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For write-intensive workloads, reclaiming free blocks in flash SSDs is expensive 

due to data fragmentation problem that leads to performance degradation. This paper ad-
dresses that problem in MongoDB, a popular document store in the current market, by 
introducing a novel stream mapping scheme that exploits unique characteristics of Mon-
goDB and multi-streamed technology. It dynamically assigns streams for corresponding 
writes according to their hotness values and distinguishes writes on primary index files 
from writes on secondary index files. The proposed method is high-performance, low- 
overhead, and independent of data models or workloads. Empirical results in Linkbench 
benchmark show that compared to the original WiredTiger our approach improves the 
throughput and reduces the 99th-percentile latency by up to 65% and 46.2% respectively. 
Compared to the best-performance in the prior research, our approach improves the 
throughput and reduces the 99th-percentile latency by up to 23% and 28.5% respectively. 
Distinguishing writes on primary index files from writes on secondary index files en-
hances the throughput and the 99th-percentile latency by up to 11.7% and 15.7% respec-
tively. Moreover, by tuning the leaf page size in B+Tree of MongoDB, we can signifi-
cantly improve the throughput by 1.62.1 in Linkbench.      
 
Keywords: data fragmentation, hot/cold data identification, multi-streamed SSD, NoSQL 
database, MongoDB 
 
 

1. INTRODUCTION 
 

NAND flash Solid state drives (SSDs) perform erase-before-write such that they 
erase a non-empty data block before writing new pages on that block [1, 2]. Because 
erase operations are orders of magnitude slower than read operations and write opera-
tions [3], flash SSDs write updated data in empty blocks and mark the old data pages as 
invalid instead of erasing the current data blocks. Garbage Collection (GC), a component 
of Flash Translation Layer (FTL) inside flash SSD, is responsible for reclaiming free 
blocks when the number of empty blocks is lower than a threshold. During this process, 
if a non-empty data block is selected as a victim for reclaiming, valid pages from that 
block need to be copied back to another empty block before the actual erase operation is 
done. That leads to increasing the overhead of the reclaiming process. Moreover, NAND 
flash blocks have a limited number of erase cycles; Flash FTLs use wear-leveling, a 
technique that ensures writes are distributed evenly among flash blocks, to enhance the 
lifespan of flash SSD. 

The locality of data access has a significant impact on the performance of flash 
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memory and its lifetime due to the high-overhead of reclaiming free blocks and wear- 
leveling. In practice, IO workloads from clients exist skewness, i.e., a small proportion of 
data has frequently accessed [4-6]. That forms the hot logical block addresses (LBAs) 
(LBAs have frequently accessed) and the cold LBAs (remain LBAs have less frequently 
accessed) which are called in short as hot data and cold data respectively. Data frag-
mentation in flash SSD happens when one physical block includes hot data and cold data 
which in turn increase the overhead of reclaiming blocks significantly. 

Data fragmentation problem can be solved by identifying hot/cold data either based 
on update frequency [7-9] or based on history address information [10]. However, those 
approaches need to keep track of metadata in DRAM and high-cost of CPU for identify-
ing hot/cold blocks thus increase the overhead of the system. Min et al. [11] design a 
Flash-oriented file system that groups hot and cold segments according to write frequen-
cies. Park et al. [12] use a write buffer in the SSD’s controller to improve the perfor-
mance of the system by separating sequential writes from random writes. 

With the high volumes and varieties of generated data, not-only SQL (NoSQL) solu-
tions have become the alternatives for traditional RDBMSs [13-17]. Data fragmentation 
in DBMSs is a common problem not only in RDBMS but also in NoSQL solutions. For 
instance, Cassandra and RocksDB take the log-structured merge (LSM) tree [18] ap-
proach that has different update lifetime for files in each level of the LSM tree. Multi- 
streamed SSD (MSSD) technique [4, 5] assign different streams to different file types in 
Cassandra, RocksDB, so that writes on the similar update lifetimes can issue on the same 
physical data blocks. 

In the virtualization environment, data fragmentation exists in flash SSDs when vir-
tual machines have different IO workloads but share the same physical storage devices. 
One solution to that problem is that writes from one virtual machine are mapped to the 
same stream so that the scheduler can provide the corresponding resource [19]. 

