
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 447-469 (2019)
DOI: 10.6688/JISE.201903_35(2).0012

447

DSM: A Low-Overhead, High-Performance, Dynamic
Stream Mapping Approach for MongoDB

TRONG-DAT NGUYEN AND SANG-WON LEE+

College of Information and Communication Engineering
Sungkyunkwan University

Suwon, 16419 Korea
E-mail: {datnguyen; swlee}@skku.edu

For write-intensive workloads, reclaiming free blocks in flash SSDs is expensive

due to data fragmentation problem that leads to performance degradation. This paper ad-
dresses that problem in MongoDB, a popular document store in the current market, by
introducing a novel stream mapping scheme that exploits unique characteristics of Mon-
goDB and multi-streamed technology. It dynamically assigns streams for corresponding
writes according to their hotness values and distinguishes writes on primary index files
from writes on secondary index files. The proposed method is high-performance, low-
overhead, and independent of data models or workloads. Empirical results in Linkbench
benchmark show that compared to the original WiredTiger our approach improves the
throughput and reduces the 99th-percentile latency by up to 65% and 46.2% respectively.
Compared to the best-performance in the prior research, our approach improves the
throughput and reduces the 99th-percentile latency by up to 23% and 28.5% respectively.
Distinguishing writes on primary index files from writes on secondary index files en-
hances the throughput and the 99th-percentile latency by up to 11.7% and 15.7% respec-
tively. Moreover, by tuning the leaf page size in B+Tree of MongoDB, we can signifi-
cantly improve the throughput by 1.62.1 in Linkbench.

Keywords: data fragmentation, hot/cold data identification, multi-streamed SSD, NoSQL
database, MongoDB

1. INTRODUCTION

NAND flash Solid state drives (SSDs) perform erase-before-write such that they
erase a non-empty data block before writing new pages on that block [1, 2]. Because
erase operations are orders of magnitude slower than read operations and write opera-
tions [3], flash SSDs write updated data in empty blocks and mark the old data pages as
invalid instead of erasing the current data blocks. Garbage Collection (GC), a component
of Flash Translation Layer (FTL) inside flash SSD, is responsible for reclaiming free
blocks when the number of empty blocks is lower than a threshold. During this process,
if a non-empty data block is selected as a victim for reclaiming, valid pages from that
block need to be copied back to another empty block before the actual erase operation is
done. That leads to increasing the overhead of the reclaiming process. Moreover, NAND
flash blocks have a limited number of erase cycles; Flash FTLs use wear-leveling, a
technique that ensures writes are distributed evenly among flash blocks, to enhance the
lifespan of flash SSD.

The locality of data access has a significant impact on the performance of flash

Received October 10, 2017; revised March 26, 2018; accepted July 10, 2018.
Communicated by Chang-Tien Lu.
+ Corresponding author.

TRONG-DAT NGUYEN AND SANG-WON LEE

448

memory and its lifetime due to the high-overhead of reclaiming free blocks and wear-
leveling. In practice, IO workloads from clients exist skewness, i.e., a small proportion of
data has frequently accessed [4-6]. That forms the hot logical block addresses (LBAs)
(LBAs have frequently accessed) and the cold LBAs (remain LBAs have less frequently
accessed) which are called in short as hot data and cold data respectively. Data frag-
mentation in flash SSD happens when one physical block includes hot data and cold data
which in turn increase the overhead of reclaiming blocks significantly.

Data fragmentation problem can be solved by identifying hot/cold data either based
on update frequency [7-9] or based on history address information [10]. However, those
approaches need to keep track of metadata in DRAM and high-cost of CPU for identify-
ing hot/cold blocks thus increase the overhead of the system. Min et al. [11] design a
Flash-oriented file system that groups hot and cold segments according to write frequen-
cies. Park et al. [12] use a write buffer in the SSD’s controller to improve the perfor-
mance of the system by separating sequential writes from random writes.

With the high volumes and varieties of generated data, not-only SQL (NoSQL) solu-
tions have become the alternatives for traditional RDBMSs [13-17]. Data fragmentation
in DBMSs is a common problem not only in RDBMS but also in NoSQL solutions. For
instance, Cassandra and RocksDB take the log-structured merge (LSM) tree [18] ap-
proach that has different update lifetime for files in each level of the LSM tree. Multi-
streamed SSD (MSSD) technique [4, 5] assign different streams to different file types in
Cassandra, RocksDB, so that writes on the similar update lifetimes can issue on the same
physical data blocks.

In the virtualization environment, data fragmentation exists in flash SSDs when vir-
tual machines have different IO workloads but share the same physical storage devices.
One solution to that problem is that writes from one virtual machine are mapped to the
same stream so that the scheduler can provide the corresponding resource [19].

To the best of our knowledge, there are few works address the data fragmentation
problem in MongoDB [20] one of the common document stores with WiredTiger [21]
as the default storage engine. Most of the researchers compare RDBMSs with NoSQLs
[22-25], address data modeling transformation [15, 26-29] or improve load-balanced
sharding [30, 31]. Murugesan et al. [32] argue different logging techniques in MongoDB
and propose a simple log management model that is useful for profiling the system.
Based on the unique characteristics of space management in WiredTiger, TRIM com-
mands are used to reduce the overhead of MongoDB [33]. However, TRIM commands
do not entirely solve the data fragmentation [4]. In another research, file-based approach
and boundary-based approach are proposed to address the data fragmentation in Mon-
goDB [34]. However, those methods still have a level of data fragmentation such that
writes from regions with different lifetimes are mapped to the same stream. Also, writes
on primary indexes have different patterns and lifetimes compare to writes on secondary
indexes. The boundary-based method is inadequate to distinguish writes on those two
index types.

To solve those problems, we propose a novel dynamic stream mapping (DSM) that
is an online high-effective stream mapping based on hot/cold values of each data block.
We summarize our contributions as below:

 First, by investigating WiredTiger’s block management in detail and revisiting bound-

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 449

ary-based approach with a complex data model, i.e., Linkbench benchmark [35], we
point out two flaws existing in the approach: (1) writes from regions with different life-
time update are mapped to the same stream, and (2) writes from primary indexes mixed
with writes from secondary indexes.

 Based on this observation, we propose a novel mapping scheme named Dynamic-
Stream Mapping (DSM) that groups writes on corresponding streams based on their
hotness values and separates writes on primary indexes from writes on secondary in-
dexes. In Linkbench, compared to the original WiredTiger, DSM improves the through-
put and the 99th-percentile latency by up to 65% and 46.2% respectively. Compared to
the best-performance method in the prior work, our proposed method enhances the
throughput and the 99th-percentile latency by up to 23% and 28.5% respectively.
Moreover, index filtering gains additional 11.7% and 15.7% improvement in terms of
throughput and 99th-percentile latency respectively.

 Lastly, we combine the leaf page size tuning with DSM. The final results improve the
throughput by 1.62.1 for Linkbench benchmark.

The rest of this paper is organized as follow. Section 2 explains the background of

multi-streamed SSD and MongoDB in detail. We revisit the prior works in Section 3.
Proposed methods and related algorithms are described in Section 4. Section 5 discusses
the evaluation results and analysis. Lastly, the conclusion is given in Section 6.

2. BACKGROUND

This section provides a background of Multi-streamed SSD technique that originally
used in Cassandra and exploited in our proposed method. Also, we briefly introduce the
relationship between the data model in RDBMSs and MongoDB and discuss the block
management mechanism of WiredTiger in detail.

2.1 Multi-Streamed SSD

Multi-streamed SSD is a technique allows applications from the user space or the
kernel space explicitly assign a stream along with a write or pwrite system call. In the
device layer, the FTL writes pages that have the same stream on the same physical SSD
block [5]. Multi-streamed technique requires modifications of both OS’s kernel and the
SSD’s firmware that are available in commercial products [36].

