
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 375-392 (2019)
DOI: 10.6688/JISE.201903_35(2).0008

375

An Adaptive Broadcast and Multicast Traffic Cutting
Framework to Improve Ethernet Efficiency by SDN

YOU-CHIUN WANG AND HAN HU

Department of Computer Science and Engineering
National Sun Yat-sen University

Kaohsiung, 804 Taiwan
E-mail: ycwang@cse.nsysu.edu.tw; m033040090@student.nsysu.edu.tw

In local area networks (LANs), Ethernet is a widely used layer-2 networking tech-

nology due to the low cost and self-configuring ability. It allows computers and switches
to form a broadcast domain to exchange data, which means that many protocols built on
Ethernet rely on sending data to every node. However, as the network grows, the effi-
ciency of Ethernet degrades since the network is flooded with spam packets caused by
broadcast. Even worse, traditional layer-2 switches do not well support multicast proto-
cols but realize them by also broadcasting packets. To conquer these problems, the paper
develops an Adaptive Broadcast and multicast traffic Cutting (ABC) framework based on
software-defined networking (SDN). By taking two Ethernet protocols, ARP and IGMP,
as examples, we show how to exploit SDN to restrain unnecessary traffic to improve
Ethernet efficiency via our framework. With Mininet simulations, we verify that the ABC
framework not only greatly reduces spam packets than legacy Ethernet but also saves
controller overhead comparing with other SDN-based solutions. Moreover, we also im-
plement the ABC framework on the campus network to demonstrate its practicability.

Keywords: broadcast, Ethernet, multicast, OpenFlow, SDN

1. INTRODUCTION

Ethernet achieves a complete triumph in the competition of layer-2 networking
technologies, and it has been widely used in many wired LAN systems such as campus
networks, enterprise networks, and data centers. The great success of Ethernet comes
from its low cost and convenience. In particular, computers can effortlessly join an
Ethernet network almost without manual configuration. Today, the Ethernet interface
card is an essential component of every computer for communication.

In Ethernet, a set of computers are connected together by a switch and form one
broadcast domain. Many protocols built on Ethernet thus rely on broadcast traffic for
service or resource discovery [1]. The address resolution protocol (ARP) is one repre-
sentative, where a computer uses broadcast to find out the MAC address corresponding
to the IP address of another computer in the same domain. On the other hand, since a
switch deals with only layer-2 tasks, it cannot well support Internet group management
protocol (IGMP), which is a layer-3 multicast protocol. Without IGMP snooping, mul-
ticast packets will be also sent to all computers in the broadcast domain.

The broadcast mechanism of Ethernet functions smoothly in a small LAN. However,
when the number of computers substantially grows, switches have to be organized hier-
archically to form a single, huge broadcast domain. In this case, the whole network will

Received September 22, 2017; accepted January 21, 2018.
Communicated by Wen-Chih Peng.

YOU-CHIUN WANG AND HAN HU

376

be congested with numerous broadcast packets. We take the campus network in our de-
partment as an example, which has nine class-C subnets ranged from 140.117.168.0 to
140.117.176.255. Table 1 gives the statistics of data received by each computer during
24 hours. In particular, both broadcast and multicast traffic occupies more than 95% and
92% of the number of packets and bytes received by the computer, respectively. Never-
theless, most data of such traffic are irrelevant to the capturing computer. The phenome-
non shows that Ethernet becomes inefficient in a large-scale LAN, as each computer
actually requires a very small portion of its receiving data.

Table 1. Statistics of data received by one computer during 24 hours.
type traffic packets ratio bytes ratio

broadcast

ARP 5,076,350 66.77% 306,079,820 40.26%

control 843,772 11.10% 113,727,980 14.96%

data 172,724 2.27% 10,303,440 1.36%

sum 6,115,867 80.44% 431,816,038 56.80%

multicast

SSDP1 592,380 7.79% 203,116,302 26.72%

LLMNR2 408,650 5.38% 34,502,867 4.54%

data 80,813 1.06% 31,326,354 4.12%

sum 1,141,121 15.00% 272,715,458 35.87%

unicast 345,570 4.56% 55,643,023 7.33%
1 Simple service discovery protocol [2]. 2 Link-local multicast name resolution [3].

Conventional solutions to the broadcast problem are to partition the network into
multiple broadcast domains either physically by layer-3 routers or logically by virtual
LANs. In this way, broadcast and multicast packets will be confined to each small broad-
cast domain. However, these solutions have some drawbacks. First, they usually incur a
high cost, since routers are expensive than switches while it involves plenty of manual
configuration in virtual LANs. Second, some protocols like NetBIOS are not routable at
layer 3. Thus, such protocols may not well operate. Third, without mobile IP, mobility of
computers and migration of virtual machines (e.g., in data centers) between different
broadcast domains is complicated. We will further discuss this issue in Section 3.1.

Therefore, this paper seeks to conquer the broadcast problem in a large-scale LAN
without partitioning it into multiple broadcast domains. The idea is to exploit the emerg-
ing software-defined networking (SDN) technique [4]. In particular, SDN logically sepa-
rates the LAN into control and data planes. A centralized SDN controller deals with the
control plane and makes decisions such as how to interpret packet headers and where to
forward them. On the other hand, the data plane is distributed among switches to take
charge of packet transmission. Through this architecture, network administrators can
manage traffic flows in the LAN by setting rules in the controller.

