and make the evalua-
tion dynamic and accurate with the timestream.

The rest of this paper is organized as follows: Section 2 presents a new architec-
ture designed for service composition with detailed explanation on its working process
and advantages over traditional SOA. Section 3 illustrates our models and mathematical
methods on Link-ability. Our experiment will be presented in Section 4 and we conclude
our research in the last Section 5.

Table 1. Comparison of existing service prediction mechanism.
Mechanism Anti-data sparse Anti-subjective inference Robustness Universal Drop-out contingency Compatibility Prediction

Ref.[8] ✓ ✓ × × × ×
Ref.[9] ✓ ✓ ✓ × × ×
Ref.[10] × ✓ × ✓ ✓ ×
Ref.[11] ✓ × ✓ ✓ × ×
Ref.[12] × × × ✓ × ×
Ref.[13] ✓ × ✓ × × ×
Ref.[14] ✓ × ✓ × ✓ ×
Ref.[15] ✓ ✓ ✓ × × ×
Ref.[16] ✓ ✓ ✓ ✓ × ×
Link-ability ✓ ✓ ✓ ✓ ✓ ✓

2. ARCHITECTURE

This chapter proposes the architecture called Topology-Retrieving Service Oriented
Architecture (TSOA). The TSOA remains the basic function of SOA, and expands its
use cases to compatibility evaluation and provide contingency for permanent drop-out
services.

Distinguished from the traditional triangle structure of SOA, we emphasize and
strengthen the function of an important component, the service pool. Assuming that in a
specific time-slot, service requesters return their successful invocation records, the UDDI
has the ability to generate the topology of the service pool. It is quite challenging because
in the aspect of traditional service composition, services in the service pool are considered
to be discrete and non-associated. This situation changes as we propose our algorithm for
UDDI center to generate a topology of the service pool. The generation is supposed to
be based on the actual invocation records of users who successfully operate the services
and cover their tasks. As we extract the topology of the service pool, we process it in the
aspect of Markov Procedure, and operate our calculations (See details in Section 3).

As is shown in Fig. 2, the procedure is divided into four phases: Standard phase,
Link-ability generation phase, Invocation phase, and Drop-out & Recalculation phase.
The Standard phase contains the basic function of SOA, it guarantees the registration of
new services from service requester, uploads new services to the pool, and permits the ser-
vice requester to access the information of services and make requests. The Link-ability
generation phase shoulders the responsibility to make evaluations on the compatibility of
services in the pool by calculating Link-ability values. To do so, the UDDI [22] shall col-
lect successful invocation records from requesters [23], and generate the topology matrix
of the service pool. With the help of Link-ability generation algorithm, the UDDI send the
Link-ability values and ranking of services back to requesters as references. The Invoca-
tion phase includes the basic procedure of service selection, invocation, and information
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Fig. 2. Topology-retrievable SOA.

uploading. The Drop-out and Recalculation phase provides contingencies for services to
make a permanent exit from the pool. When a service provider sends a request to with-
draw his service from the pool, the UDDI releases the order to kick certain services out
of the pool. Meanwhile, the service pool updates its state to record the change, note the
service ID, and regenerate the topology of services in the pool. In the next time-slot, the
change brought by drop-out services may cast influence on the Link-ability value, and
UDDI center may adjust them due to the change of topology.

3. SYSTEM MODEL

3.1 Markov Chain via Service Composition

Compatibility deserves a high priority when it comes to service selection [24], be-
cause it guarantees the correct succession of the dataflow, and expected function of the
workflow. In this paper, we mainly focus on the compatibility between two adjacent ser-
vices. This point of view gives a proper and ingenious interface of the Markov Chain. A
Markov Chain [25] is a mathematical system that experiences transitions from one state to
another according to certain probabilistic rules. The defining characteristic of a Markov
chain is that no matter how the process arrived at its present state [26], the possible fu-
ture states are fixed. In other words, the probability of transitioning to any particular
state is dependent solely on the current state and time. As we mentioned, the Markovian
perspective focus on states and transitions. In this paper, services are modeled as states,
and connections between services are treated as transitions. Mathematically, connections
among services, or transition among states, stands with one necessary restriction, that is,
transitions are time-irrelevant. Moreover, invocations only depend on services and transi-
tion steps, they can’t be predicted. The restriction holds the Markovian property of every
service, making the service pool stays as Homogeneous Markov Chain. The finite dis-
tribution of a Homogeneous Markov Chain, which presents as Link-ability distributions,
can be determined by initial distribution and k-steps transition probability distribution.