Fig. 1 compares the differences between the regular SSD and the multi-streamed
SSD. Suppose that LBA2, LBA4, LBA6, and LBA8 are hot data; LBA1, LBA3, LBA5,
and LBA7 are cold data. There are two write sequences occur on both SSDs. The first
one continuously writes from LBA1 to LBA8 and the second one writes only hot data in
the following order: LBA6, LBA2, LBA4, and LBA8. In the normal SSD, after the first
sequence, the LBAs are appended in an empty block in order regardless of hot/cold data
as shown in Fig. 1 (b). After the second write sequence, new LBAs are appended in
block 2 according to their order. The old LBAs are marked as invalid in block 0 and
block 1 as illustrated in Fig. 1 (c). In such case, if block 1 is a candidate for discarding in
the GC processing, there are overheads of FTL for searching a new empty block and
copying two valid LBAs (i.e., LBA5 and LBA7) back to the empty block before erasing

TRONG-DAT NGUYEN AND SANG-WON LEE

450

the block 1.
Conversely, in multi-streamed SSD, writes are assigned to corresponding streams

based on their frequency, i.e., hotness value. After the first write sequence, all hot LBAs
are located in block 1, and all cold LBAs are located in block 0 as shown in Fig. 1 (e).
The second sequence appends data in block 2 and marks invalid LBAs as in regular SSD,
but all invalid pages locate in block 1 as illustrated in Fig. 1 (f). Erasing block 1 is fast
because the FTL updates the mapping table without extra cost for searching new empty
block and copying back valid LBAs.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Comparison between normal SSD and multi-streamed SSD.

2.2 MongoDB and WiredTiger

MongoDB is a popular document store in NoSQL solutions that shares many char-
acteristics with RDBMS such as secondary index support, transaction processing, and
concurrency control. The data model in MongoDB can be mapped to the one in RDBMS.
Database concepts of both models are similar. Collections, documents, and key-value
pairs in MongoDB are mapped to tables, rows, and columns in RDBMS respectively.

We research the internal block management of WiredTiger in detail to identify the
causes of data fragmentation. WiredTiger keeps the metadata of free pages, allocated
pages, and invalid pages in a special page called checkpoint page. There is only one
checkpoint page is maintained in DRAM (i.e., live checkpoint), the other checkpoint
pages located in non-volatile devices such as disks. WiredTiger flushes dirty pages from
DRAM to disks through either eviction processes of the buffer pool or checkpoint pro-
cesses. WiredTiger neither adopts in-place updates as in traditional RDBMS nor ap-
pend-only approach as in LSM-based DBMS. Upon a write request, the space manage-
ment first searches for a free page to write on. Then after the data page is successfully
written, WiredTiger marks the written page and the old page as valid and invalid respec-
tively. During the checkpoint time, invalid pages are reclaimed and reused in the next
checkpoint.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 451

Fig. 2. Reusing data at checkpoint time in WiredTiger.

Fig. 2 illustrates how WiredTiger reuses invalid data at the checkpoint time. When
an updated version of page B (i.e., B) is flushed to disk by an eviction process, the cor-
responding old version of page B is marked as invalid. Other updated pages (i.e., A, C,
D, and E) are kept in the live checkpoint in DRAM. Before flushing those pages to disk,
WiredTiger fetches the previous checkpoint page from disk to DRAM (step 1) and
merges its metadata with the metadata of the live checkpoint (step 2) as shown in Fig. 2
(a). Consequently, invalid data of the same pages exist in the current version are re-
claimed and can be reused again after the checkpoint process finished. After the merging
phase, all dirty pages along with the live checkpoint are flushed to disk (step 3) as illus-
trated in Fig. 2 (b).

This approach has two advantages: (1) Avoiding expensive compaction operations
that are popular in LSM-based approaches, and (2) old versions can serve as the backups
used in the recovery process. However, the approach has one drawback such that the
valid data and invalid data of the same page are switched after each checkpoint, which
forms an internal fragmentation in the SSD.

3. FILE-BASED STREAM MAPPING AND BOUNDARY-BASED
STREAM MAPPING

We revisit the prior MSSD-based techniques in this section and argue the flaws in
those methods by researching the IO patterns achieved from blktrace1. Moreover, we
define the requirements that an optimized MSSD method should satisfy.

3.1 File-based Stream Mapping

Typically, different file types in DBMS have different data accessed frequencies and
write patterns. As shown in Table 1, we use workloads with different operations such as
create, read, update, delete (CRUD) from YCSB [37] and Linkbench [35] as in the pre-
vious research [34]. For simple data model in YCSB, workload A (Y-Update-Heavy),
and only update workload (Y-Update-Only) are carried out. For complex data model in
Linkbench, we use original Linkbench workload (LB-Original), mixed operations work-

1
 Blktrace is a block layer IO tracing tool in Linux that generates traces of the IO traffic on block devices.

(a)

(b)

452

load
table
type

dex
dex
goDB
the d
ary i
File-
guish
howe
that

3.2 B

Upda
on th
the s
avoid
writt
ary i
occu
tivel
poin
y-ax

Fig. 3. Write

Table 1. The p

Benchmark

Y-Update-He
Y-Update-O

LB-Origina
LB-Mixed

LB-Update-O

(LB-Mixed),
e only include
s, e.g., metada
Almost upda
files. Because
Y-Update-He
B systems use
data fragmenta
index) are con
-based MSSD
h stream. Thi
ever, there is
is discussed in

Boundary-ba

To illustrate
ate-Only work
he underlying
system. The x
d the effect of
ten patterns: (
index file as s
ur in the prima
y. Checkpoin

nt. Write regio
xis) and two tim

TRONG

(a) Coll
e patterns of var

proportions of

k Opera
C:R

eavy 0:5
Only 0:0

al 12:6
12

Only 0:0

and only upd
es information
ata files, syste

ates from work
e the data mo
eavy and Y-U
e SSDs as the
ation such tha

nsidered as ho
D approach so
is simple opt
another kind

n the next sub

ased Stream M

the internal d
kload in two h

g storage devic
x-axis is the el
f Operating Sy
(1) heavy rand
shown in Figs
ary index file
t window is t

on (region in s
me-points (on

G-DAT NGUYEN

lection
rious file types i

data written t
ation ratio
R:U:D

Co

50:50:0
0:100:0
69:15:4
:0:84:4
0:100:0

date Linkbench
n of most upd
em files, lock f
kloads are car
del in YCSB

Update-Only d
 storage devic

at frequently w
t data, and the

olves this prob
timization gai
of data fragm

bsection.

Mapping

data fragmenta
hours to keep
ce. Fig. 3 sho
lapsed time in
ystem’s cache
domly writes
s. 3 (a) and (b
and journal fi

the period bet
short) is the ar
n the x-axis), u

N AND SANG-WO

in WiredTiger w

to file types wit

ollections
Pri
Ind

93.60
89.60
58.60 3
66.10 0
67.60 0

h workload (L
dated file type
files are exclu

rried on the co
has only one

do not write o
ces, this asym
written file typ
e others file ty
blem by mapp
ins moderate
mentation call

ation, we use
track of infor

ows written pa
n seconds, and
e, we enable D
that occur on

b) respectively
ile as illustrate
tween a check
rea limited by
usually is a ch

ON LEE

 (b) Secondar
with Linkbench

th several of w
imary
dexes

2nd
Index

n/a n/a
n/a n/a

3.10 37.2
0.50 31.1
0.02 30.2

LB-Update-On
es, the other m
uded.
ollection files

collection an
n the primary

mmetric write i
pes (i.e., colle
ypes are consi
ping each file
improvement

led internal d

blktrace whil
rmation of eac
atterns of diff
d the y-axis is
DirectIO. Ther
n the collection
y, and (2) sequ
ed in Figs. 3 (
kpoint and its
y two logical f
heckpoint wind

ry index
h benchmark.