SDN gives a flexible manner to adjust the LAN’s transmission behavior on the fly.
Based on SDN, we propose an Adaptive Broadcast and multicast traffic Cutting (ABC)
framework to eliminate spam packets. Specifically, the controller analyzes each incom-
ing packet and learns the status of the ongoing protocol. Then, it spontaneously sets
transmission rules to prevent switches from forwarding unnecessary broadcast or mul-

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

377

ticast packets that will be generated by that protocol. We use both ARP and IGMP to
demonstrate how the ABC framework operates, which are two fundamental protocols in
Ethernet. Our contributions are threefold. First, unlike other SDN-based approaches, the
ABC framework helps the controller intelligently convert ARP addresses instead of
making the controller act as a proxy to process every ARP packet. Therefore, it can
greatly alleviate the burden of the controller. Second, the design of our framework con-
siders the issues of backward compatibility and multicast, which are rarely discussed in
the literature. Simulation results show that the ABC framework can significantly reduce
ARP broadcast comparing with existing work in a LAN where traditional and OpenFlow
switches coexist. Finally, the ABC framework is implemented on our campus network,
and the experimental results verify its outstanding performance than legacy Ethernet.

We organize the rest of this paper as follows. Section 2 gives an overview of SDN.
Section 3 surveys related work. In Section 4, we discuss our ABC framework. Section 5
evaluates system performance. Finally, we draw a conclusion in Section 6.

2. SDN OVERVIEW

OpenFlow [5] is a popular implementation for SDN. It replaces traditional switches
by OpenFlow switches that can receive and execute commands from the controller. Spe-
cifically, OpenFlow defines the communication interface between an OpenFlow switch
and the controller, and also the operations of OpenFlow switches. Each OpenFlow
switch maintains a flow table to deal with every incoming packet, which contains flow
entries that specify matching rules and actions. Once receiving a packet, the OpenFlow
switch finds a flow entry whose matching rule is satisfied and then performs the entry’s
action. However, if no entry can be found, the OpenFlow switch triggers an event of
table miss, which sends a Packet_In message with that packet’s information to the con-
troller. Then, the controller will return a new flow entry to tell the OpenFlow switch how
to handle the packet by sending a Packet_Out message. Thus, the controller can easily
manage OpenFlow switches and regulate the transmission of packets in the LAN.

On the other hand, Ryu [6] is a popular open-source framework to carry out the
controller. It can well support OpenFlow and provides a set of application program in-
terfaces (APIs) in Python to help users develop their own SDN applications. In particular,
a user can implement his/her application by registering related input events along with
the handling function. Then, Ryu employs an event queue to dispatch these events to the
corresponding functions in a first-in-first-out (FIFO) manner. Moreover, Ryu allows
users to acquire packet headers and compose packets through a packet-handling mecha-
nism. Therefore, we will use Ryu to realize our ABC framework in the controller.

3. RELATED WORK

3.1 Solutions in Legacy Ethernet

Traditional solutions to the broadcast problem in a large-scale LAN are to intuitive-

ly divide it into many small broadcast domains. One approach is to replace some switch-
es with more sophisticated routers, where each router is responsible for one subnet (i.e.,

YOU-CHIUN WANG AND HAN HU

378

broadcast domain), as shown in Fig. 1 (a). However, this approach puts restrictions on
the allocation of IP addresses, as a router will check the legality of a computer’s IP ad-
dress in its subnet by doing the AND operation with the subnet mask. Moreover, it is
infeasible to support mobility of computers among different subnets. Fig. 1 (a) gives an
example, where a computer A with IP address 10.0.1.3 cannot move into subnet 2 with
network segment 10.0.2.0/24, because the router in subnet 2 will drop all of its packets.

(a) Routers.

(b) Virtual LANs.

Fig. 1. Solutions to the broadcast problem in legacy Ethernet.

Another solution uses virtual LANs defined by IEEE 802.1Q [7]. It adds a 4-byte
label in the Ethernet header to let an 802.1Q switch know which port should be used to
relay the packet. Thus, the 802.1Q switch can logically divide its child switches into dif-
ferent virtual LANs, each corresponding to a broadcast domain, as shown in Fig. 1 (b).
Comparing with the solution by routers, virtual LANs can support mobility of computers.
Fig. 1 (b) gives an example, where computer A wants to move to virtual LAN 2. In this
case, switches S1 and S2 have to support IEEE 802.1Q and be reconfigured to make
computer A become a member of virtual LAN 2. Obviously, it requires the administrator
to manually configure multiple switches, which is not efficient and flexible.

A number of research efforts aim at dealing with the broadcast problem in legacy
Ethernet. Myers et al. [8] use special hardware to let switches support high-layer proto-
cols, and convert broadcast traffic into unicast traffic. However, each switch has to rec-
ord the information of all computers in the LAN. Thus, Kim et al. [9] adopt a hash table
to conquer this problem by distributing computers’ information among different switches.
EtherProxy [10] deploys a gateway on the entrance to each broadcast domain to record
all passing packets. Then, it tries to change the broadcast address to unicast address(es)
to avoid unnecessary broadcast traffic. By borrowing the idea of network address trans-
lation (NAT), EtherAgent [11] cuts a broadcast domain into internal and exterior parts,
so that the amount of broadcast traffic can be reduced. Nevertheless, the effect of Ether-
Agent is similar to the traditional solution by routers.

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

379

3.2 SDN-based Solutions

A few studies employ SDN to solve the broadcast problem. Cho et al. [12] try to

diminish ARP traffic in a large-scale data center network by implementing the SDN con-
troller as an ARP proxy. Network administrators set up both IP and MAC addresses of
data centers to the controller in advance. Then, all ARP requests are sent to the controller
and the controller unicasts ARP replies to the destination computers. Except for the ARP
proxy, both studies [13, 14] also make the controller become a DHCP (dynamic host
configuration protocol) server [15]. Whenever a new computer joins the network, the
corresponding OpenFlow switch will relay its DHCP discovery packet to the controller
in order to find an unused IP address. Jehan et al. [16] use an independent DHCP server
to deal with the IP address assignment, while the controller solely serves as the ARP
proxy. However, all DHCP packets are still forwarded to the controller. Obviously, the
above studies ask the controller to play the role of ARP proxy or DHCP server to deal
with such broadcast traffic. However, they do not take advantage of SDN’s property to
adaptively determine the paths to route packets. Instead, these studies simply send all
broadcast packets to the controller, which imposes a heavy burden on the controller.