We give a concise example to claim our perspective. As is shown in the Fig. 4, S1,
S2 and S3 are previous services with successful invocation, and we are about to select a
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Fig. 3. Mathematical modeling on link-ability calculation.

new service, S5, to establish connection with our present service S4. The selection inherit
the characteristic of Markov Chain the past services are treated as a black-box with no
awareness of what services are included nor the structure of the previous workflow. In
other words, the present service, S4, is the only service that matters the selection of the
upcoming service.

In our proposed method, when a service request comes to the UDDI center, the
UDDI center generates an adjacent matrix that describe the specific topology structure
of the service pool. Next, it operates a set of calculations (we will discuss in the next
section) to acquire the value of link-ability and annotate them on services in the pool [27].
Then, the requester receives a list of candidate services with link-ability annotations and
operates a selection and finishes the composition procedure. Mathematically, the whole
procedure stands with one necessary condition, that is, transitions among services are
time-irrelevant. Furthermore, invocations can’t be predicted, and only depend on services
and transition steps. This condition holds the Markovian property of the every service,
making the whole service pool stays as Homogeneous Markov Chain.

The Link-ability model takes the advantage of the Homogeneous Markov Chain. In
our proposed model, Link-ability ranking serves as the finite distribution of the Markov
chain. But how can we get the finite distribution? In Homogeneous Markov Chain, the
computing strategy become crystal clear: if we acquire the initial distribution and the k-
step transition probability distribution, the finite distribution, or, Link-ability Rankings,
can be determind.

Theroem 1. Service Link-ability’s ({X(n),n = 0,1, · · ·}) every finite dimensional proba-
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bility distribution can be determined by its initial distribution and k-step transition prob-
abilty distribution.

Proof.
Given t1 < t2 < · · ·< tn, tk ∈ T ; k = 1,2, · · · ,n; ik ∈ E;

P{L(t1) = i1,L(t2) = i2, · · · ,L(tn) = in,}

= ∑
j∈E

{L(0) = j}P{L(t1) = i1|L(0) = j}P{L(t2) = i2|L(t1) = i1}

· · ·P{L(tn) = in|L(tn−1) = in−1}

= ∑
j∈E

p j p
t1
ji p

t2−t1
i1i2

· · · ptn−tn−1
in−1in (1)

The proposed Thereom 1 implies our computing strategy. Firstly, the topology ma-
trix can be generated by collecting invocation record from service requesters, and we use
it as initial distribution. Secondly, transfer matrix can be calculated within the strategy
proposed in the coming section. The k-step transition probability distribution comes from
iterations of transfer matrix. Holding the two distributions mentioned, we can finally
calculate the Link-ability rankings according to Theorem 1.

Table 2. Notation definition.

Parameters Definitions

i, j servicei,serivce j

k service requesterk

Rk[ai j] service requester′ks Invocation Record
T [bi j] Topology Matrix of the pool
Ncs number of services with invocation record
Nis number of isolated services
σ proportion of connected services
In indegree matrix of every service
D transfer matrix
A Link-ability distribution matrix
x,z tool vectors
cnt number of steps of iteration
L Link-ability
E probability space

3.2 Model and Strategy

This chapter proposes the Link-ability Generation Algorithm shown as Algorithm 1.
In Markovian vision, a transition is defined as a successful invocation from service i to
service j. The Link-ability, a parameter we proposed in this paper, is designed to quanti-
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fy the ability of a service to establish connections with other services, or in Markovian
perspective, make transitions to another states.