workloads [34].
d
xes

Journal

a 6.40
a 10.40
22 1.08
13 2.27
20 2.18

nly). Note tha
minor updated

and secondary
nd one primary
y index. For M
in file types fo
ection and sec
dered as cold
e type to a di
t of performa
ata fragmenta

e running the
ch write comm
ferent file type
the file offset

re are two type
n file and sec
uential writes
(c) and (d) res
 very next ch
file offsets (on
dow.

l

0
0
8
7
8

at the
d file

ry in-
y in-

Mon-
forms
cond-

data.
istin-
ance;
ation

LB-
mand
es in
t. To
es of

cond-
s that
spec-
heck-
n the

Fig

botto
in Fi
the t
regio

a file
retrie
the e
strea
with
gion
posix
on, s

flaw
Fig.
y-ax

(c)
g. 3. (Cont’d) W

At a given ch
om region are
ig. 3 (a), after
top region. Th
on receives mo

1: Require: bo
2: Input: file,
3: Output: sid
4: boundary
5: if file is coll
6: if offset
7: sid
8: else
9: sid
10: else if file
11: if offse
12: si
13: else
14: sid
15: else ►O
16: sid

We revisit th
e and file offs
eve the bound
end of loading
am is assigned
h the boundary
n. After stream
x_fadvise(fid,
sid is stream id
Unfortunately

ws in a complic
5 illustrates I

xis is the file o

DYNAMIC STRE

) Primary index
Write patterns o

heckpoint win
asymmetric a

r the first chec
hen after the s
ore writes com

oundary of each
and offset to wr

d stream assig
 getboundary(f
lection then
t < boundary th
d COLL_SID

d COLL_SID
is index then

et < boundary th
d IDX_SID1

d IDX_SID2
Other files i.e., m

OTHER_SID

Fig. 4. Bou

he boundary-b
et to write on
dary of each c
g phase (line 4
d to sid based
y to determine
m id is mappe

offset, sid, ad
d mapped and
y, empirical r
cated data mo
IO patterns of
offset and x-a

EAM MAPPING A

x
of various file ty

ndow, the amo
and switches i
ckpoint, the bo
second checkp
mpared to the

h collection file
rite on

gn for this write
file)

hen
D1

D2

hen
1

metadata

undary-based st

ased stream m
n. The output i
collection file
4). Then from
d on the input
e whether the
ed, the write
dvice), where f
d advice is pas
results show t
del, i.e., Linkb

f different file
xis is the elap

APPROACH FOR

ypes in WiredT

ount of data w
in the next ch
ottom region h
point, the tren
bottom.

e and index file

e

tream mapping

mapping appro
is the mapped
e or index file

m the rest of th
t file type. Th

e write is on th
command to
fid is file iden

ssed as a prede
that boundary
bench rather t
types using L

psed time by

MONGODB

 (d) Journal
iger with Linkb

written to the t
eckpoint wind
has high frequ
nd is reversed

has computed

algorithm.

oach in Fig. 4
d stream sid. T
e which is the
he algorithm,
he input file o
he top region
the underlyin

ntify, offset is
efined constan

y-based approa
than the simpl
LB-Update-On
second. We m

bench benchmar

top region and
dow. For insta
uency written
d such that the

[34]. The inp
The first step
e last file offs
the correspon

offset is comp
or the bottom

ng file is give
the offset to w

nt.
ach remains s
le one as in YC
nly workload
map writes on

453

ark.

d the
ance,
than

e top

put is
is to

set at
nding
pared
m re-
en as
write

some
YCSB.

with
n col-

454

lectio
four
strea
(i.e.,
one
to an
phen

(b) Bo

(d) B
v

heav
terns
write
ment

1. So
2. M

an
3. So
4. W

an

fers

ons to stream
streams by fo

am1 (i.e., the
, the top regio
stream, howe
nother unexpe
nomenon as cr

(a)

ottom regions o

Bottom regions o
view.

Fig. 5. Wire

Also, as show
vy random wr
s. Therefore,
es. In summa
ts:

olve the intern
Map writes on
nd collections.
olve the cross-

Work independ
nd secondary i

Boundary-ba
from the requ

TRONG

1 and stream2
four different

bottom regio
ons of collecti
ver, regions o

ected overlapp
ross-region fra

) Combined-all

of collections

of collections

edTiger’s write

wn in Fig. 3 an
rite patterns w
the sequentia

ary, an optima

nal fragmentat
primary inde

.
-region fragm
dently of vario
indexes) and th

ased approach
uirements (2)

G-DAT NGUYEN

2, writes on in
colors as sho
ns of collecti
ions) are show
of particular fi
ped writes as s
agmentation.

 view.

by stream view

 by collection

 patterns with d

nd Table 1, co
while primary
al writes shou
al stream map

tion of collect
xes to differe

mentation.
ous data mod
he limitation o

h satisfies the
and (3). The

N AND SANG-WO

ndexes to strea
own in Fig. 5
ions) and the
wn in Figs. 5
files have diffe
shown in Figs

w. (c) Top regio

(e) Bottom r
tion view

different views

ollection files
indexes have

uld map to di
pping scheme

tion files and i
ent streams fro

dels (number o
of the number

first and the l
file-based ap

ON LEE

am3 and strea
(a). The sing
single-stream
(b) and (c) re
erent written-
s. 5 (d) and (e

ons of collection

regions of colle
w.
of file types in

and secondar
e scattered seq
fferent stream
e should satis

index files.
om those of s

of collections,
r of streams su

last requireme
pproach maps

am4 then repre
gle-stream view
m view of stre
espectively. In
lifetimes that
e). We named

ns by stream v

ections by co

Linkbench.

ry index files h
quential write
ms from rando
fy below requ

econdary inde

, primary inde
upported by SS

ent, however,
each file type

esent
w of

eam2
nside
lead

d that

view.

ollec-

have
e pat-
omly

quire-

exes,

exes,
SDs.

 suf-
es to

diffe
from
strea
num
supp

ping

prop
files
strea
More
using
2K s
many
aspe
cord
name
ary-b

an ev
stora
We
chec
the c

Step

erent streams
m the file-base
am. This appro

mber of files is
port.

Due to those
g scheme that s

To solve the
pose a novel o

into K group
am. We adop
eover, we sep
g statistical in
streams. The
y aspects, e.g
cts, our propo

ding to their ho
ed our propos
based approac

Fig. 6 illustra
viction thread
age system, w
then collect s

ckpoints, the s
checkpoint tim

p 1: Computes

DYNAMIC STRE

that solve on
ed method th
oach solves re
 larger than th

e limitations o
satisfies all th

4. DYN

e cross-region
online stream
s based on the

pt the similar
parate writes o
nformation. N
hotness value

g., current wo
osed approach
otness values
sed method as
ch is a particul

Fig. 6

ates the propo
d (i.e., normal

we assign predi
statistical info
system blocks
me, our propos

s hotness valu

EAM MAPPING A

ly the second
hat maps each
equirements (
he maximum

of current app
e requirement

NAMIC STR

fragmentatio
mapping sch

eir hotness va
stream mapp

on primary in
Note that it re
e of one regio
orkload, data
h dynamically
and maps gro

s Dynamic Str
lar case of DS

. Overall proce

osed idea in se
l thread), befo
icted streams t
ormation for e
s normal threa
sed method fo

ues for two re

APPROACH FOR

d requirement.
h physical co
2) and (3) but
number of str

proaches, we
ts that discuss

REAM MAP

on problem in
heme that clas
alues, then ass
ping scheme
ndexes from w
equires the un
on changed a
model, and c

y classifies wr
oups to corres
ream Mapping
SM where K is

ss of DSM app

equential step
fore writing da
to regions bas
each collectio
ads until the c
ollows the belo

egions of each

MONGODB

. There is an
ollection file o
t becomes imp
reams that the

introduce a n
sed in detail in

PPING

n boundary-ba
ssifies all reg
sign each grou
for all region

writes on seco
nderlying SSD
after each che
cache size. Re
rites on region
sponding strea
g (DSM). Not
s equal to two

roach.

ps. During nor
ata from the b
sed on the bou
on or index f
checkpoint pro
ow steps:

h file based o

extended solu
or index file
possible when

e underlying S

novel stream m
n the next sect

ased approach
gions of collec
up to a disting
ns of index f
ondary indexe

Ds support at
eckpoint based
egardless of t
ns into groups
ams. Therefore
te that, the bo
.

rmal operation
buffer pool to
undary of each
file. When iss
ocess finished

n statistical in

455

ution
to a

n the
SSDs

map-
tion.

h, we
ction
guish
files.
es by
least
d on
those
s ac-

re we
ound-

ns of
o the
h file.
suing
d. At

nfor-

TRONG-DAT NGUYEN AND SANG-WON LEE

456

mation collected previously in the normal thread.
Step 2: For each collection file or index file, computes pivot points that aid to grouping

regions according to their hotness values computed in step 1.
Step 3: Maps streams to regions using hotness values and pivot points computed in steps

1 and 2.
Step 4: For each region, predicts corresponding stream for the next checkpoint based on

current mapped stream in step 3 and predicted-stream in the previous checkpoint.