The work of [17] considers alleviating ARP and DHCP traffic in a hybrid LAN
consisting of wired and wireless networks. Rather than implement the ARP proxy and
DHCP server on the controller, it asks each OpenFlow switch to relay ARP and DHCP
packets to two destinations. One is the controller and the other may be the DHCP server,
a computer, or flood (i.e., broadcast). Thus, the controller has the information of all
computers and the DHCP server, so it can command OpenFlow switches to forward
packets on the designate ports accordingly. However, since an OpenFlow switch has to
send a copy of each broadcast packet to the controller, this work also puts a heavy load
on the controller. Also, [17] does not consider backward compatibility. When there are
traditional switches in the LAN, they still use broadcast to deal with ARP and DHCP
traffic.

Comparing with existing SDN-based solutions, our ABC framework not only sig-
nificantly diminishes the load of the controller by forwarding only required packets to it,
but also addresses how to deal with multicast traffic. Moreover, simulation results in
Section 5 will show that the ABC framework substantially reduces ARP broadcast in a
LAN containing traditional switches, which demonstrates that it can support good back-
ward compatibility with legacy Ethernet.

4. THE PROPOSED ABC FRAMEWORK

Fig. 2 illustrates the system architecture of our ABC framework based on SDN. We
aim at the design of control plane (i.e., the controller) to make OpenFlow switches re-
duce broadcast and multicast traffic in the data plane. Each OpenFlow switch has a flow
table to decide how to forward incoming packets. In case that it cannot find any entry
from the table whose rule satisfies the incoming packet, the OpenFlow switch sends a
Packet_In message with the packet’s information to the controller. Then, the controller
specifies the new rule and action to deal with that packet by replying a Packet_Out mes-
sage. In particular, the ABC framework contains four major components to learn net-
work status and generate necessary rules/actions:

YOU-CHIUN WANG AND HAN HU

380

 Dispatcher: It takes charge of discovering and interacting with OpenFlow switches.
When capturing a Packet_In message, the dispatcher will relay the message to the cor-
responding handler.

 Ethernet-handler: This handler gives a preliminary analysis of Packet_In messages and
records the information of computers in the LAN.

 ARP-handler: We develop the handler to cope with ARP traffic, whose packets occupy
more than 60% of all broadcast packets (referring to Table 1).

 IGMP-handler: This handler allows OpenFlow switches to well support multicast, so
as to avoid sending multicast packets to those irrelevant computers.

The ABC framework is modularized, so it is easy to support other types of traffic by

adding corresponding handlers. Below, we detail our design of each component.

Fig. 2. System architecture of the ABC framework.

4.1 Design of Dispatcher

The dispatcher has two major missions. One is to discover new OpenFlow switches

in the LAN. To do so, when an OpenFlow switch starts to operate, it builds a TLS
(transport layer security) connection with the controller to trigger an initial handshake, as
shown in Fig. 3. This connection makes both the OpenFlow switch and the controller
enter the “HELLO_WAIT” state and exchange a Hello message with each other, which
indicates the supported OpenFlow version. Then, the OpenFlow switch and the control-
ler will agree to use the lowest version and finish the initial handshake procedure.

After the initial handshake procedure comes the feature discovery procedure. The
OpenFlow switch turns to the “FEATURE_WAIT” state and sends a Hello message to
the controller again to make it enter the same state. In this case, the controller will send a
feature request to the OpenFlow switch to query its parameters. After returning the fea-
ture reply, both the OpenFlow switch and the controller enters the “ESTABLISH” state
and finish the feature discovery procedure. Through the above procedures in Fig. 3, the
controller can easily acquire the information of all OpenFlow switches in the LAN.

The other mission of the dispatcher is to receive Packet_In messages from Open-
Flow switches and assign them to the corresponding handlers. To let OpenFlow switches
transmit correct Packet_In messages, the controller will set up some default flow entries

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

381

in each switch’s flow table, as listed in Table 2. Specifically, the first entry indicates that
every new ARP request with a broadcast address (i.e., FF:FF:FF:FF:FF:FF) must be sent
to the controller with port 6633. In this way, the controller can learn the IP and MAC
addresses of the corresponding computer. The second entry deals with a membership-
query packet defined in IGMP, whose IP address must be 224.0.0.1. We use this entry to
let the controller get the information of a multicast group. However, computers and rout-
ers also require the membership-query packet to obtain the same information. That is
why we add the term “FLOOD” in the corresponding action. Finally, the last entry is
responsible for processing other packets in IGMP, such as membership report and group
leave. (We will further discuss these packets in Section 4.4.) Through the entries defined
in Table 2, the controller can acquire necessary packets to cope with both ARP and
IGMP traffic in the LAN.

Fig. 3. The procedures of initial handshake and feature discovery.

Table 2. Default flow entries installed in each OpenFlow switch.
Matching rules Actions

dl_dst=FF:FF:FF:FF:FF:FF, arp, arp_op=1
igmp, new_dst=224.0.0.1
igmp, new_dst=224.0.0.0/3

actions=CONTROLLER:6633
actions=CONTROLLER:6633, FLOOD
actions=CONTROLLER:6633

4.2 Design of Ethernet-Handler

The Ethernet-handler takes charge of recording the information of computers in the

LAN. Therefore, whenever the dispatcher obtains a Packet_In message, it has to forward
one copy to the Ethernet-handler. On the other hand, the Ethernet-handler maintains an
Ethernet table to take down the data path identification (DPID), MAC address, and port
number of each receiving Packet_In message. In OpenFlow, each device is associated
with one unique DPID to help the controller distinguish different devices in the LAN.
Notice that every computer has at most one record in the Ethernet table.