Algorithm 1 : Link-ability Generation Algorithm

Input: Rk[ai j]: Service requester k’s invocation record;
W [p]: collection of Drop-out services’ ID;

Output: T [bi j]: Topology matrix of the service pool;
L: Services’ link-ability Rankings;

1: k ∈ [1,m]; i, j, p ∈ [1,n]; T [bi j] = 0; //Initialize topology matrix
T [bi j]

2: for each i ∈ [1,n] do
3: for each k ∈ [1,m] do
4: for each j ∈ [1,n] do
5: if ai j = 1
6: then bi j = 1
7: end if
8: end for
9: end for

10: end for//Acquire T [bi j] as the topology matrix of the whole ser-
vice pool.

11: for each i ∈ [1,n] do
12: if i ∈W then
13: row[i] = 0;
14: colomn[i] = 0;
15: end if
16: end for// Remove connections made by Drop-out Services
17: Ncs = sum(any(T [bi j],2));
18: Nis = n−Ncs;
19: σ = Ncs/n;
20: In = sum(T [bi j],1);
21: D = diag(1/In); //Initialize Transfer Matrix
22: A = σ ·T [bi j] ·D;
23: x = ones(n,1)/n;
24: z = zeros(n,1);
25: cnt = 0;//Initialize iteration steps
26: for cnt = 0 do
27: if max(abs(x-z)) > 0.00001
28: then z = x;x = A · x; cnt = cnt +1

// 0.00001 as convergence domain
29: else

[L, index] = sort(x), L = f lipud(L), index = f lipud(index);

//sort services by the value of link-ability
30: end if
31: end for
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Fig. 4. Service composition within Markovian vision.

Assuming that there are totally n services in the service pool, making the record
matrix from a service requester an n∗n square matrix. The mechanism collects all of the
invocation records and sketch the topology structure of the service pool, which is denoted
in the form of adjacent matrix, we call it Topology Matrix, T [ai j] (line 1-10, Algorithm
1). The parameter ai j reflects the connection between two specific services, service i
and service j. If they have successful connection history in the workflow, ai j reaches the
value 1, otherwise 0. We have Li(k) for the Link-ability of service i in the time slot k.
And we give our calculation method.

(1) Services’ initial states are determined by the topology matrix, 0 as no invocation
record, 1 as connected with another service, and we consider the whole topology matrix
as the initial matrix. Each service with connections are given a standard value called
link-ability.

(2) In the next Round, each services with directed connections splits all of its value
through the direction to the other end of the connection, and absorb the value from all
services which has directed connections to it (line 14-16, Algorithm 1).

(3) Repeat Step (2) until the link-ability of every service converges at a small range. And
finally we get the ultimate link-ability of each service (line 17-23, Algorithm 1).

We present our equations as follows.

σ =
NConnectedService

NTotalService
≜

Ncs

n
, (2)

1−σ =
NIsotatedService

NTotalService
≜

Nis

n
, (3)

Li(k) = σ

n

∑
j=1

ai j
L j(k−1)

n j
+(1−σ)

1
n
, (4)

LNewMember i(k) =
1
n
. (5)
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Eq. (4) explains the link-ability of service i in the Round k. The parameter n j indi-
cates the total number of services which have directed connections with service j, and
other parameters are introduced in the previous section. However, the equation indicates
an obvious characteristic of our method: if you want a result in Round k, you’d better
check and only check the result in Round k−1. In other words, the calculation inherit the
characteristic of Markov Chain: the probability of transitioning to any particular state is
dependent solely on the current state and time (which we explained as Rounds). Further-
more, the link-ability in the current Round has completely no decisive impact on the next
Round because the equation infers the fact that the current link-ability is decided by other
services which have directed connections to the specific service in the last Round, not by
itself. It’s only the topology that matters.

3.3 Drop-out Contingencies

In practical use-cases, services come and go. The service pool maintains dynamic
balance with new services joining and previous services exiting. Reasons to exit the
pool can be various, such as permanent break-down, punishment from illegal behavior,
withdrawn by service providers, etc. No matter what the reason is, exiting the pool is a
normal and common behavior. We define an exit for a service in a specific time-slot as a
Drop-out, and a service which makes a drop-out is called a Drop-out service.