After remain works of checkpoint process finished, the system resumes the normal

threads. We discuss the detail of each step in the below subsections.

4.1 Stream Assignment at the Normal Thread

We assign streams during the normal thread as in boundary-based method. The al-
gorithm in Fig. 4 is rewritten in Fig. 7. The main differences are in lines 7 and 12 where
the streams file.sid1 and file.sid2 assigned to the top region and the bottom region of each
file are no longer constants but recomputed after each checkpoint. For the first check-
point, the assigned streams are set by initial values. From the second checkpoint, assign-
ment for file.sid1 and file.sid2 are done at the checkpoint time that discussed in subsec-
tion 4.4. Statistical information per each region (the number of writes, the lower-bound
offset, and the upper-bound offset of written files) are saved as illustrated at lines 7-9 and
13-15 in DSM algorithm in Fig. 7.

1: Require:
+ boundary of each collection file and index file has computed
+ Predicted-streams for two regions of each file i.e., file.sid1 and file.sid2 are computed

2: Input: file, and offset to write on
3: Output: sid - stream assign for this write
4: boundary ← getboundary(file)
5: if file is collection OR file is index then
6: if offset < boundary then
7: sid file.sid1
8: file.numw1 file.numw1 + 1
9: file.off_min1 min(file.off_min1, offset)
10: file.off_max1 max(file.off_max1, offset)
11: else
12: sid ← file.sid2
13: file.numw2 file.numw2 + 1
14: file.off_min2 min(file.off_min2, offset)
15: file.off_max2 max(file.off_max2, offset)
16: else ►Other files i.e., metadata
17: sid OTHER_SID

Fig. 7. Dynamic stream mapping algorithm (at a normal thread).

4.2 Hotness Computing

In the DSM approach, hotness value of a region is defined as the average number of
writes occur per 4KB data page on that region. Notice that hotness value of writing data

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 457

in one region changed after each checkpoint, so the stream assignment should base on
relative values rather than absolute values. To illustrate the idea, we use Fig. 3 (a) which
is the IO pattern of a collection file as discussed from the previous experiment. For a
given collection file or index file, there is a boundary partition the file into two regions
(i.e., top and bottom) that located by file offsets named range1 and range2 respectively.
For a given region, the writing density is computed as in Eq. (1). numwi is the number of
writes on that region within a checkpoint window, PAGESIZE is set as 4KB.

densityi = (numwi/rangei) PAGESIZE (1)

hotnessi = lg(densityi/ti t1)) (2)

where i = 1, 2 if writing on top region or bottom region respectively.
Then, we compute the hotness value as in Eq. (2). Note that the checkpoint window

is depended on: (1) type of workload, (2) ratio between cache size and database size, and
(3) data model. Therefore, to eliminate those constraints, we divide the density by the
interval time to get the writing density in a unit of time. Moreover, we adopt logarithmic
scaling to solve the common sub-optimize problem that inspired from the proportional
selection phase in Genetic Algorithm [38]. Fig. A.2 in the Appendix describes the detail
implementation of hotness computing.

4.3 Compute Pivot Points and Stream Mapping

After hotness values of all regions are computed, the next step is to classify all re-
gions of one file type, e.g., collection into K groups. We partition a min-max range into K
− 1 evenly disjoint sections using K − 1 pivot points pi such that: min ≤ pi ≤ max, where 1
≤ i ≤ K − 1, min and max are minimum hotness value and maximum hotness value of all
regions respectively.

The pivot points are computed using Eq. (3). To increase the flexibility of the ap-
proach for various workloads, we use positive-integer weight parameter by treating the
first group and the last group (the “coldest” group and the “hottest” group) separately
with the remains groups (the “warm” groups). Note that in a particular case when
equals to K, all groups have equal weight.

1

1

1 1 1

min (max min) (1/)

min (max min) ((1) /)

(() /(2)) (1), where 2
K

j K

p

p

p p p p k j j K

 (3)

Next, for a given region, we assign it to a corresponding group according to its hot-
ness value as described in Eq. (4). Each group, in turn, mapped to a stream id.

1 1

1

1 1

, min

, max .

, ,1 2
K K

g g g

group hotness p

group group p hotness

group p hotness p g K

 (4)

458

scrib

4.4 S

sid,
gion
or re
of li
The
trend
after
level
first

curs
the s
strea

we u
porte
(com
hotn
11 to
grou
index
that
over
detai

Fi
le

 o
ffs

et
 (

 1
0M

)

The detail im
bed in Figs. A

Stream Predi

Before writin
advice) comm

n before the w
eversely becom
nk collection
boundaries be

d switches be
r around two
ls between tw
checkpoint.

(a) l

We propose a
id2 are curren
stream finally
am prediction

where 1, 2

i

cursi
sid

cursi

i

Finally, we s
use function P
ed informatio

mputed in the
ness values and
o line 20 class
ups. Due to pri
xes, we handl
are the percen

r total writes o
il of how to c

(
)

TRONG

mplementation
.3 and A.4 in

iction

ng to a region,
mand. In orde

writes come. O
me cold in the

and count co
etween two re

etween region
hours of exec

wo regions are

link collection f
Fig. 8. T

a low overhea
nt streams ass
y maps to eac

is described in

1,

2, otherw

2

iid sid

id

ummarize all
ProcessStat(F)
n from the nu
normal thread
d pivot points
sifies two regi
imary indexes
le them separ
ntage of write
on all files du
compute globa

G-DAT NGUYEN

n for pivot po
the Appendix

, we assign a
r words, we m

One region is h
e next checkpo
ollection for f
egions are mar
s in some fir
cuting time. O
e almost simil

file
The difference b

ad hot-cold da
igned to corre
h region that
n Fig. A.5 in t

1

wise

cursid

steps of DSM
) (see Fig. A.
umber of writ
d as described
s in lines 8, 9,
ions in each co
s have differen
rately by using
es on the bott
uring a checkp
alpct1 and glo

N AND SANG-WO

oints computin
x section respe

stream id (sid
must predict t
hot in the curr
oint. For exam
four hours wi

arked as dash l
rst checkpoint
On the other h
lar during the

between hot-col

ata prediction
esponding gro
used for the

the Appendix

M algorithm di
1 in the Appe
tes on each r
d in the previo
, and 10 respe
ollection file o
nt write patter
g the globalp
tom regions a
point. Functio
obalpct2. For

Fi
le

 o
ffs

et
 (

 1
0M

)

ON LEE

ng and stream
ectively.

d) using posix_
the hot-cold tr
rent checkpoin
mple, Fig. 8 p
ith LB-Updat
lines. In Fig.
ts then keep o
hand, in Fig.
e execution tim

(b) count colle
ld trends.

as described i
oups in the pre

next checkpo
section.

iscussed so far
endix for deta
region and oth
ous section).
ectively. The f
or index file i
rns compare w

pct1 and globa
and the top reg
on ProcessSta

a given index

m mapping are

_fadvise(fid, o
rends for each
nt may remain
lots write patt
te-Only workl
8 (a), the hot-
on the same t
8 (b), the hot
me except for

ection file

in Eq. (5). cur
evious step. si
oint. The deta

r in Fig. 9. Fir
ail) to extract
her statistical
Then we com
for loop from
nto correspon

with the secon
alpct2 of each
gions respecti

at(F) describes
x file, if there

e de-

offset,
h re-
n hot
terns
load.
-cold
trend
tness
r the

rsid1,
idi is

ail of

(5)

rstly,
sup-
data

mpute
m line
nding
ndary
h file
ively
s the
e is a

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 459

low-frequency write region (percentage of writes less than the THRESHOLD2) or low-
frequency write on the whole file (total number of writes on two regions less than the
THRESHOLD1) then that index file is considered as a primary index file. The last step
predicts stream for each region of the underlying file at line 21.