YOU-CHIUN WANG AND HAN HU

382

Afterwards, the Ethernet-handler transmits a Packet_Out message to the correspon-
ding OpenFlow switch to make the switch add a flow entry containing the computer’s
information and indicating how to deal with its packets. The following flow entry gives
an example:

(“dl dst=00:00:00:00:00:01”, “actions=OUTPUT:1”)

It will ask the OpenFlow switch to relay the packets with destination MAC address equal
to 00:00:00:00:00:01 to its port 1. In this way, the computer can have the privilege to
access the Ethernet, as the OpenFlow switch can know how to process its packets.

4.3 Design of ARP-Handler

ARP helps a computer learn the association between an IP address and a MAC ad-

dress. To do so, each ARP packet contains four address fields: sender hardware address
(SHA), sender protocol address (SPA), target hardware address (THA), and target pro-
tocol address (TPA), which indicate the MAC address of the source computer, the IP
address of the source computer, the MAC address of the destination computer, and the IP
address of the destination computer, respectively.

Fig. 4. An example of ARP.

We take an example in Fig. 4 to explain how ARP works, where three computers A,
B, and C connect together by a switch via its ports 1, 2, and 3, respectively. Suppose that
computer A has a packet to be sent to computer C. It determines that computer C has the
IP address of 10.0.0.3 (e.g., through the domain name server). To transmit the packet,
computer A should know computer C’s MAC address. Thus, computer A first adopts a
cached ARP table to search 10.0.0.3 for any existing entry of computer C’s MAC ad-
dress (i.e., 00:00:00:00:00:03). If the table returns no result, computer A sends an ARP
request with the destination MAC address of FF:FF:FF:FF:FF:FF (i.e., broadcast address)
and the source MAC address of 00:00:00:00:00:01. When the switch receives this ARP
request, it broadcasts the request to all its ports. On the other hand, when computer C
gets the ARP request, it sends an ARP reply with the destination MAC address of
00:00:00:00:00:01 and the source MAC address of 00:00:00:00:00:03. In this case, the
switch will relay the ARP reply to computer A through its port 1. Afterwards, computer
A will cache this information in its ARP table. Next time when it wants to send a packet
to computer C again, it broadcasts an Ethernet frame with the destination MAC address
of 00:00:00:00:00:03, containing the IP packet to the LAN.

ARP is easy to use, but it will generate a lot of ARP requests when many computers
query their target MAC addresses. Even when a computer knows the MAC address of its

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

383

target (from the ARP table), it still uses broadcast to send the packet. Thus, the LAN will
be inevitably congested by spam packets caused by ARP. To conquer this problem, our
idea is to allow the controller to receive ARP packets, so as to learn the information of
computers (e.g., IP/MAC addresses and ports). Then, it installs corresponding flow en-
tries in OpenFlow switches to convert ARP broadcast packets into unicast packets.

In practical implementation, when an OpenFlow switch receives an ARP request, it
first checks whether the ARP request can be sent to the right computer via unicast by
referring to its flow table. If there is no flow entry relevant to the IP address indicated in
the ARP request, the OpenFlow switch still broadcasts the ARP request and also sends
one copy to the controller. On the other hand, the controller can learn a computer’s IP/
MAC addresses through its first ARP request and also the target computer’s IP/MAC ad-
dresses through the corresponding ARP reply. This can be done by extracting both the
SPA and SHA fields from each ARP packet. In this way, the controller can quickly learn
the IP and MAC addresses of computers in the LAN.

Let us use the example in Fig. 4 again to show how to generate the corresponding
flow entries by the ARP-handler, as presented in Table 3. Suppose that the controller has
received the ARP request from computer A that queries the MAC address of computer C.
In this case, the controller can learn both IP and MAC addresses of computer A. Thus,
the first flow entry indicates that all (ARP) packets with IP address 10.0.0.1 should be
transmitted to computer A by unicast through port 1 of the OpenFlow switch. Then,
since it is expected that computer C will send an ARP reply to computer A, the second
flow entry will ask the OpenFlow switch to also forward the ARP reply to the controller,
so as to help it acquire the MAC address of computer C. Notice that this flow entry is
temporary, for example, with lifetime of five seconds. When the controller receives the
ARP reply later, it can install a new flow entry below:

(“arp, tpa=10.0.0.3”, “actions=set field:00::03->eth dst, OUTPUT:3”)

This flow entry asks the OpenFlow switch to convert all ARP broadcast packets to com-
puter C into unicast packets. Finally, all other ARP packets whose IP addresses do not
appear in the flow table (e.g., computer B) will be sent to the controller for processing.

Table 3. The flow entries generated by the ARP-handler based on the example in Fig. 4.
Matching rules Actions

arp, tpa=10.0.0.1
arp, op=2, spa=10.0.0.3, tpa=10.0.0.1

actions=set_field:00::01the_dst, OUTPUT:1
actions=CONTROLLER:6633, OUTPUT:1
actions=CONTROLLER:6633

Our ARP-handler has two special designs. First, unlike most of existing SDN-based
solutions discussed in Section 3.2, we do not make the controller act as an ARP proxy to
deal with all ARP packets in the LAN. Instead, the ARP-handler only processes one pair
of ARP request and reply for each unknown computer. Therefore, the load of the con-
troller can be significantly reduced. Second, once the ARP-handler knows the IP and
MAC address of a computer, it will install a flow entry to allow the OpenFlow switch to
convert the broadcast address into a unicast address. This design considers the backward
compatibility to traditional switches. In particular, since the broadcast address has been

YOU-CHIUN WANG AND HAN HU

384

converted to the unicast address, such a switch will not send the ARP packet to all its
ports but only forward the packet to the port linked to the target computer, thereby re-
ducing spam packets generated by ARP.