Definition 1. Drop-out Service
If a service exists in time-slot k− 1, and exit the service pool in time-slot k, we call it a
Drop-out service in the specific time-slot k.

Drop-out behavior causes miscalculation in Link-ability. In our proposed mecha-
nism, the Link-ability value is calculated with the topology structure of the pool in the
last time-slot. Assuming that in time-slot k, service j make a drop-out in a time-spot ts1.
Before ts1, service j exists, along with its connections with other services. After ts1, ser-
vice j permanently vanishes from the pool, and there is no chance to establish any new
connections. However, the problem is that the mechanism notes down connection records
of the whole time-slot, even remains the records of drop-out services. When it comes to
calculate the Link-ability value of time-slot k+ 1, the result will be interfered by drop-
out services in time-slot k. Because drop-out services are gone, but their records remain,
which will impact all the services connected before.

Strategies to erase the risk of miscalculation caused by drop-out services have to
focus on three aspects, correcting the miscalculation, taking care of services’ ID, and
stabilizing the irreducible property of the transfer distribution. The deviation comes from
remaining connection records of drop-out services. Systematically, every service must get
the permission from UDDI [28] to make a drop-out. In other words, drop-out services’ ID
can be located by tracking UDDI records. Once the mechanism finishes collecting drop-
out services’ ID, we erase all of the connection record involved with them (Algorithm 1,
line 11-16).

Mathematically, this step generates twice the number of drop-out services null vec-
tors, which increase the potential to eliminate the irreducible property of the Markovian
process. In order to overcome this problem, we force the drop-out services to operate
a random walk [29]. Specifically, the transition doesn’t stop as the last service finishes
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its job, instead, it launches a random jump to another service [30]. There is no specific
restriction on the random jump (such as the next target), and we consider it an equal prob-
ability to jump into other services. This strategy completely eliminate the presence of zero
row vectors in the transition matrix, and the potential to break the irreducible property is
overcome by our proposed Random Walk strategy.

3.4 Link-ability Generation Algorithm

How does invocation records predict the Link-ability rankings? Shown in Fig. 2,
the mathematical strategy is to sketch the initial distribution of the Markov process, and
finally reach the stationary distribution. Theorem 1 guarantees the correctness of the
strategy. To realize the prediction, we propose the Link-ability Generation Algorithm
(LGA), shown in Algorithm 1. The LGA consists of two parts. Shown in Fig. 5, in the first
part, the LGA collects invocation records, generate the topology of the service pool, and
transform it into the initial distribution (Algorithm 1, line 1-10). The second part of LGA
shoulders the responsibility to derive the one-step transition probability distribution, and
operate iterations until the finite distribution reach the convergence domain (Algorithm 1,
line 17-28). Based on these two fundamental functions, there are still some details to be
explained. Firstly, the whole strategy stands within one important condition: the Markov
Process must be irreducible and homogenous. Mathematically, it means no zero vectors
in the distribution. To hold the whole procedure obey this condition, we assume every
service make a random walk (Algorithm 1, line 17-21), which means a random transition
to other services with equal possibility. This random-walk assumption eliminates the zero
elements in the distribution matrix, and keep the whole Markov process irreducible and
homogenous. Besides, eliminating zero elements also prevents data-sparse problem in
iterations. Secondly, in real-life use cases, services may drop-out of the pool permanently.
These services exit the pool but leaves their previous records in the last time-slot. This
behavior generates errors in predicting compatibility and zero vectors to interrupt the
irreducibility of the Markov process. To overcome this problem, we operate a scan of
every service to pick out the drop-out services, and eliminate their records (Algorithm 1,
line 11-16). This strategy erases the negative impact brought by drop-out services.

4. EXPERIMENT

Practice is the sole criterion for testing truth. In this section, we bring Link-ability
mechanism to practical use-cases. We observe Link-ability’s functional performance in
two aspects: the ability to reveal compatibility, and the robustness against drop-out con-
tingencies. The experiment we conduct is based on the proposed Topology-Retrievable
SOA and Link-ability Generation Algorithm.