To the best of our knowledge, there are few works address the data fragmentation 
problem in MongoDB [20]  one of the common document stores with WiredTiger [21] 
as the default storage engine. Most of the researchers compare RDBMSs with NoSQLs 
[22-25], address data modeling transformation [15, 26-29] or improve load-balanced 
sharding [30, 31]. Murugesan et al. [32] argue different logging techniques in MongoDB 
and propose a simple log management model that is useful for profiling the system. 
Based on the unique characteristics of space management in WiredTiger, TRIM com-
mands are used to reduce the overhead of MongoDB [33]. However, TRIM commands 
do not entirely solve the data fragmentation [4]. In another research, file-based approach 
and boundary-based approach are proposed to address the data fragmentation in Mon-
goDB [34]. However, those methods still have a level of data fragmentation such that 
writes from regions with different lifetimes are mapped to the same stream. Also, writes 
on primary indexes have different patterns and lifetimes compare to writes on secondary 
indexes. The boundary-based method is inadequate to distinguish writes on those two 
index types. 

To solve those problems, we propose a novel dynamic stream mapping (DSM) that 
is an online high-effective stream mapping based on hot/cold values of each data block. 
We summarize our contributions as below: 

 
 First, by investigating WiredTiger’s block management in detail and revisiting bound-
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ary-based approach with a complex data model, i.e., Linkbench benchmark [35], we 
point out two flaws existing in the approach: (1) writes from regions with different life-
time update are mapped to the same stream, and (2) writes from primary indexes mixed 
with writes from secondary indexes. 

 Based on this observation, we propose a novel mapping scheme named Dynamic-
Stream Mapping (DSM) that groups writes on corresponding streams based on their 
hotness values and separates writes on primary indexes from writes on secondary in-
dexes. In Linkbench, compared to the original WiredTiger, DSM improves the through- 
put and the 99th-percentile latency by up to 65% and 46.2% respectively. Compared to 
the best-performance method in the prior work, our proposed method enhances the 
throughput and the 99th-percentile latency by up to 23% and 28.5% respectively. 
Moreover, index filtering gains additional 11.7% and 15.7% improvement in terms of 
throughput and 99th-percentile latency respectively. 

 Lastly, we combine the leaf page size tuning with DSM. The final results improve the 
throughput by 1.62.1 for Linkbench benchmark. 

 
The rest of this paper is organized as follow. Section 2 explains the background of 

multi-streamed SSD and MongoDB in detail. We revisit the prior works in Section 3. 
Proposed methods and related algorithms are described in Section 4. Section 5 discusses 
the evaluation results and analysis. Lastly, the conclusion is given in Section 6. 

2. BACKGROUND 

This section provides a background of Multi-streamed SSD technique that originally 
used in Cassandra and exploited in our proposed method. Also, we briefly introduce the 
relationship between the data model in RDBMSs and MongoDB and discuss the block 
management mechanism of WiredTiger in detail. 

2.1 Multi-Streamed SSD  

Multi-streamed SSD is a technique allows applications from the user space or the 
kernel space explicitly assign a stream along with a write or pwrite system call. In the 
device layer, the FTL writes pages that have the same stream on the same physical SSD 
block [5]. Multi-streamed technique requires modifications of both OS’s kernel and the 
SSD’s firmware that are available in commercial products [36]. 

Fig. 1 compares the differences between the regular SSD and the multi-streamed 
SSD. Suppose that LBA2, LBA4, LBA6, and LBA8 are hot data; LBA1, LBA3, LBA5, 
and LBA7 are cold data. There are two write sequences occur on both SSDs. The first 
one continuously writes from LBA1 to LBA8 and the second one writes only hot data in 
the following order: LBA6, LBA2, LBA4, and LBA8. In the normal SSD, after the first 
sequence, the LBAs are appended in an empty block in order regardless of hot/cold data 
as shown in Fig. 1 (b). After the second write sequence, new LBAs are appended in 
block 2 according to their order. The old LBAs are marked as invalid in block 0 and 
block 1 as illustrated in Fig. 1 (c). In such case, if block 1 is a candidate for discarding in 
the GC processing, there are overheads of FTL for searching a new empty block and 
copying two valid LBAs (i.e., LBA5 and LBA7) back to the empty block before erasing 
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the block 1. 
Conversely, in multi-streamed SSD, writes are assigned to corresponding streams 

based on their frequency, i.e., hotness value. After the first write sequence, all hot LBAs 
are located in block 1, and all cold LBAs are located in block 0 as shown in Fig. 1 (e). 
The second sequence appends data in block 2 and marks invalid LBAs as in regular SSD, 
but all invalid pages locate in block 1 as illustrated in Fig. 1 (f). Erasing block 1 is fast 
because the FTL updates the mapping table without extra cost for searching new empty 
block and copying back valid LBAs. 