4.4 Design of IGMP-Handler

IGMP allows computers to manage their multicast group membership. Routers also

use IGMP to discover group members. In IGMP, two roles are defined: querier and host.
A querier periodically sends a membership-query packet to get the information of mul-
ticast group. Then, four cases may occur: (1) If it receives a membership-query packets
from another with a smaller IP address, this querier becomes a host. Thus, each multicast
group will have just one querier; (2) If the querier cannot hear any membership-report
packet after a predefined timeout, it will not forward multicast data packets as there are
no members in the multicast group; (3) If the querier receives membership-report packets,
it starts forwarding multicast data packets to the group’s members; (4) If the querier re-
ceives a group-leave packet, it stops forwarding multicast data packets.

On the other hand, a host will conduct the following operations: (1) When receiving
a membership-query packet, the host has to reply a membership-report packet to the que-
rier. However, if the host has heard membership-report packets sent from other members
in the same multicast group, it need not reply its membership-report packet; (2) If a
computer wants to join the multicast group, it actively sends a membership-report packet
to notify the querier; (3) A host can directly leave the multicast group without sending
any packet to the querier. However, if the host is the last one that sent the membership-
report packet, it has to send a group-leave packet to notify the querier.

A traditional layer-2 switch will broadcast IGMP and multicast data packets to all
its ports. Thus, such packets may result in unnecessary load on those computers that do
not join the multicast group, as they have to also process these irrelevant packets in layer
3. IGMP snooping allows the switch to use a table to map between ports and multicast
traffic, so as to filter out irrelevant multicast data packets. However, it relies on the pre-
requisite that there exists a multicast router to keep generating membership-query pack-
ets, and these packets must be forwarded by all switches. Besides, IGMP snooping is a
layer-2 optimization for layer-3 IGMP. Not all switches can fully support IGMP snoop-
ing. In IGMP snooping, each switch has to find out the relationship between its ports and
the received multicast traffic. In contrast to this mechanism, our IGMP-handler provides
a more efficient solution to let the controller install flow entries learned from IGMP
packets in OpenFlow switches to facilitate filtering multicast traffic. Below, we discuss
how the IGMP-handler deals with different types of IGMP packets.

Membership query: This packet is sent by the querier, so the IGMP-handler can acquire
its IP and MAC addresses, and also the port of the OpenFlow switch that connects with
the querier. Consequently, the IGMP-handler can add a flow entry to the OpenFlow
switch to ask it to forward following IGMP packets to both the controller and the querier.
The first flow entry in Table 4 gives an example. The flow entry commands the Open-
Flow switch to forward all IGMP packets (with a multicast IP address of 224.0.0.0) to
not only the controller (with port 6633) but also the querier that connects to the switch’s
10th port. In this way, the controller can acquire the information of the multicast group
based on the following IGMP packets. Besides, the OpenFlow switch can relay IGMP

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

385

packets (e.g., membership reports) merely to the querier, which helps reduce the amount
of unnecessary IGMP traffic.

Membership report: Due to the above flow entry, the controller can also receive the
membership-report packet sent from a member in the multicast group. To let the control-
ler learn all members, each member has to reply the membership-report packet for the
first time that it receives the membership-query packet. Then, the controller maintains a
group table to record every member that it has learned. Each group is associated with one
unique group ID, which is converted from the corresponding multicast IP address. Then,
the IGMP-handler adds a flow entry to direct multicast data packets to these members.
Table 5 shows an example of the group table, where the corresponding multicast IP ad-
dress is 233.0.0.1. We can convert the IP address to an integer of 3909091329 to be the
group ID. The controller learns three group members with MAC addresses of 00:00:00:
00:00:01, 00:00:00:00:00:05, and 00:00:00:00:00:07, which connect to the OpenFlow
switch via its ports 1, 3, and 4, respectively. In addition, the IGMP-handler adds the
second flow entry in Table 4 to ask the OpenFlow switch to refer to the group table to
forward multicast data packets. In this way, we can make sure that multicast data packets
will be transmitted to only the members in the multicast group.

Group leave: As mentioned earlier, the group-leave packet is sent by the last member in
the multicast group. Consequently, once the controller receives this packet, the IGMP-
handler will remove the corresponding record in the group table.

In the IGMP-handler, since a multicast address will be translated to the unicast ad-
dress of each member in the multicast group, a switch can forward multicast data packets
only to those ports that connect with member computers. In this way, we can avoid un-
necessary multicast traffic and provide backward compatibility with legacy Ethernet.

Table 4. An example of flow entries generated by the IGMP-handler.
Matching rules Actions

igmp, nw_dst=224.0.0.0/3
ip, nw_dst=233.0.0.1

actions=CONTROLLER:6633, OUTPUT:10
actions=GROUP:3909091329

Table 5. An example of the group table.
Group ID Bucket

group_id=3909091329

bucket=actions=set_field:00:01eth_dst, OUTPUT:1
bucket=actions=set_field:00:05eth_dst, OUTPUT:3
bucket=actions=set_field:00:07eth_dst, OUTPUT:4

5. PERFORMANCE EVALUATION

This section evaluates system performance of our ABC framework by simulations
and practical deployment. We adopt the Mininet simulator [18] with version 2.2.1, which
supports OpenFlow with version 1.3 and RYU with version 3.29 (for the controller).
Simulation results of both ARP and IGMP traffic will be investigated. Afterwards, we
implement the ABC framework on our campus network and measure its performance.