4.1 Experimental Settings

Procedure: The procedure of the experiment runs like this: As is shown in Fig. 5, in-
vocation records from service requesters in a specific time-slot will be simulated as an
input of Link-ability Generation Algorithm (LGA). The LGA has two phases to process
the records. In Phase 1, the LGA collects the invocation records and sketch the topology
of the service pool. In Phase 2, LGA generates Link-ability values and rank them into a
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list called Link-ability Rankings. Meanwhile, in order to operate a cross reference against
Link-ability, we bring up ‘Reference Value’(RV), which can be extracted from invocation
records.

Fig. 5. Experimental procedure.

Dataset & Environment: We have referenced service datasets from WS-Dream and
QWS, both of them provides reliable distributed assessment mechanism for Web services.
To assure the completeness of the experiment, we stimulate a consecutive time-stream
with a specific length of time-slot. The simulation of invocation records and LGA are
operated on MATLAB R2016b. The cross-reference, data analysis and figures generation
are conducted with the help of MATLAB R2016b and Microsoft Excel 2016. All exper-
iments were conducted on a machine with Intel Dual Core i7 3.6GHz CPU, 16G RAM,
running Windows 10×64 Professional.

(a) Link-ability vs. RV in 50 services. (b) Rank deviation in 50 services.

(c) Link-ability vs. RV in 100 services. (d) Rank deviation in 100 services.
Fig. 6. Link-ability vs. Reference Value.
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4.2 Experimental Design & Feature Analysis

4.2.1 Conceptional distinction: Reference value vs. link-ability

Link-ability doesn’t simply count the number of successful connections in a time-
slot, moreover, it also reflects the potential of connecting more services in the next pick.
To prove that, we propose a parameter called Reference Value to be the competitive index
against Link-ability. Then, we stimulate the invocation record in different scales of the
service pool, which contains 50 and 100 services.

Reference Value (RV ): We define a service’s Reference Value (RV ), as a proportion
of services that connect successfully to this specific service in a time-slot.

RVi ≜ ri =
Nsuccessi

NTotalService
(6)

Nsuccessi presents a specific number of services that have successfully connected to
service i in a time slot. One thing to be stressed here that Nsuccessi doesn’t count re-
peat connections with the same service, which means, ri is totally different from typical
SuccessRate. As we defined ri, r represents the distribution of every service in the service
pool in a specific time-slot.

Unlike RV simply recording connections with adjacent services, Link-ability
covers all the compatibility information of every service in the service pool con-
nected in multi-level by tracing connections. The Link-ability rankings are much
more reliable to be the reference for service selection.

As mentioned above, we stimulate and monitor the invocation of 50 and 100 ser-
vices in a specific time-slot. Both Link-ability value and Reference Value are generated
according to the invocation record. In order to make more clarity to the comparison,
Link-ability value is amplified by 30 times. The amplification doesn’t interfere the result
of observation because absolute deviation doesn’t impact rankings among services, only
relative deviation influence the choice of service requesters. Shown in Figs. 6 (a) and (c),
although both RV and Link-ability value share a similar outline of distribution, internal
rankings via Link-ability value reveal huge difference from RV . Figs. 6 (b) and (d) dis-
play the internal rankings among both RV and Link-ability value. In a size of 50 services,
30% services share same ranks within RV and Link-ability value. When the size of the
pool grows up, the percentage quickly falls because of the growing complexity of the
topology of the pool. In principle, the RV simply count the connections built with specific
target service, it doesn’t reflect the compatibility of involved services. Unlike RV , the
Link-ability records not only the compatibility of adjacent service connected, but also the
adjacent services’ connections, which ends until the whole topology is considered.

4.2.2 Contingencies against drop-out services

The second series of experiment mainly focus on contingencies against Drop-out
problems. What impact will Drop-out problem cast on the link-ability of these services?
How much accuracy will the updated mechanism lift from the original mechanism? What
are the variation tendencies of Link-ability and its relevant variables when more service
participate the drop-out move? Based on these purpose, we architect several experiment
to fulfill our hypothesis.
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(a) Deviation in drop-out contingency. (b) Rank deviation in drop-out contingency.

(c) Error rate analysis. (d) Component analysis in link-ability.

Fig. 7. Link-ability & drop-out contingencies.