 

 
(a)                   (b)                    (c) 

 
(d)                   (e)                    (f) 

 
Fig. 1. Comparison between normal SSD and multi-streamed SSD. 

 

2.2 MongoDB and WiredTiger  

MongoDB is a popular document store in NoSQL solutions that shares many char-
acteristics with RDBMS such as secondary index support, transaction processing, and 
concurrency control. The data model in MongoDB can be mapped to the one in RDBMS. 
Database concepts of both models are similar. Collections, documents, and key-value 
pairs in MongoDB are mapped to tables, rows, and columns in RDBMS respectively. 

We research the internal block management of WiredTiger in detail to identify the 
causes of data fragmentation. WiredTiger keeps the metadata of free pages, allocated 
pages, and invalid pages in a special page called checkpoint page. There is only one 
checkpoint page is maintained in DRAM (i.e., live checkpoint), the other checkpoint 
pages located in non-volatile devices such as disks. WiredTiger flushes dirty pages from 
DRAM to disks through either eviction processes of the buffer pool or checkpoint pro-
cesses. WiredTiger neither adopts in-place updates as in traditional RDBMS nor ap-
pend-only approach as in LSM-based DBMS. Upon a write request, the space manage-
ment first searches for a free page to write on. Then after the data page is successfully 
written, WiredTiger marks the written page and the old page as valid and invalid respec-
tively. During the checkpoint time, invalid pages are reclaimed and reused in the next 
checkpoint. 
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Fig. 2. Reusing data at checkpoint time in WiredTiger. 

 

Fig. 2 illustrates how WiredTiger reuses invalid data at the checkpoint time. When 
an updated version of page B (i.e., B) is flushed to disk by an eviction process, the cor-
responding old version of page B is marked as invalid. Other updated pages (i.e., A, C, 
D, and E) are kept in the live checkpoint in DRAM. Before flushing those pages to disk, 
WiredTiger fetches the previous checkpoint page from disk to DRAM (step 1) and 
merges its metadata with the metadata of the live checkpoint (step 2) as shown in Fig. 2 
(a). Consequently, invalid data of the same pages exist in the current version are re-
claimed and can be reused again after the checkpoint process finished. After the merging 
phase, all dirty pages along with the live checkpoint are flushed to disk (step 3) as illus-
trated in Fig. 2 (b).  

This approach has two advantages: (1) Avoiding expensive compaction operations 
that are popular in LSM-based approaches, and (2) old versions can serve as the backups 
used in the recovery process. However, the approach has one drawback such that the 
valid data and invalid data of the same page are switched after each checkpoint, which 
forms an internal fragmentation in the SSD. 

3. FILE-BASED STREAM MAPPING AND BOUNDARY-BASED 
STREAM MAPPING 

We revisit the prior MSSD-based techniques in this section and argue the flaws in 
those methods by researching the IO patterns achieved from blktrace1. Moreover, we 
define the requirements that an optimized MSSD method should satisfy. 

3.1 File-based Stream Mapping 

Typically, different file types in DBMS have different data accessed frequencies and 
write patterns. As shown in Table 1, we use workloads with different operations such as 
create, read, update, delete (CRUD) from YCSB [37] and Linkbench [35] as in the pre-
vious research [34]. For simple data model in YCSB, workload A (Y-Update-Heavy), 
and only update workload (Y-Update-Only) are carried out. For complex data model in 
Linkbench, we use original Linkbench workload (LB-Original), mixed operations work- 
 

1
 Blktrace is a block layer IO tracing tool in Linux that generates traces of the IO traffic on block devices. 

(a) 

 

 

(b) 
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mation collected previously in the normal thread. 
Step 2: For each collection file or index file, computes pivot points that aid to grouping 

regions according to their hotness values computed in step 1. 
Step 3: Maps streams to regions using hotness values and pivot points computed in steps 

1 and 2. 
Step 4: For each region, predicts corresponding stream for the next checkpoint based on 

current mapped stream in step 3 and predicted-stream in the previous checkpoint.  
 