YOU-CHIUN WANG AND HAN HU

386

5.1 ARP Experiment by Mininet

In the first experiment, we consider a LAN with 50 computers. Each computer has

an ARP table to cache the mapping of IP and MAC addresses that it learns from ARP
packets. Following the default setting in Linux, each cached record will become overdue
and be removed from the ARP table every 60 seconds. In addition, two network scenari-
os are addressed. In the scenario of one large switch, all computers are connected by a
single switch (with 50 ports). For legacy Ethernet, the switch is a traditional switch. For
an SDN-based method, the switch is an OpenFlow switch. We use the scenario to simu-
late large switches, for example, used in a data center network. In the scenario of three
hybrid switches, the switches are organized hierarchically, where a root switch links to
two traditional switches, each further connecting with 25 computers. For legacy Ethernet,
the root is a traditional switch. For an SDN-based method, the root is an OpenFlow
switch. This scenario considers an application where the network administrator wants to
add some OpenFlow switches in a LAN originally consisted of traditional switches. It
also helps evaluate the degree of backward compatibility of each SDN-based method.

We compare the ABC framework with two SDN-based methods discussed in Sec-
tion 3.2: SEASDN (scalable Ethernet architecture using software defined networking)
[16] and ETF (extensible transparent filter) [17], whose objectives are also to decrease
ARP broadcast traffic in the LAN.

Fig. 5 (a) shows the number of ARP packets generated every second in the scenario
of one large switch. Since the cache timeout is 60 seconds, the number of ARP packets
in legacy Ethernet will gradually decrease before the first 60 seconds and then become
relatively stable. For SDN-based methods (i.e., SEASDN, ETF, and ABC), there is an
impulse in the beginning, because the controller has no information of computers initial-
ly. After the controller knows every computer in the LAN (around 1~2 seconds), it can
ask the OpenFlow switch to cut out ARP broadcast packets and replace them by unicast
packets. Thus, SDN-based methods can greatly reduce ARP traffic.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350

Simulation time (second)

A
R

P
 p

a
ck

e
ts

Ethernet

SEASDN

ETF

ABC

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350

Simulation time (second)

A
R

P
 p

a
ck

e
ts

Ethernet

SEASDN

ETF

ABC

(a) One large switch. (b) Three hybrid switches.
Fig. 5. Comparison on the number of ARP packets generated per second.

Fig. 5 (b) gives the number of ARP packets generated per second in the scenario of
three hybrid switches. Since the two traditional switches do not understand the SDN
rules set by the controller, they still use broadcast to send out ARP packets. Thus, the
number of ARP packets by SDN-based methods increase accordingly. As mentioned
earlier in Section 3.2, SEASDN forces the controller to act as the ARP proxy, so it re-

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

387

sults in almost the same performance with legacy Ethernet in this scenario. ETF, on the
other hand, asks switches to forward ARP packets to the corresponding ports but the
MAC addresses of these packets are still the broadcast address. In this case, the tradi-
tional switches will broadcast these ARP packets as usual. Comparing with both
SEASDN and ETF, our ABC framework can adaptively translate the broadcast address
of an ARP packet to the unicast address of the receiving computer. Consequently, the
traditional switches will forward ARP packets through unicast rather than broadcast,
thereby significantly reducing unnecessary ARP broadcast traffic.

0

5

10

15

20

25

30

35

40

Ethernet SEASDN ETF ABC

N
u
m

b
e
r
o
f A

R
P

 p
a
ck

e
ts

 (
x1

0
0
0
0
) ARP unicast

ARP broadcast

0

5

10

15

20

25

30

35

40

Ethernet SEASDN ETF ABC
N

u
m

b
e
r
o
f A

R
P

 p
a
ck

e
ts

 (
x1

0
0
0
0
) ARP unicast

ARP broadcast

 (a) One large switch. (b) Three hybrid switches.
Fig. 6. Comparison on the aggregate number of ARP packets transmitted.

Fig. 6 presents the aggregate number of ARP packets transmitted during 360-second
simulation time. We can observe that broadcast packets occupy a very large portion of
ARP traffic in legacy Ethernet. On the contrary, SDN-based methods result in almost no
ARP broadcast in the scenario of one large switch. However, when traditional and
OpenFlow switches coexist (i.e., the scenario of three hybrid switches), SEASDN per-
forms as worse as legacy Ethernet, which indicates that it cannot well support backward
compatibility. On the other hand, by allowing the controller to adaptively convert the
ARP broadcast address to unicast address(es), our ABC framework can reduce around
51.2% of ARP broadcast packets even when there are some traditional switches in the
LAN, which demonstrates its effectiveness and flexibility.

We then evaluate the controller’s overhead by measuring the number of Packet_In
and Packet_Out messages received by and sent from the controller, respectively, as
shown in Fig. 7. SEASDN makes the controller serve as an ARP proxy, so it uses Pack-
et_In messages to forward ARP requests to the controller and Packet_Out messages to
forward ARP replies to the destination computers. Therefore, one ARP procedure will
generate two Packet_In messages and two Packet_Out messages in SEASDN. On the
other hand, ETF also uses Packet_In messages to forward ARP packets to the controller,
and it generates two Packet_In messages for each ARP procedure. Therefore, ETF suf-
fers from lower overhead than SEASDN. In the ABC framework, the controller requires
Packet_In messages to learn the computers in the LAN and uses Packet_Out messages to
set transmission rules in OpenFlow switches initially, so there exists an impulse in the
beginning (around the 6-9th seconds) in both Figs. 7 (a) and (b). Afterwards, the ABC
framework generates very few Packet_In and Packet_Out messages as the controller has
obtained the IP and MAC addresses of all computers. Thus, the ABC framework greatly
reduces the overhead comparing with both SEASDN and ETF, as shown in Fig. 7 (c).