In order to reveal the basic impact brought by drop-out services, we first demonstrate
a standard simulation with 20 services total, and 5 services which drops out (25% drop-out
rate). We observe the float of Link-ability value and ranking alterations.

Figs. 7 (a) and (b) present the Link-ability value deviation within 20 services. As
the demonstration suggests, after the drop-out, both Link-ability value and ranks face
great changes. Every service in the pool are influenced: their Link-ability value falls
80.57% in average and ranks are completely different from the previous evaluation. In
the perspective of a service requester, the change of rankings influence the most when
selecting services. In other words, the Drop-out disrupt the rankings of candidate
services, which totally change the priority of service selection.

4.2.3 Observation in variable tendencies

We simulate a growing percentage of drop-out services in a scale of 100 services and
observe the variation tendencies and numerical relationship of Link-ability and its relevant
variables: Average Error (AE), Drop-out-deleted Average Error (DAE), Link-ability Loss
(LL), Delta Compensation (DC), and Compensation-Ignored Loss (CIL).

Shown in Figs. 7 (c) and (d), with the increase of Drop-out services, the AE and DAE
don’t float monotonically. The variation tendency is impacted by the topology generated
by services invocation records, and connections involved by Drop-out services. The more
connections the Drop-out service involved, the more AE is generated.In general, as the
proportion of Drop-out service increases, AE is greater than DAE all the time. If the
total number of service is fixed, total Link-ability decreases monotonically while the
number of drop-out service increases. Specifically, Compensation-Ignored Loss, Total
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Link-ability, and Link-ability Loss follow this numerical relationship:

T L =CIL+LL. (7)

4.2.4 Performance analysis

How much reduction in Error Rate does the Drop-out Contingency bring? We sim-
ulate different proportion of Drop-out services as 5%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% among 1000 services and repeat the random drop-out for 1000 times. In
order to stick to reality, we assume a reverse probability on different propotion of Drop-
out occasions.The result is shown in Fig. 8.

Fig. 8. Performance analysis on error rate reduction.

The Drop-out contingency bring 54.18% reduction in Average Error Rate,
211.54% reduction in Error Rate in Mathematical Expectation.

5. CONCLUSION

We define a parameter ‘Link-ability’ which is literally dedicated to describe the abil-
ity of a service to connect with other services. Starting with proposing a Topology-
Retrievable SOA, this paper gives a detailed description on working procedure within
the new architecture. Then we put forward a series of mathematical strategy to generate
Link-ability and upgrade the mechanism with contingencies to correct calculations when
service exit the service pool. Lastly, we perform two series of experiment to strengthen
that Link-ability is capable of recording compatibility of the target service by considering
all the topology of the pool, and at the same time, can reduce error rate by 54.18% in
average when services exit the pool.

REFERENCES

1. S. Berrani, A. Yachir, S. Mahmoudi, B. Djamaa, and M. Aissani, “Towards a new se-
mantic model for service-based iot applications,” Journal of Information Science and
Engineering, Vol. 38, 2022, pp. 38-39.



1336 SHIYANG MA, YULONG SHEN, XUEWEN DONG, WEI TONG, LINGXIAO YANG

2. H. Xiao, C. Xu, Z. Feng, R. Ding, S. Yang, L. Zhong, J. Liang, and G.-M. Muntean,
“A transcoding-enabled 360° vr video caching and delivery framework for edge-
enhanced next-generation wireless networks,” IEEE Journal on Selected Areas in
Communications, Vol. 40, 2022, pp. 1615-1631.

3. T. Peng, H. Wang, C. Liang, P. Dong, Y. Wei, J. Yu, and L. Zhang, “Value-aware
cache replacement in edge networks for internet of things,” Transactions on Em-
erging Telecommunications Technologies, Vol. 32, 2021, p. e4261.

4. Y. Shen, T. Zhang, Y. Wang, H. Wang, and X. Jiang, “Microthings: A generic IoT
architecture for flexible data aggregation and scalable service cooperation,” IEEE
Communications Magazine, Vol. 55, 2017, pp. 86-93.