1: Require: number of writes on bottom region numw1 and bottom region numw2 are com-
puted for each file within the checkpoint

2: Input: F List of collection files and index files, K number of groups
3: Output: Stream ids of each collection or index file are mapped
4: CP ► Collection pivot points
5: IP ► Index pivot points
6: cursid1 cursid2 nul ► streams in current checkpoint
7: ProcessStat(F)
8: ComputeHotness(F, coll_min, coll_max, idx_min, idx_max)
9: ComputePivots(CP, K − 1, coll_min, coll_max)
10: ComputePivots(IP, K − 1, idx_min, idx_max)
11: for each file f in F do ► phase1: Compute the total writes in a stream id
12: if f is collection then
13: cursid1 MapSIDByHotness(hotness1f, CP, COLL_INIT_SID)
14: cursid2 MapSIDByHotness(hotness2f, CP, COLL_INIT_SID)
15: else ► Index files
16: if (globalpct1f + globalpct2f ≤ THRESHOLD1) OR
 (globalpct1f ≤ THRESHOLD2) OR
 (globalpct2f ≤ THRESHOLD2) then ► Primary index
17: cursid2 cursid1 PRIMARY_IDX_SID
18: else
19: cursid1 MapSIDByHotness(hotness1f, IP, IDX_INIT_SID)
20: cursid2 MapSIDByHotness(hotness2f, IP, IDX_INIT_SID)
21: PredictStream(f, cursid1, cursid2)

Fig. 9. Dynamic stream mapping algorithm (at a checkpoint thread).

Our proposed DSM approach is low overhead and dynamically adapts to any work-
load, any data model. Firstly, for each collection file or index file, we use a data structure
named mssd-object to capture the statistical information (i.e., number of writes, mini-
mum and maximum write offset) for each region. Because the data model in NoSQL
DBMS is flexibly changed rather than fixed as in RDBMS, we allocate those mssd-ob-
jects dynamically based on the current number of files (i.e., number of collections or
number of indexes). Moreover, during the normal thread, instead of updating statistical
information for each data block as in previous studies, we update on region-based mssd-
objects that have small memory footprint (i.e., lower than 100B). Also, hotness values
and stream mapping are based on relative values (i.e., proportions) rather than absolute
values. Thus our proposed method works independently of the workloads.

5. EVALUATION AND ANALYSIS

This section describes experiment settings, evaluation results of our proposed method

TRONG-DAT NGUYEN AND SANG-WON LEE

460

compared to the original WiredTiger (as the base line) and prior methods. We also ana-
lyze the effectiveness of distinguishing writes on primary index files from writes on sec-
ondary index files as well as the effectiveness of reducing the maximum leaf page size of
collection file as done in the prior research.

5.1 Experimental Settings

To fairly compare our proposed method with file-based approach and boundary-
based approach, we adopt the same experimental setup with the previous research [34].
To enable multi-streamed SSD technique, we use both modified Linux kernel 3.13.11
and customized-firmware Samsung 840 Pro SSD as in [4]. For eliminating network la-
tency, we set up both the client and the server in the same commodity computer with 48
cores Intel Xeon 2.2GHz processor, 32GB DRAM. In the client layer, we use YCSB
0.5.02 and LinbenchX 0.13 (an extended version of Linkbench that support MongoDB)
with diversity workloads as shown in Table 1. The number of documents in YCSB is set
to 23 million, and maxid1 in Linkbench is set to 80 million. All benchmarks are executed
during two hours with 40 client threads. In the server layer, we use a stand-alone Mon-
goDB 3.2.14 server with DirectIO and various cache sizes from 5GB to 30GB. Wired-
Tiger is used as the storage engine with all default settings.

5.2 Multi-Streamed SSD Optimization Evaluation

Table 2 summarizes mapping schemes of all methods. There is no stream mapping
in the original WiredTiger, so all writes are mapped to the default stream 0 (reserved for
files in the Linux kernel). In the file-based approach, each file type is mapped to a dis-
tinguish stream. In the case of boundary-based approach, all collection files are mapped
to two streams: one for top regions and another for bottom regions. The same mapping
scheme is adopted for index files. In the DSM approach, we use there-group mapping
DSM (i.e., set K equal to 3) with three streams for collection files and three streams for
secondary index files. Writes on primary index files are mapped to a distinguish stream
to writes on secondary index files. There are some important notes:

 Except for the DSM method, the remains map writes on primary index files and writes

on secondary index files to the same stream.
 Writes on metadata files and writes on journal files are mapped to the same stream for

all methods.
 The Samsung 840 Pro SSD support maximum only eight streams from 0 to 7. In the

DSM approach, six streams are used for collection files and secondary index files.
Therefore, writes on journal files and writes on primary index files share the same
stream (i.e., stream1). It is adequate because writes on those files follow lightly se-
quential patterns, hence can be considered as cold data and can be mapped in the same
stream.

2 https://github.com/brianfrankcooper/YCSB/releases/tag/0.5.0
3 https://github.com/Percona-Lab/linkbenchX
4 https://github.com/mongodb/mongo/archive/r3.2.1.tar.gz

Tabl

F
Bo

(a) Y

perce
of re
frequ
large
as po
recla
YCS
prim
meth

Fig

le 2. Stream
WiredT

Method
Original

File-based
oundary-based

DSM

Y-Update-Heav
Fig.

Figs. 10 and
entile latency

ead operations
uently fetched
e enough (i.e.,
ossible and a
aiming free sp
SB benchmark

mary index fil
hod.

DYNAMIC STRE

g. 11. Latency o

mapping sche
iger.

Kernel M
0
0
0
0

vy (b) Y-Updat
10. Throughput

11 show the
improvement

s are high (i.e
d in (flush ou
, 20GB, 25GB

avoid the perf
pace in the buf
k due to its sim
le. DSM in t

EAM MAPPING A

of optimized me

emes in multi

Metadata Jour
0 0
0 1
0 1
0 1

e-Only (c) LB
t of optimized m

performance
t respectively
., 69%) and th

ut) to (from) th
B, and 30GB)
formance degr
ffer pool. Note
mple data mo
his benchmar

APPROACH FOR

ethods compare

i-streamed ap

rnal Primary
0 0

 3
 4,5
 1

B-Original
methods compa

results in term
. In LB-Origi
he data size is
he buffer poo
to keep secon
radation due
e that the DSM
del such that
rk is almost

MONGODB

e with the origin

pproaches incl

 Index Colle
0
2

5 2,
2,3

(d) LB-Mixed
are with the orig

ms of through
nal workload,
s approximate

ol. We set the
ndary indexes
to the excess
M approach is
there are a co
similar to th

nal.

luded the orig

ection 2nd In
0 0
2 3
,3 4,5
3,4 5,6,7

d (e) LB-Upda
ginal.