YOU-CHIUN WANG AND HAN HU

388

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Simulation time (second)

P
a
ck

e
t_

In
/O

u
t m

e
ss

a
g
e
s

SEASDN

ETF

ABC

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Simulation time (second)

P
a
ck

e
t_

In
/O

u
t m

e
ss

a
g
e
s

SEASDN

ETF

ABC

(a) One large switch. (b) Three hybrid switches.

Scenario SEASDN ETF ABC
One large switch

Three hybrid switches
43,004
33,109

22,373
22,222

490
539

(c) Aggregate number of Packet_In/Out messages.
Fig. 7. Comparison on the number of Packet_In/Out messages.

5.2 IGMP Experiment by Mininet

We then study the performance of our ABC framework on IGMP multicast traffic.

Because SEASDN and ETF cannot cope with multicast traffic, we do not compare them
with the ABC framework as their performance will be the same with legacy Ethernet. In
this experiment, we consider one multicast server (i.e., IGMP querier) and six computers
connected together by a switch. The switch will be a traditional and OpenFlow switch in
legacy Ethernet and the ABC framework, respectively. The server keeps sending IGMP
and multicast data packets to a multicast group with IP address of 233.0.0.1 every second.
On the other hand, each computer has different behavior. For computers 1 and 4, they
join the multicast group with address of 233.0.0.1 in the beginning and do not leave the
group. Computers 2 and 5 arbitrarily join a multicast group for two seconds, leave the
group, and then stay idle for one second. The above procedure is repeated. For comput-
ers 3 and 6, they do not join any multicast group.

Fig. 8 gives the number of multicast packets received by different computers during
300-second simulation time. Since the traditional switch does not support IGMP snoop-

0

50

100

150

200

250

300

350

1 2 3 4 5 6

Computer ID

M
u

lti
ca

st
 p

a
ck

e
ts

IGMP - Ethernet IGMP - ABC

Data - Ethernet Data - ABC

Fig. 8. Comparison on multicast packets received by different computers.

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

389

ing, it simply broadcasts IGMP and multicast data packets to all computers. In this case,
even though a computer does not join any multicast group (e.g., computers 3 and 6), it
still has to receive and process such irrelevant packets. On the contrary, our ABC
framework can assist the controller in learning the group members and converting the
multicast address accordingly. Thus, the six computers will have different results. Spe-
cifically, for computers 1 and 4, because they stay in the same multicast group with the
server, the OpenFlow switch only sends them few IGMP membership queries in the be-
ginning and keeps relaying multicast data packets from the server. These packets are
transmitted using unicast. For computers 2 and 5, since they arbitrarily join a multicast
group in each short period, they will receive more IGMP packets. However, as they do
not join the multicast group with IP address of 233.0.0.1, the OpenFlow switch will not
relay multicast data packets from the server to them. Finally, as computers 3 and 6 do not
join any multicast group, they will not receive IGMP or multicast data packets.

To sum up, the ABC framework will not send multicast data packets to those com-
puters that join other multicast groups. In addition, when a computer does not participate
in any multicast group, it will not be bothered by IGMP or multicast data packets. There-
fore, our ABC framework can diminish unnecessary multicast traffic and save the net-
work bandwidth, which helps improve Ethernet efficiency.

5.3 Practical Deployment

We also implement the ABC framework on our campus network mentioned in Sec-

tion 1 to verify its practicability. To do so, we use a TP-LINK WR1043NR switch and
update its firmware by OpenWrt [19] to make the switch support OpenFlow. In addition,
we adopt TShark [20] to dump and analyze network traffic.

Fig. 9 gives the analysis of packets received by two computers during 600 seconds,
where one computer connects with a traditional switch while the other computer links to
our OpenFlow switch. From Fig. 9 (a), we observe that each computer receives around
400~600 packets every second in legacy Ethernet. However, a lot of packets are spam in
terms of the receiving computer. In contrast, our ABC framework eliminates most of
such spam packets, so the computer can efficiently receive only its necessary packets.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

Time (second)

R
e

ce
iv

e
d

 p
a

ck
e

ts

Ethernet

ABC

0

5

10

15

20

25

30

35

40

45

Ethernet ABC

B
ro

a
d

ca
st

 p
a

ck
e

ts
 (

x1
0

0
0

)

Others

ARP

0

1

2

3

4

5

6

7

8

9

Ethernet ABC

M
u

lti
ca

st
 p

a
ck

e
ts

 (
x1

0
0

0
)

LLMNR

SSDP

IGMP

(a) Packets gotten by a computer per second. (b) Broadcast. (c) Multicast.

Fig. 9. Experimental result by practical deployment.

YOU-CHIUN WANG AND HAN HU

390

Fig. 9 (b) shows the number of broadcast packets received by a computer, where
ARP broadcast packets dominate all broadcast packets. In legacy Ethernet, the traditional
switch sends more than 42,000 broadcast packets to the computer in 600 seconds. On the
contrary, the OpenFlow switch cuts them out and transmits fewer than 30 ARP broadcast
packets to the computer, which saves more than 99.93% of ARP broadcast traffic. In
addition, since the controller can adaptively convert a broadcast address to the unicast
address of the receiving computer, the OpenFlow switch will not send irrelevant broad-
cast packets to the computer.

Fig. 9 (c) presents the number of multicast packets received by a computer. Since
the computer joins the IGMP multicast group, it will receive a few membership queries
and multicast data packets in the ABC framework. On the other hand, because the tradi-
tional switch cannot support multicast protocols such as LLMNR and SSDP, the switch
uses broadcast to send out their packets. In the experiment, since the computer is not a
destination of LLMNR and SSDP senders, the OpenFlow switch will eliminate these
irrelevant packets. That is why there are no LLMNR and SSDP packets in the ABC
framework. Through the experiment, we demonstrate that our ABC framework can effi-
ciently reduce unnecessary broadcast and multicast traffic, which significantly improves
the transmission efficiency in a practical LAN.