After remain works of checkpoint process finished, the system resumes the normal 

threads. We discuss the detail of each step in the below subsections. 

4.1 Stream Assignment at the Normal Thread 

We assign streams during the normal thread as in boundary-based method. The al-
gorithm in Fig. 4 is rewritten in Fig. 7. The main differences are in lines 7 and 12 where 
the streams file.sid1 and file.sid2 assigned to the top region and the bottom region of each 
file are no longer constants but recomputed after each checkpoint. For the first check-
point, the assigned streams are set by initial values. From the second checkpoint, assign-
ment for file.sid1 and file.sid2 are done at the checkpoint time that discussed in subsec-
tion 4.4. Statistical information per each region (the number of writes, the lower-bound 
offset, and the upper-bound offset of written files) are saved as illustrated at lines 7-9 and 
13-15 in DSM algorithm in Fig. 7.  

 

1: Require: 
+ boundary of each collection file and index file has computed 
+ Predicted-streams for two regions of each file i.e., file.sid1 and file.sid2 are computed 

2: Input: file, and offset to write on 
3: Output: sid - stream assign for this write 
4: boundary ← getboundary(file) 
5: if file is collection OR file is index then 
6: if offset < boundary then 
7: sid  file.sid1 
8: file.numw1  file.numw1 + 1 
9: file.off_min1  min(file.off_min1, offset) 
10: file.off_max1  max(file.off_max1, offset) 
11:  else 
12: sid ← file.sid2 
13: file.numw2  file.numw2 + 1 
14: file.off_min2  min(file.off_min2, offset) 
15: file.off_max2  max(file.off_max2, offset) 
16: else ►Other files i.e., metadata 
17: sid  OTHER_SID 

Fig. 7. Dynamic stream mapping algorithm (at a normal thread). 
 

4.2 Hotness Computing 

In the DSM approach, hotness value of a region is defined as the average number of 
writes occur per 4KB data page on that region. Notice that hotness value of writing data 
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in one region changed after each checkpoint, so the stream assignment should base on 
relative values rather than absolute values. To illustrate the idea, we use Fig. 3 (a) which 
is the IO pattern of a collection file as discussed from the previous experiment. For a 
given collection file or index file, there is a boundary partition the file into two regions 
(i.e., top and bottom) that located by file offsets named range1 and range2 respectively. 
For a given region, the writing density is computed as in Eq. (1). numwi is the number of 
writes on that region within a checkpoint window, PAGESIZE is set as 4KB. 

densityi = (numwi/rangei)  PAGESIZE (1) 

hotnessi = lg(densityi/ti  t1)) (2) 

where i = 1, 2 if writing on top region or bottom region respectively. 
Then, we compute the hotness value as in Eq. (2). Note that the checkpoint window 

is depended on: (1) type of workload, (2) ratio between cache size and database size, and 
(3) data model. Therefore, to eliminate those constraints, we divide the density by the 
interval time to get the writing density in a unit of time. Moreover, we adopt logarithmic 
scaling to solve the common sub-optimize problem that inspired from the proportional 
selection phase in Genetic Algorithm [38]. Fig. A.2 in the Appendix describes the detail 
implementation of hotness computing. 

4.3 Compute Pivot Points and Stream Mapping 

After hotness values of all regions are computed, the next step is to classify all re-
gions of one file type, e.g., collection into K groups. We partition a min-max range into K 
− 1 evenly disjoint sections using K − 1 pivot points pi such that: min ≤ pi ≤ max, where 1 
≤ i ≤ K − 1, min and max are minimum hotness value and maximum hotness value of all 
regions respectively. 

The pivot points are computed using Eq. (3). To increase the flexibility of the ap-
proach for various workloads, we use positive-integer weight parameter  by treating the 
first group and the last group (the “coldest” group and the “hottest” group) separately 
with the remains groups (the “warm” groups). Note that in a particular case when  
equals to K, all groups have equal weight. 