5. J. Thomas, M. Thomas, and G. Ghinea, “Modeling of web services flow,” in Proceed-
ings of IEEE International Conference on E-Commerce, 2003, pp. 391-398.

6. P. P. Ray, “A survey on internet of things architectures,” Journal of King Saud Uni-
versity-Computer and Information Sciences, Vol. 30, 2018, pp. 291-319.

7. Y. A. Ridhawi and A. Karmouch, “Decentralized plan-free semantic-based service
composition in mobile networks,” IEEE Transactions on Services Computing, Vol. 8,
2015, pp. 17-31.

8. L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, “Recommending web services via combin-
ing collaborative filtering with content-based features,” in Proceedings of IEEE 20th
International Conference on Web Services, 2013, pp. 42-49.

9. M. Frank, D. Drikakis, and V. Charissis, “Machine-learning methods for computa-
tional science and engineering,” Computation, Vol. 8, 2020, p. 15.

10. C. Wu, W. Qiu, X. Wang, Z. Zheng, and X. Yang, “Time-aware and sparsity-tolerant
QoS prediction based on collaborative filtering,” in Proceedings of IEEE Interna-
tional Conference on Web Services, 2016, pp. 637-640.

11. X. Zhu, X.-Y. Jing, D. Wu, Z. He, J. Cao, D. Yue, and L. Wang, “Similarity-
maintaining privacy preservation and location-aware low-rank matrix factorization
for qos prediction based web service recommendation,” IEEE Transactions on Ser-
vices Computing, Vol. 14, 2021, pp. 889-902.

12. L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, “Personalized qos prediction
forweb services via collaborative filtering,” in Proceedings of IEEE International
Conference on Web Services, 2007, pp. 439-446.

13. Z. Zheng, H. Ma, M. R. Lyu, and I. King, “WSRec: A collaborative filtering based
web service recommender system,” in Proceedings of IEEE International Conference
on Web Services, 2009, pp. 437-444.

14. Y. Jiang, J. Liu, M. Tang, and X. Liu, “An effective web service recommendation
method based on personalized collaborative filtering,” in Proceedings of IEEE Inter-
national Conference on Web Services, 2011, pp. 211-218.

15. L. Ding, G. Kang, J. Liu, Y. Xiao, and B. Cao, “Qos prediction for web services
via combining multi-component graph convolutional collaborative filtering and deep
factorization machine,” in Proceedings of IEEE International Conference on Web
Services, 2021, pp. 551-559.

16. Y. Xiao, G. Kang, J. Liu, B. Cao, and L. Ding, “WSGCN4SLP: Weighted signed
graph convolutional network for service link prediction,” in Proceedings of IEEE
International Conference on Web Services, 2021, pp. 135-144.



LINK-ABILITY 1337

17. X. Chen, X. Liu, Z. Huang, and H. Sun, “RegionKNN: A scalable hybrid collabora-
tive filtering algorithm for personalized web service recommendation,” in Proceed-
ings of IEEE International Conference on Web Services, 2010, pp. 9-16.

18. W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web service qos predic-
tion with location-based regularization,” in Proceedings of IEEE 19th International
Conference on Web Services, 2012, pp. 464-471.

19. C.-W. Lin, “Poster: Formal qos compatibility verification for components on time-
sensitive networking,” in Proceedings of IEEE Vehicular Networking Conference,
2018, pp. 1-2.

20. A. Pastukh, E. Deviatkin, V. Tikhvinskiy, and A. Kulakaeva, “Compatibility studies
between 5G IoT networks and fixed service in the 6425-7125 mhz band,” in Pro-
ceedings of International Conference on Engineering Management of Communica-
tion and Technology, 2021, pp. 1-4.

21. Y. Jin, W. Guo, and Y. Zhang, “A time-aware dynamic service quality prediction
approach for services,” Tsinghua Science and Technology, Vol. 25, 2020, pp. 227-
238.

22. Y. Lee, “QoS management for soa by synchronizing quality context in UDDI,” in Pro-
ceedings of the 2nd International Conference on Future Generation Communication
and Networking Symposia, Vol. 1, 2008, pp. 17-22.