hput and the 9
, because the
e 32GB, pages
 buffer pool s
in DRAM as
ively overhea

s not carried o
ollection file a
e boundary-b

461

ginal

ndex

7

ate-Only

99th-
ratio
s are
sizes
long

ad of
out in
and a
based

462

solvi
the b
prov
Link
and
Com
12.7
With
even
work
and
reaso
nant

cross
boun
hanc
LB-M
pared
and
LB-O

5.3 E

mary
filter
SkipP
comp

Empirical re
ing internal fr
boundary-bas

ved rate comp
kbench that ar
LB-Update-O

mpared to the f
%–20.9% imp

h heavily-read
n better than
kloads (i.e., L
2.5%–10% re
on is with the
thus the boun
Conversely,

s-region fragm
ndary-based),
ces the 99th-p
Mixed, and L
d to the origin
65%; enhanc
Original, LB-M

Effects of Pri

DSM not onl
y index files f
ring by using
PriIdx. The y
pared with the

Fig. 12. Ef

TRONG

esults have sh
ragmentation p
ed has additi
ared to the fil

re 2.2%–5.8%
Only respectiv
file-based app
provement ra

d workload (i.e
the Y-Update

LB-Mixed and
espectively, th

e complex data
ndary-based ap
the DSM app

mentation. Co
DSM improv

percentile late
LB-Update-On
nal WiredTige
es the 99th-p
Mixed, and LB

mary Index F

ly solves cros
from secondar
typical DSM
-axis shows th
e base line me

ffects of primary

G-DAT NGUYEN

hown bounda
problem when
ional 2.8%–13
le-based meth
, 6.5%–9.4%
ely. There is

proach, the bo
te for Y-Upd
e., LB-Origin
e-Heavy with
d LB-Update-
hat are signif
a model in Li
pproach becom
proach effecti
mpared to the

ves the throug
ency by up to
nly respective
er, DSM impr
ercentile laten
B-Update-On

Filtering

ss-region fragm
ry index files
and the DSM

he degradation
ethod (i.e., DS

y index filtering

N AND SANG-WO

ary-based app
n the data mod
3.1% and 9.7

hod. However
and 5.6%–15
the same tren

oundary-based
date-Heavy an
nal), the additi
h 3.5%–9.8%.
-Only), the ad
ficantly lower
inkbench, cros
mes less effec
tively solves
e best-perform
ghput by up to
o 8.9%, 21.2%
ely. Overall, D
roves the thro
ncy by up to

nly respectivel

mentation but
. Fig. 12 show

M without prim
n rate of throu

SM). The boun

g in term of thr

ON LEE

proach lost its
del becomes c
73%–20.4% o
r, those gaps b
5% for LB-Or
nd with 99th-p
d has additiona
nd Y-Update-O
onal improved
. However, w
dditional rates
r than the Y-U
ss-region phen
ctive.
the internal f

ming method i
o 10.8%, 19.2

%, and 28.5%
DSM is the b
ughput by up
27.6%, 31.8%

y.

t also distingu
ws the effects
mary index fil
ughput and lat
ndary-based r

oughput and 99

s effectivenes
omplex. In YC

of throughput
become small
iginal, LB-Mi
percentile late
al 3.6%–4.6%
Only respectiv
d rate is simila

with heavier w
s are 2.1%–3
Update-Only.
nomenon is do

fragmentation
in prior work
2%, and 23%

% for LB-Orig
best method, c

to 36.5%, 50
%, and 46.2%

uish writes on
 of primary in
ltering, i.e., D
tency of a me
esults are incl

9th latency.

ss in
YCSB,
t im-
ler in
ixed,
ency.

% and
vely.
lar or
write
.9%,
The

domi-

n and
(i.e.,
; en-

ginal,
com-

0.7%,
% for

n pri-
ndex

DSM-
ethod
lude-

ed a
index
up to
15.7
with
base

5.4 L

page
ate th
same
benc
and 4
put r
Only
1.6
tivel

howe
YOn
put p

5.5 D

write
type
prov
insid

s the referenc
x filtering. W
o 5.9%, 9%, 1
% for LB-O

hout primary
d both on thro

Leaf Page Siz

In this subse
e size of colle
he impact of l
e experiment
chmark using
4KB leaf pag
results of the
y as in Fig. 13
–2.1 , and 1
y.

Fig. 13. Lea

Small leaf pa
ever, lost its e

nly-Update, th
performance b

Discussion

The proposed
e frequencies
s (primary in

ve the perform
de one large d

DYNAMIC STRE

ce. Typically,
Without primar

1.7%, and the
riginal, LB-M
index filterin
oughput and 9

ze Optimizati

ection, we fur
ction files (th
leaf page size
with the prio
various work

e size. For the
most write-in

3. Overall, DS
.8%–48.6% c

af page size opt

age size optim
effectiveness
he boundary-b
by up to 23

d method is b
) collected d

ndex and seco
mance. Thus, a
data file and th

EAM MAPPING A

heavier write
ry indexing fi
e 99th-percent
Mixed, and L
ng, DSM still
99th-percentile

ion Evaluatio

rther optimize
he leaf page si

on the perform
or research. W
kloads and ca
e space limita
ntensive work
SM-4KB still
compared to th

timization evalu

mization is ef
in the comple

based method
.3, but only i

based on the
during a chec
ondary indexe
any storage en
hose data obj

APPROACH FOR

e workloads h
iltering, the th
tile latency be
LB-Update-On
l shows bette
e latency.

on

e MongoDB b
izes of index
mance of our

We setup YC
ache sizes for
ation in the pa
kloads, i.e., Y
is the best me

the Original-3

uation of metho

ffective in the
ex data model

shows signif
improves 1.4

statistic inform
ckpoint period
es) from one l
ngine which h
ects have diff

MONGODB

have more eff
hroughput ben
enefit lost by u
nly respective

er performanc

by reducing t
files are unch
proposed met
SB benchmar
32KB leaf p

per, we only s
Y-Update-Only

ethod that imp
32KB, and DS

ods with LB-Up

e simple data
l in Linkbench
ficantly impro
2.1 in LB-

mation (i.e., w
d. Besides, di
large data file
has various da
ferent access

fective in prim
nefit decrease
up to 4.6%, 14
ely. Even tho
e than bound

he maximum
hanged). To ev
thod, we adop
rk and Linkbe

page size (def
show the thro
y and LB-Upd
proves throug
SM-32KB res

pdate-Only.

model in YC
h. For instanc

oving the thro
-Only-Update

write regions,
istinguishing
e also aids to
ata objects con
lifetimes can

463

mary
es by
4.2%,
ough
dary-

m leaf
valu-
pt the
ench

fault)
ough-
date-

ghput
spec-

CSB;
ce, in
ough-
e.

, and
data

o im-
ntain
gain

TRONG-DAT NGUYEN AND SANG-WON LEE

464

benefits from DSM. For instance, DSM can be adopted in InnoDB storage engine in
MySQL that uses one large per-table user tablespace for both primary index and second-
ary indexes and one large system tablespace file for metadata, double write buffer, and
rollback segments.

There is a trade-off between the performance improvement and storage footprint
when reducing the leaf page size of collection files. The database system must fetch a
whole page (usually some KBs) from the storage device to the buffer pool to read a
somebytes record. With the same buffer pool size, the 4KB page system could keep more
cache pages than the 32KB page system, thus reducing more IO accesses and achieving
better performance. However, with the same number of records (i.e., documents), reduc-
ing the leaf page size from 32KB to 4KB lead to increasing number of leaf pages and
internal pages in the B+Tree. Consequently, collection files and index files become larger.
For instance, reducing the leaf page size of collection files from 32KB to 4KB leads to
the database size increases from 51.7GB to 58.4GB (+12.8%) in YCSB, and increases
from 55GB to 108.5GB (approximate double) in Linkbench.