1

1

1 1 1

min (max min) (1/ )

min (max min) (( 1) / )

(( ) /( 2)) ( 1),     where 2
K

j K

p

p

p p p p k j j K


 



    


    
        

 (3) 

Next, for a given region, we assign it to a corresponding group according to its hot-
ness value as described in Eq. (4). Each group, in turn, mapped to a stream id. 

1 1
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1 1
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low-frequency write region (percentage of writes less than the THRESHOLD2) or low- 
frequency write on the whole file (total number of writes on two regions less than the 
THRESHOLD1) then that index file is considered as a primary index file. The last step 
predicts stream for each region of the underlying file at line 21. 

 

1: Require: number of writes on bottom region numw1 and bottom region numw2 are com-
puted for each file within the checkpoint 

2: Input: F  List of collection files and index files, K  number of groups 
3: Output: Stream ids of each collection or index file are mapped 
4: CP   ► Collection pivot points 
5: IP   ► Index pivot points 
6: cursid1  cursid2  nul ► streams in current checkpoint 
7: ProcessStat(F) 
8: ComputeHotness(F, coll_min, coll_max, idx_min, idx_max) 
9: ComputePivots(CP, K − 1, coll_min, coll_max) 
10: ComputePivots(IP, K − 1, idx_min, idx_max) 
11: for each file f in F do ► phase1: Compute the total writes in a stream id 
12: if f is collection then 
13: cursid1  MapSIDByHotness(hotness1f, CP, COLL_INIT_SID) 
14: cursid2  MapSIDByHotness(hotness2f, CP, COLL_INIT_SID) 
15:  else ► Index files 
16: if (globalpct1f + globalpct2f ≤ THRESHOLD1) OR 
   (globalpct1f ≤ THRESHOLD2) OR 
      (globalpct2f ≤ THRESHOLD2) then ► Primary index 
17: cursid2  cursid1  PRIMARY_IDX_SID 
18: else 
19: cursid1  MapSIDByHotness(hotness1f, IP, IDX_INIT_SID) 
20: cursid2  MapSIDByHotness(hotness2f, IP, IDX_INIT_SID) 
21: PredictStream(f, cursid1, cursid2)

Fig. 9. Dynamic stream mapping algorithm (at a checkpoint thread). 

Our proposed DSM approach is low overhead and dynamically adapts to any work-
load, any data model. Firstly, for each collection file or index file, we use a data structure 
named mssd-object to capture the statistical information (i.e., number of writes, mini-
mum and maximum write offset) for each region. Because the data model in NoSQL 
DBMS is flexibly changed rather than fixed as in RDBMS, we allocate those mssd-ob- 
jects dynamically based on the current number of files (i.e., number of collections or 
number of indexes). Moreover, during the normal thread, instead of updating statistical 
information for each data block as in previous studies, we update on region-based mssd- 
objects that have small memory footprint (i.e., lower than 100B). Also, hotness values 
and stream mapping are based on relative values (i.e., proportions) rather than absolute 
values. Thus our proposed method works independently of the workloads. 

5. EVALUATION AND ANALYSIS 

This section describes experiment settings, evaluation results of our proposed method  
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compared to the original WiredTiger (as the base line) and prior methods. We also ana-
lyze the effectiveness of distinguishing writes on primary index files from writes on sec-
ondary index files as well as the effectiveness of reducing the maximum leaf page size of 
collection file as done in the prior research. 

5.1 Experimental Settings 

To fairly compare our proposed method with file-based approach and boundary- 
based approach, we adopt the same experimental setup with the previous research [34]. 
To enable multi-streamed SSD technique, we use both modified Linux kernel 3.13.11 
and customized-firmware Samsung 840 Pro SSD as in [4]. For eliminating network la-
tency, we set up both the client and the server in the same commodity computer with 48 
cores Intel Xeon 2.2GHz processor, 32GB DRAM. In the client layer, we use YCSB 
0.5.02 and LinbenchX 0.13 (an extended version of Linkbench that support MongoDB) 
with diversity workloads as shown in Table 1. The number of documents in YCSB is set 
to 23 million, and maxid1 in Linkbench is set to 80 million. All benchmarks are executed 
during two hours with 40 client threads. In the server layer, we use a stand-alone Mon-
goDB 3.2.14 server with DirectIO and various cache sizes from 5GB to 30GB. Wired-
Tiger is used as the storage engine with all default settings. 