6. CONCLUSION

Ethernet is the basic technique used in layer 2 but it unavoidably generates a lot of
spam packets due to the broadcast nature. Based on SDN, we propose the ABC frame-
work to reduce unnecessary broadcast and multicast packets and improve Ethernet effi-
ciency. Through Mininet simulations, we show that the proposed ABC framework not
only reduces ARP broadcast traffic, especially when there exist traditional switches in
the LAN, but also saves the controller’s overhead, as compared with other SDN-based
approaches such as SEASDN and ETF. In addition, the ABC framework can efficiently
decrease IGMP traffic than legacy Ethernet. By implementing the ABC framework on
our campus network, we also demonstrate its effectiveness and practicability. For future
work, we will investigate how to apply the SDN technique to improve performance of a
DVB-H (digital video broadcasting-handheld) network, which also relies on broadcast to
provide mobile TV services [21, 22].

ACKNOWLEDGEMENT

You-Chiun Wang’s research is co-sponsored by the Ministry of Science and Tech-
nology under Grant No. MOST 106-2221-E-110-022-MY2, Taiwan.

REFERENCES

1. Y. D. Lin, R. H. Hwang, and F. Baker, Computer Networks: An Open Source Ap-
proach, McGraw-Hill Education, NY, 2012.

2. IETF, “Simple service discovery protocol/1.0,” 1999.
3. IETF, “Link-local multicast name resolution (LLMNR),” RFC 4795, 2007.

SDN FRAMEWORK TO IMPROVE ETHERNET EFFICIENCY

391

4. W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined
networking,” IEEE Communications Surveys & Tutorials, Vol. 17, 2015, pp. 27-51.

5. I. Akyildiza, A. Leea, P. Wang, M. Luoc, and W. Chou, “A roadmap for traffic engi-
neering in SDN-OpenFlow networks,” Computer Networks, Vol. 71, 2014, pp. 1-30.

6. Ryu SDN framework, http://osrg.github.io/ryu/.
7. IEEE Standard 802.1Q, “IEEE standard for local and metropolitan area networks 

virtual bridged local area networks,” 2005.
8. A. Myers, E. Ng, and H. Zhang, “Rethinking the service model: scaling Ethernet to a

million nodes,” in Proceedings of ACM SIGCOMM Workshop on Hot Topics in Net-
working, 2004, pp. 1-6.

9. C. Kim, M. Caesar, and J. Rexford, “SEATTLE: a scalable Ethernet architecture for
large enterprises,” ACM Transactions on Computer Systems, Vol. 29, 2011, pp. 1:1-
1:35.

10. K. Elmeleegy and A. L. Cox, “EtherProxy: scaling Ethernet by suppressing broad-
cast traffic,” in Proceedings of IEEE INFOCOM, 2009, pp. 1584-1592.

11. C. H. Chiu and C. L. Lei, “Etheragent: scaling Ethernet for enterprise and campus
networks,” International Journal of Innovative Computing, Information and Control,
Vol. 9, 2013, pp. 2465-2483.

12. H. Cho, S. Kang, and Y. Lee, “Centralized ARP proxy server over SDN controller to
cut down ARP broadcast in large-scale data center networks,” in Proceedings of
IEEE International Conference on Information Networking, 2015, pp. 301-306.

13. J. Wang, T. Huang, J. Liu, and Y. Liu, “A novel floodless service discovery mecha-
nism designed for software-defined networking,” China Communications, Vol. 11,
2014, pp. 12-25.

14. P. W. Chi, Y. C. Huang, J. W. Guo, and C. L. Lei, “Give me a broadcast-free net-
work,” in Proceedings of IEEE Global Communications Conference, 2014, pp. 1968-
1973.

15. IETF, “Dynamic host configuration protocol,” RFC 2131, 1997.
16. N. Jehan and A. M. Haneef, “Scalable Ethernet architecture using SDN by suppres-

sing broadcast traffic,” in Proceedings of International Conference on Advances in
Computing and Communications, 2015, pp. 24-27.

17. K. Kataoka, N. Agarwal, and A. V. Kamath, “Scaling a broadcast domain of Ether-
net: extensible transparent filter using SDN,” in Proceedings of International Con-
ference on Computer Communication and Networks, 2014, pp. 1-8.

18. Mininet, http://mininet.org/.
19. OpenWrt, https://openwrt.org/.
20. Tshark, https://www.wireshark.org/docs/man-pages/tshark.html.
21. W. H. Yang, Y. C. Wang, Y. C. Tseng, and B. S. P. Lin, “A request control scheme for

data recovery in DVB-IPDC systems with spatial and temporal packet loss,” Wire-
less Communications and Mobile Computing, Vol. 13, 2013, pp. 935-950.

22. Y. C. Wang, “Profit-based exclusive-or coding algorithm for data retransmission in
DVB-H with a recovery network,” International Journal of Communication Systems,
Vol. 28, 2015, pp. 1580-1597.

YOU-CHIUN WANG AND HAN HU

392

You-Chiun Wang (王友群) received the Ph.D. degree in Com-
puter Science from National Chiao-Tung University, Taiwan, in
2006. He is an Associate Professor in Department of Computer
Science and Engineering, National Sun Yat-sen University, Tai-
wan. He served as a TPC member of more than 150 conferences
such as INFOCOM, ICDCS, and WCNC. His research interests
include wireless networks, mobile computing, and IoT technology.
He has authored over 80 papers and chapters in these fields. Dr.
Wang is a senior member of the IEEE and a member of the ACM.

Han Hu (胡漢) received the M.S. degree in Computer Sci-
ence from National Sun Yat-sen University, Taiwan, in 2016. His
research interest aims at SDN.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