6. CONCLUSION

In this paper, we have discussed data fragmentation in MongoDB as well as the
proposed methods in detail. The file-based method is the simplest one that solves the data
fragmentation due to the different lifetime of writes on file types but remains internal
fragmentation caused by asymmetric regions writing. For the simple data model in
YCSB, the boundary-based approach is adequate to solve the internal fragmentation that
shows good performance improvement. However, it retains cross-region fragmentation
with complex data model in Linkbench. To address that challenge, we extended the
boundary-based method by introducing DSM, a novel low-overhead stream mapping
scheme that dynamically grouping writes on corresponding streams based on hotness
values in each checkpoint period. DSM works independently of data models, workloads,
and the limitation of the number of streams that the physical SSD supported. The number
of groups and other parameters are configurable to gain the best performance. Stream
mapping using primary index filtering in DSM has considerable performance improve-
ment. Moreover, simple data model in YCSB gains more benefits from decreasing B+
tree leaf page size than complex data model in Linkbench. In practical applications, the
data models are complex with many collection files, index files rather than simply as in
YCSB. Our proposed method is adequate for such applications thus it works effectively
regardless of data models or workloads.

In the next research, we plan to evaluate the performance of our proposed method
with emerging multi-streamed SSD devices (i.e., NVMe SSD). We also optimize the
algorithms for distributed environment regard to replica sets and shards.

ACKNOWLEDGMENT

This research was supported by the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the “SW Starlab” (IITP-2015-0-00314) supervised by the IITP
(Institute for Information & communications Technology Promotion).

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 465

REFERENCES

1. Y. Deng and J. Zhou, “Architectures and optimization methods of flash memory bas-
ed storage systems,” Journal of Systems Architecture, Vol. 57, 2011, pp. 214-227.

2. J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel architecture
for high-performance NAND flash-based storage system,” Journal of Systems Ar-
chitecture, Vol. 53, 2007, pp. 644-658.

3. S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for flash memory
ssd in enterprise database applications,” in Proceedings of ACM International Con-
ference on Management of Data, 2008, pp. 1075-1086.

4. F. Yang, K. Dou, S. Chen, M. Hou, J.-U. Kang, and S. Cho, “Optimizing nosql db on
flash: A case study of rocksdb,” in Proceedings of IEEE 12th International Confer-
ence on Ubiquitous Intelligence and Computing, 2015, pp. 1062-1069.

5. J. Bhimani, J. Yang, Z. Yang, N. Mi, N. K. Giri, R. Pandurangan, C. Choi, and V.
Balakrishnan, “Enhancing ssds with multi-stream: What? why? how?” in Proceed-
ings of IEEE 36th International Conference on Performance Computing and Com-
munications Conference, 2017, pp. 1-2.

6. S.-W. Lee and B. Moon, “Design of flash-based dbms: an in-page logging approach,”
in Proceedings of ACM International Conference on Management of Data, 2007, pp.
55-66.

7. J. Kim, D. H. Kang, B. Ha, H. Cho, and Y. I. Eom, “Mast: Multi-level associated
sector translation for NAND flash memory-based storage system,” Computer Sci-
ence and its Applications, LNEE Vol. 330, 2015, pp. 817-822.

8. T. Jung, Y. Lee, J. Woo, and I. Shin, “Double hot/cold clustering for solid state
drives,” Advances in Computer Science and its Applications, LNEE Vol. 279, 2014,
pp. 141-146.

9. D. Park and D. H. Du, “Hot data identification for flash-based storage systems using
multiple bloom filters,” in Proceedings of IEEE 27th Symposium on Mass Storage
Systems and Technologies, 2011, pp. 1-11.

10. J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot data for
flash memory storage systems,” ACM Transactions on Storage, Vol. 2, 2006, pp. 22-
40.

11. C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “Sfs: random write considered
harmful in solid state drives,” in Proceedings of the 10th USENIX Conference on
File and Storage Technologies, 2012, p. 12.

12. S.-H. Park, J.-W. Park, S.-D. Kim, and C. C. Weems, “A pattern adaptive NAND
flash memory storage structure,” IEEE Transactions on Computers, Vol. 61, 2012,
pp. 134-138.

13. T. I. Damaiyanti, A. Imawan, F. I. Indikawati, Y.-H. Choi, and J. Kwon, “A similar-
ity query system for road traffic data based on a nosql document store,” Journal of
Systems and Software, Vol. 127, 2017, pp. 28-51.

14. H. Shim, “Phash: A memory-efficient, high-performance key-value store for large-
scale data-intensive applications,” Journal of Systems and Software, Vol. 123, 2017,
pp. 33-44.

15. Y.-T. Liao, J. Zhou, C.-H. Lu, S.-C. Chen, C.-H. Hsu, W. Chen, M.-F. Jiang, and
Y.-C. Chung, “Data adapter for querying and transformation between sql and nosql

TRONG-DAT NGUYEN AND SANG-WON LEE

466

database,” Future Generation Computer Systems, Vol. 65, 2016, pp. 111-121.
16. D. G. Chandra, “Base analysis of nosql database,” Future Generation Computer Sys-

tems, Vol. 52, 2015, pp. 13-21.
17. R. Dharavath and C. Kumar, “A scalable generic transaction model scenario for dis-

tributed nosql databases,” Journal of Systems and Software, Vol. 101, 2015, pp. 43-58.
18. P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-tree

(lsmtree),” Acta Informatica, Vol. 33, 1996, pp. 351-385.
19. B. Jun and D. Shin, “Workload-aware budget compensation scheduling for nvme

solid state drives,” in Proceedings of IEEE Non-Volatile Memory System and Appli-
cations Symposium, 2015, pp. 1-6.

20. MongoDB, “Mongodb architecture,” https://www.mongodb.com/mongodbarchitec-
ture, 2017.

21. WiredTiger, “Wiredtiger, making big data roar,” http://www.wiredtiger.com/, 2017.
22. C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, “A comparative study: Mongodb¨

vs. mysql,” in Proceedings of the 13th IEEE International Conference on Engineer-
ing of Modern Electric Systems, 2015, pp. 1-6.

23. S. H. Aboutorabi, M. Rezapour, M. Moradi, and N. Ghadiri, “Performance evalua-
tion of sql and mongodb databases for big e-commerce data,” in Proceedings of
IEEE International Symposium on Computer Science and Software Engineering,
2015, pp. 1-7.

24. C. Băzăr, C. S. Iosif, et al., “The transition from RDBMS to NOSQL. a comparative
analysis of three popular non-relational solutions: Cassandra, mongodb and couch-
base,” Database Systems Journal, Vol. 5, 2014, pp. 49-59.

25. B. Alexandru, R. Florin, and I. A. Laura, “Mongodb vs. oracle-database comparison,”
in Proceedings of the 3rd IEEE International Conference on Emerging Intelligent
Data and Web Technologies, 2012, pp. 330-335.

26. C.-H. Lee and Y.-L. Zheng, “SQL-to-NOSQL schema denormalization and migra-
tion: A study on content management systems,” in Proceedings of IEEE Internation-
al Conference on Systems, Man, and Cybernetics, 2015, pp. 2022-2026.

27. G. Zhao, Q. Lin, L. Li, and Z. Li, “Schema conversion model of SQL database to
NOSQL,” in Proceedings of the 9th IEEE International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing, 2014, pp. 355-362.

28. A. Kanade, A. Gopal, and S. Kanade, “A study of normalization and embedding in
mongodb,” in Proceedings of IEEE International Advance Computing Conference,
2014, pp. 416-421.

29. G. Zhao, W. Huang, S. Liang, and Y. Tang, “Modeling mongodb with relational
model,” in Proceedings of the 4th IEEE International Conference on Emerging In-
telligent Data and Web Technologies, 2013, pp. 115-121.

30. X. Wang, H. Chen, and Z. Wang, “Research on improvement of dynamic load bal-
ancing in mongodb,” in Proceedings of the 11th IEEE International Conference on
Dependable, Autonomic and Secure Computing, 2013, pp. 124-130.

31. Y. Liu, Y. Wang, and Y. Jin, “Research on the improvement of mongodb autoshar-
ding in cloud environment,” in Proceedings of the 7th IEEE International Confer-
ence on Computer Science and Education, 2012, pp. 851-854.