23. G. Saez, A. Sliva, and M. Blake, “Web services-based data management: evaluating
the performance of UDDI registries,” in Proceedings of IEEE International Confer-
ence on Web Services, 2004, pp. 830-831.

24. W. Tong, X. Dong, Y. Shen, and X. Jiang, “A hierarchical sharding protocol for multi-
domain iot blockchains,” in Proceedings of IEEE International Conference on Com-
munications, 2019, pp. 1-6.

25. D. A. Alfenas, D. P. Shibata, J. Jose, and M. R. P. Barretto, “Adaptive markov sys-
tems: Formulation and framework,” IEEE Latin America Transactions, Vol. 12, 2014,
pp. 1271-1277.

26. S. Dong, Z. Wu, Y. Pan, H. Su, and Y. Liu, “Hidden-markov-model-based asyn-
chronous filter design of nonlinear markov jump systems in continuous-time do-
main,” IEEE Transactions on Cybernetics, Vol. 49, 2019, pp. 2294-2304.

27. M. Kaouan, D. Bouchiha, S. M. Benslimane, and S. Boukli-Hacene, “Towards ser-
vice ontology for web services storage and discovery,” in Proceedings of the 4th
International Symposium on Informatics and its Applications, 2020, pp. 1-6.

28. K. Tamilarasi and M. Ramakrishnan, “Design of an intelligent search engine-based
UDDI for web service discovery,” in Proceedings of International Conference on
Recent Trends in Information Technology, 2012, pp. 520-525.

29. S. Simi and A. Sherin, “A centrality based random walk approach for topology for-
mation in networks,” in Proceedings of International Conference on Wireless Com-
munications, Signal Processing and Networking, 2017, pp. 1468-1472.

30. C. Xiumei, B. Jingwei, W. Yan, and C. Qiaoqiao, “Semi-supervised image segmen-
tation based on k- means algorithm and random walk,” in Proceedings of IEEE Sym-
posium Series on Computational Intelligence, 2019, pp. 2853-2856.



1338 SHIYANG MA, YULONG SHEN, XUEWEN DONG, WEI TONG, LINGXIAO YANG

Shiyang Ma received the BE degree in Telecommunica-
tions Engineering from Xidian University, Xi’an, China, in 2015
and is currently working toward the Ph.D. degree in the School
of Computer Science and Technology, Xidian University. His
current research interests are semantic technology, service com-
puting, IoT, and blockchain.

Yulong Shen received the BS and MS degrees in Computer
Science and Ph.D. degree in Cryptography from Xidian Univer-
sity, Xi’an, China, in 2002, 2005, and 2008, respectively. He
is currently a Professor at the School of Computer Science and
Technology, Xidian University, China. He is also an Associate
Director of the Shaanxi Key Laboratory of Network and Sys-
tem Security and a member of the State Key Laboratory of Inte-
grated Services networks Xidian University, China. He has also
served on the technical program committees of several interna-
tional conferences, including ICEBE, INCoS, CIS and SOWN.
His research interests include wireless network security and cl-
oud computing security.

Xuewen Dong received the BE, MS and Ph.D. degrees
in Computer Science and Technology from Xidian University,
Xi’an, China, in 2003, 2006 and 2011, respectively. From 2016
to 2017, he was a Visiting Scholar with Oklahoma State Uni-
versity, OK, USA. He is currently a Professor with the School
of Computer Science, Xidian University. His research interests
include cognitive radio network, blockchain, wireless network
security and privacy.



LINK-ABILITY 1339

Wei Tong received the Ph.D. degree in Cyberspace Security
from Xidian University, China, in 2022. He is currently a Joint
Post-Doctoral of the Hangzhou Institute of Technology and the
School of Computer Science and Technology, Xidian University.
His current research interest is blockchain technology and appli-
cation.

Lingxiao Yang received the B.E. degree in Network Engi-
neering from Xidian University in 2018. He is a member of the
Shaanxi Key Laboratory of Network and System Security. He is
currently pursuing the Ph.D. degree at the School of Computer
Science and Technology, Xidian University, China. His research
interests include blockchain and machine learning.