5.2 Multi-Streamed SSD Optimization Evaluation 

Table 2 summarizes mapping schemes of all methods. There is no stream mapping 
in the original WiredTiger, so all writes are mapped to the default stream 0 (reserved for 
files in the Linux kernel). In the file-based approach, each file type is mapped to a dis-
tinguish stream. In the case of boundary-based approach, all collection files are mapped 
to two streams: one for top regions and another for bottom regions. The same mapping 
scheme is adopted for index files. In the DSM approach, we use there-group mapping 
DSM (i.e., set K equal to 3) with three streams for collection files and three streams for 
secondary index files. Writes on primary index files are mapped to a distinguish stream 
to writes on secondary index files. There are some important notes: 

 
 Except for the DSM method, the remains map writes on primary index files and writes 

on secondary index files to the same stream. 
 Writes on metadata files and writes on journal files are mapped to the same stream for 

all methods. 
 The Samsung 840 Pro SSD support maximum only eight streams from 0 to 7. In the 

DSM approach, six streams are used for collection files and secondary index files. 
Therefore, writes on journal files and writes on primary index files share the same 
stream (i.e., stream1). It is adequate because writes on those files follow lightly se-
quential patterns, hence can be considered as cold data and can be mapped in the same 
stream. 

 
2 https://github.com/brianfrankcooper/YCSB/releases/tag/0.5.0 
3 https://github.com/Percona-Lab/linkbenchX 
4 https://github.com/mongodb/mongo/archive/r3.2.1.tar.gz 
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benefits from DSM. For instance, DSM can be adopted in InnoDB storage engine in 
MySQL that uses one large per-table user tablespace for both primary index and second-
ary indexes and one large system tablespace file for metadata, double write buffer, and 
rollback segments. 

There is a trade-off between the performance improvement and storage footprint 
when reducing the leaf page size of collection files. The database system must fetch a 
whole page (usually some KBs) from the storage device to the buffer pool to read a 
somebytes record. With the same buffer pool size, the 4KB page system could keep more 
cache pages than the 32KB page system, thus reducing more IO accesses and achieving 
better performance. However, with the same number of records (i.e., documents), reduc-
ing the leaf page size from 32KB to 4KB lead to increasing number of leaf pages and 
internal pages in the B+Tree. Consequently, collection files and index files become larger. 
For instance, reducing the leaf page size of collection files from 32KB to 4KB leads to 
the database size increases from 51.7GB to 58.4GB (+12.8%) in YCSB, and increases 
from 55GB to 108.5GB (approximate double) in Linkbench. 

6. CONCLUSION 

In this paper, we have discussed data fragmentation in MongoDB as well as the 
proposed methods in detail. The file-based method is the simplest one that solves the data 
fragmentation due to the different lifetime of writes on file types but remains internal 
fragmentation caused by asymmetric regions writing. For the simple data model in 
YCSB, the boundary-based approach is adequate to solve the internal fragmentation that 
shows good performance improvement. However, it retains cross-region fragmentation 
with complex data model in Linkbench. To address that challenge, we extended the 
boundary-based method by introducing DSM, a novel low-overhead stream mapping 
scheme that dynamically grouping writes on corresponding streams based on hotness 
values in each checkpoint period. DSM works independently of data models, workloads, 
and the limitation of the number of streams that the physical SSD supported. The number 
of groups and other parameters are configurable to gain the best performance. Stream 
mapping using primary index filtering in DSM has considerable performance improve-
ment. Moreover, simple data model in YCSB gains more benefits from decreasing B+ 
tree leaf page size than complex data model in Linkbench. In practical applications, the 
data models are complex with many collection files, index files rather than simply as in 
YCSB. Our proposed method is adequate for such applications thus it works effectively 
regardless of data models or workloads. 

In the next research, we plan to evaluate the performance of our proposed method 
with emerging multi-streamed SSD devices (i.e., NVMe SSD). We also optimize the 
algorithms for distributed environment regard to replica sets and shards. 
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Fig. A.2 is the detailed implementation of computing density value and hotness 
value as described in Eqs. (1) and (2) respectively. 