32. P. Murugesan and I. Ray, “Audit log management in mongodb,” in Proceedings of
IEEE World Congress on Services, 2014, pp. 53-57.

33. T
m
E

34. T
P
g

35. T
d
I

36.

37. B
i

38. D
g

num
given
respe
glob
index

T.-D. Nguyen
mization in fl
Emerging Da
T.-D. Nguyen
Proceedings o
gies, Applicat
T. G. Armstr
database benc
International
Samsung, “M
sights/article/
B. F. Cooper,
ing cloud serv
Cloud comput
D. E. Goldbe
genetic algori

Fig. A.1 desc
mber of writes

n file, numw1
ectively. In th
alpct2f) is com
x.

DYNAMIC STRE

n and S.-W. L
lash ssds,” in
tabases: Tech
n and S.-W. L
of the 7th Inte
tions, and The
rong, V. Ponn
chmark based
Conference o

Multi-stream t
25465/multist
, A. Silberstei
ving systems w
ting, 2010, pp

erg and K. De
ithms,” Found

Trong
of Compute
sity, Korea
ree at Sun
terests inclu

Sang-W
Science De
is a Profess
Engineering
Research Pr
at Oracle, K
technology.

cribes the alg
for each regio

1f and numw2f

he second for
mputed which

EAM MAPPING A

Lee, “I/o char
Proceedings o

hnologies, App
Lee, “Optimiz
ernational Con
eory, 2017, pp
nekanti, D. B
d on the faceb
on Managemen
technology,”
tream, 2016.
in, E. Tam, R
with ycsb,” in

p. 143-154.
eb, “A compa
dations of Gen

g-Dat Nguyen
er Science and

a, in 2014. He
gkyunkwan U
ude NoSQL D

Won Lee rec
epartment, Seo
sor with the C
g, Sungkyunk
rofessor at Ew
Korea. His res
.

APPE

orithm of pro
on is compute
f are numbers
loop, the glob

h is used for d

APPROACH FOR

racteristics of
of the 6th AC
plications, and
zing mongodb
nference on E

p. 1-13.
Borthakur, and
book social g
nt of Data, 20
http://www.s

R. Ramakrishn
n Proceedings

arative analysi
netic Algorithm

n received the
d Engineering

e is currently w
University, Su
DBMSs, and f

ceived the Ph
oul National U
College of In
kwan Univers
wha Womans
search interes

ENDIX

ocessing the st
ed as in the fir

of writes in r
bal percentage
distinguishing

MONGODB

mongodb and
CM Internation
d Theory, 201
b using multi-
Emerging Data

d M. Callagha
raph,” in Pro

013, pp. 1185-
amsung.com/

nan, and R. Se
s of the 1st AC

is of selection
ms, Vol. 1, 19

e M.S. degree
g, Kyungpook
working towa
uwon, Korea.
flashbased data

h.D. degree fr
University, K

nformation and
sity, Suwon,
University an

st includes fla

tatistical infor
rst for loop in
region1 and r
e of each regi

g primary inde

d trim-based o
nal Conferenc
6, pp. 139-144
-streamed ssd
abases: Techn

an, “Linkbenc
oceedings of A
1196.
semiconducto

ears, “Benchm
CM symposium

n schemes use
991, pp. 69-93

e from the Sc
k National Uni
ard the Ph.D.
 His research
abase technolo

om the Comp
Korea, in 1999

d Communica
Korea. He w

nd a technical
sh-based data

rmation. The
line 4 – 10. F

egion2 of that
on (globalpct

ex from secon

467

opti-
ce on
44.
d,” in
nolo-

ch: a
ACM

or/in-

mark-
m on

ed in
.

chool
niver-

deg-
h in-
ogy.

puter
9. He
ation

was a
staff

abase

total
For a
at file
t1f or
ndary

TRONG-DAT NGUYEN AND SANG-WON LEE

468

Fig. A.2 is the detailed implementation of computing density value and hotness
value as described in Eqs. (1) and (2) respectively.

1: function PROCESSSTAT(F) ► Processing statistical data for each file i.e., hotness
value, global percentage of write

2: coll_count2 coll_count1 0
3: idx_count2 idx_count1 0
4: for each file f in F do ► phase1: Compute the total writes
5: if f is collection then
6: coll_count1 coll_count1 + numw1f

7: coll_count2 coll_count2 + numw2f
8: else
9: idx_count1 idx_count1+numw1f
10: idx_count2 idx_count2+numw2f
11: for each file f in F do ► phase2: Compute the hotness
12: if f is collection then
13: globalpct1f numw1f /coll_count1 ∗ 100
14: globalpct2f numw2f /coll_count2 ∗ 100
15: else
16: globalpct1f numw1f /idx_count1 ∗ 100
17: globalpct2f numw2f /idx_count2 ∗ 100

Fig. A.1. Algorithm of processing statistical information.

1: function COMPUTEHOTNESS (F, coll_min, coll_max, idx_min, idx_max)
►Processing statistical data for each file i.e., hotness value, global percentage of write

2: for each file f in F do ► phase2: Compute the hotness
3: //Number of 4KB page writes on each range in a unit of time
4: density1 (numw1f ∗ 4096)/range1f /(t2−t1)

5: density2 (numw2f ∗ 4096)/range2f /(t2−t1)

6: hotness1f lg(density1/t)
7: hotness2f lg(density2/t)
8: if f is collection then
9: coll_min min(coll_min, hotness1f , hotness2f)
10: coll_max max(coll_max, hotness1f , hotness2f)
11: else
12: idx_min min(idx_min, hotness1f , hotness2f)
13: idx_max max(idx_max, hotness1f , hotness2f)

Fig. A.2. Algorithm of computing hotness.

Fig. A.3 is the detailed implementation of Eq. (3). Remind that alpha is the positive
integer. The first and the last pivot point are computed as in line 2 and line 3 respectively.
Then other pivot points are computed in the for loop in lines 5-6.

We describe the detailed implementation of Eq. (4) in Fig. A.4. For a given region,
we find the pair of pivot points such that pivotsj ≤ hotness ≤ pivotsj+1, then assign the
corresponding stream sid to that region in line 3, 5, and 9.

DYNAMIC STREAM MAPPING APPROACH FOR MONGODB 469

Fig. A.5 describes the detailed implementation of Eq. (5). For a given file, if the
current computed stream e.g., cursid1 is same with the predicted stream in the previous
checkpoint (sid1file), it means the hot-cold trends is unchanged then the predicted stream
for next checkpoint is kept same as before. Otherwise, we map that region to the other
stream (cursid2).

1: function COMPUTEPIVOTS (pivots, n, min, max)
2: pivots[0] min + (max−min)/
3: pivots[n−1] min+(max−min)∗(−1)/
4: step (pivots[n−1]− pivots[0])/(n−1)
5: for i 1 to (n−2) do
6: pivots[i] pivots[0]+ step ∗ i

Fig. A.3. Algorithm of computing pivot points.

1: function MAPSIDBYHOTNESS(hotness, pivots, n, initsid)
2: if hotness ≤ pivots[0] then ► the most left
3: sid initsid
4: else if pivots[n−1] ≤ hotness then ► the most right
5: sid initsid + n
6: else
7: Find the pivot point j in array pivots such that:
8: pivots[j] ≤ hotness ≤ pivots[j + 1]
9: sid initsid + (j + 1)
10: return sid

Fig. A.4. Algorithm of mapping SID by hotness.

1: function PREDICTSTREAM(file, cursid1, cursid2)
2: if sid1file == cursid1 then ► the hot-cold trend is same, do not swap
3: sid1file cursid1
4: else
5: sid1file cursid2
6: if sid2file == cursid2 then ► the hot-cold trend is same, do not swap
7: sid2file cursid2
8: else
9: sid2file cursid1

Fig. A.5. Algorithm of stream prediction.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