 

1: function PROCESSSTAT(F) ► Processing statistical data for each file i.e., hotness 
value, global percentage of write 

2: coll_count2  coll_count1  0 
3: idx_count2  idx_count1  0 
4: for each file f in F do ► phase1: Compute the total writes 
5: if f is collection then 
6: coll_count1  coll_count1 + numw1f  

7: coll_count2  coll_count2 + numw2f 
8: else 
9: idx_count1  idx_count1+numw1f 
10: idx_count2  idx_count2+numw2f 
11: for each file f in F do ► phase2: Compute the hotness 
12: if f is collection then 
13: globalpct1f    numw1f /coll_count1 ∗ 100 
14: globalpct2f    numw2f /coll_count2 ∗ 100 
15: else 
16: globalpct1f    numw1f /idx_count1 ∗ 100 
17: globalpct2f    numw2f /idx_count2 ∗ 100 

Fig. A.1. Algorithm of processing statistical information. 

1: function COMPUTEHOTNESS (F, coll_min, coll_max, idx_min, idx_max)  
►Processing statistical data for each file i.e., hotness value, global percentage of write 

2: for each file f in F do ► phase2: Compute the hotness 
3: //Number of 4KB page writes on each range in a unit of time 
4: density1  (numw1f  ∗ 4096)/range1f /(t2−t1)  

5: density2  (numw2f  ∗ 4096)/range2f /(t2−t1) 

6: hotness1f   lg(density1/t) 
7: hotness2f   lg(density2/t) 
8: if f is collection then 
9: coll_min  min(coll_min, hotness1f , hotness2f ) 
10: coll_max  max(coll_max, hotness1f , hotness2f ) 
11: else 
12: idx_min  min(idx_min, hotness1f , hotness2f ) 
13: idx_max  max(idx_max, hotness1f , hotness2f ) 

Fig. A.2. Algorithm of computing hotness. 

Fig. A.3 is the detailed implementation of Eq. (3). Remind that alpha is the positive 
integer. The first and the last pivot point are computed as in line 2 and line 3 respectively. 
Then other pivot points are computed in the for loop in lines 5-6. 

We describe the detailed implementation of Eq. (4) in Fig. A.4. For a given region, 
we find the pair of pivot points such that pivotsj ≤ hotness ≤ pivotsj+1, then assign the 
corresponding stream sid to that region in line 3, 5, and 9. 
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Fig. A.5 describes the detailed implementation of Eq. (5). For a given file, if the 
current computed stream e.g., cursid1 is same with the predicted stream in the previous 
checkpoint (sid1file), it means the hot-cold trends is unchanged then the predicted stream 
for next checkpoint is kept same as before. Otherwise, we map that region to the other 
stream (cursid2). 

 

1: function COMPUTEPIVOTS (pivots, n, min, max) 
2: pivots[0]     min + (max−min)/ 
3: pivots[n−1]   min+(max−min)∗(−1)/ 
4: step  (pivots[n−1]− pivots[0])/(n−1) 
5: for i  1 to (n−2) do 
6:    pivots[i]  pivots[0]+ step ∗ i 

Fig. A.3. Algorithm of computing pivot points. 

1: function MAPSIDBYHOTNESS(hotness, pivots, n, initsid) 
2: if hotness ≤ pivots[0] then                                    ► the most left 
3: sid  initsid 
4: else if pivots[n−1] ≤ hotness then                               ► the most right 
5:    sid  initsid + n 
6: else 
7:    Find the pivot point j in array pivots such that: 
8:    pivots[j] ≤ hotness ≤ pivots[j + 1] 
9:    sid  initsid + (j + 1) 
10: return sid 

Fig. A.4. Algorithm of mapping SID by hotness. 

1: function PREDICTSTREAM(file, cursid1, cursid2) 
2: if sid1file == cursid1 then ► the hot-cold trend is same, do not swap 
3: sid1file  cursid1  
4: else 
5: sid1file  cursid2 
6: if sid2file == cursid2 then ► the hot-cold trend is same, do not swap 
7: sid2file  cursid2  
8: else 
9: sid2file  cursid1 

Fig. A.5. Algorithm of stream prediction. 
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