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In this work, we investigate the end-to-end performance of the uplink (U/L) non-
orthogonal multiple access (NOMA) system based on the novel Bi-directional long short-
term memory (Bi-LSTM) algorithm over the frequency flat independent and identically
distributed (i.i.d.) Rayleigh fading channel conditions. When compared to conventional
successive interference cancellation (SIC) MIMO-NOMA-based detection systems, the
suggested deep learning (DL) based technique integrates the conventional multiple-input
multiple-output (MIMO) and power-domain NOMA schemes to improve the symbol error
rate (SER) performance. To this end, an optimal power allocation problem for the MIMO-
NOMA scheme has been developed that maximizes the data throughput of the end-to-end
system. In this work, both imperfect and perfect SIC schemes are considered, and per-
formance comparison is provided between the Bi-LSTM based MIMO-NOMA and LSTM
MIMONOMA schemes. The SIC NOMA system achieves 15 dB for 106 iterations, but
the DL-based MIMO-NOMA scheme achieves 15 dB for 100 iterations. By a factor of
four, Bi-LSTM MIMO-NOMA schemes outperform SIC MIMO-NOMA methods. Rather
than utilizing conventional SIC systems to determine fading channel coefficients and decode
signals, the suggested scheme estimates the relevant data symbol using the more efficient
Bi-LSTM algorithm. There is a 4 dB difference, indicating that DL-based MIMO-NOMA
outperforms conventional SIC MIMO-NOMA approaches. Furthermore, when the channel
estimation error is enhanced from 0 to 1, the performance of DL is considerably decreased.
Even with perfect channel state information (CSI), the DL detector outperforms the SIC de-
tector for channel estimate errors of less than 0.07. When differences between the real and
predictable channel states occur, the DL detector’s performance suffers significantly, yet it
can still maintain its majority within a predetermined tolerance range

Keywords: signal-to-interference-and-noise ratio (SINR), long short-term memory, milli-
meter-wave (mmWave), signal-to-noise ratio (SNR), NOMA, DL, machine learning (ML)

1. INTRODUCTION

Fifth-generation (5G) wireless technology is significant not just because it can han-
dle millions of user devices at ultra-high speeds, but because it also has the potential to
change people’s lives all around the world. However, as the number and variety of devices
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increase, the same radio frequency (RF) spectrum must be used repeatedly for multiple
applications and/or users. Moreover, the Internet of Things (IoT) requires everyone and
every device to be connected [1, 2]. The rapid development of wireless communication
standards has enabled individuals with faster and more dependable access to information
anytime and everywhere, and the advent of digital wireless communication has made our
lives simpler and more appropriate than ever before [3]. Thanks to several unique data
transmission technologies, today’s 5G wireless networks can deliver peak data speeds
of 30 gigabits per second (Gbps) and average data rates of 200 megabits per second
(Mbps) [4]. The research community and industry have presented some feasible 5G wire-
less schemes to meet the stringent standards and handle future generations’ issues [5].
For example, the vehicular-to-infrastructure (V2I) communication scheme is proposed
to increase the channel capacity and end-to-end reliability for very high-speed vehicular
communication systems in time-selective fading channel scenarios. The massive-MIMO
scheme is presented to improve transmission bandwidth, spectral efficiency (SE), and en-
ergy efficiency (EE). The mmWave technology is proposed to get higher data transfer
rates, high reliability, and higher security [6,7]. Using a high number of small-sized cells,
ultra-dense networks are investigated to increase network throughput and minimize en-
ergy usage. In addition to the techniques, researchers are working on a new radio access
scheme that will be utilized in 5G wireless networks since it can increase data rate and
transmission bandwidth [8, 9].

Researchers have recently focused their attention on non-orthogonality-based system
designs for usage in 5G networks [10, 11]. Multiple access (MA) schemes are broadly
classified into orthogonal and non-orthogonal-based transmission schemes. To mitigate
the effect of the multiple user interference (MUI), the orthogonal carrier-based transmis-
sion, such as the orthogonal multiple access (OMA) scheme enables each user’s equip-
ment to use orthogonal communication resources within a specific time slot, frequency
range, or code. In 5G-NOMA the multiple users can use non-orthogonal resources, re-
sulting in a significant increase in SE while permitting some degree of receiver interfer-
ence for MA. NOMA has attracted the interest of numerous academics to enhance SE and
EE and satisfy the demands of wireless users for end-to-end reliability, congestion-free
networks, and massive connectivity [12]. The basic idea of 5G-NOMA is that several
wireless users may be served by sharing the same physical resource at varying power
levels. Specifically, the superposition coding method is used at the base station (BS),
while the SIC scheme is used at the receiver to decode the signals of many users [13].
More power is allocated to wireless users with poor channel gains, where NOMA may
deliver services to many users, to preserve user fairness. Even though OMA strategies
may achieve high EE and SE even with basic receivers in an ideal scenario due to mini-
mum MUI among wireless users, they are still unable to resolve the rising issues posed
by increasing demands in 5G and beyond 5G (B-5G) networks, for example, should cover
three primary kinds of scenarios, including improved voice, video, and data, according to
the 3rd generation partnership project (3GPP) for 2020 and beyond [15]. Extreme mo-
bile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and mas-
sive machine type communication (MTC) are three possibilities that 5G technology is
expected to enable. The key challenges in the eMBB scenario are a user-perceived trans-
mission rate of 200 Mbps and a more than three-fold increase in SE over prior long-term
evolution (LTE) advanced releases to enable services such as augmented reality (AR),



EXAMINE DL BASED UBIQUITOUS MIMO U/L NOMA SYSTEM 1337

high transmission bandwidth, virtual reality (VR), higher throughput, and high-definition
(HD) video experience [15, 16]. Various technologies related to the 5G-IoT network are
schematically depicted in Fig. 1 [17]. Since many IoT devices would have access to the
5G wireless network, MTC’s main challenge will be to achieve a connection density of 5
million devices per square kilometer. The major criteria for URLLC are 0.4 milliseconds
end-to-end latency and 99.999 % end-to-end reliability. For VR and AR applications, the
NOMA technique might potentially raise the number of IoT devices by 5 and 9 times,
respectively [13–15]. Furthermore, in eMBB, NOMA was shown to be 35 % more spec-
trum efficient for downlinks (D/Ls) and 100 % more spectral efficient for U/Ls when
compared to OMA [16]. Consequently, NOMA has been chosen as a strong candidate
among all MA approaches because it possesses key qualities that enable it to overcome
OMA challenges while also satisfying the needs of 5G and B-5G systems. The variables
are summarized in Table 1 for better understanding and clarity.

Table 1. Variables.

Notation Variable Type Notation Variable Type

X Composite Signal at the BS |gl |2

βl Power allocation factor of the lth user Kl

Px Total power transmitted from the Base
Station

Nl

sl Signal transmitted from the lth user Φ2

L Total number of antennas user Zl

N Total number of user equipment TU
1

PU
1 ltb user′s transmit power TU

2

η ′U AWGN vector E (.)

lth user channel gain

ltb user′s symbol vector length

Additive white Gaussian noise 
(AWGN) sample

Noise Variance

Small scale fading channel matrix

1st users transmit symbol vectors

2nd users transmit symbol vectors 

Expectation operator

1.1 Basic Concepts of NOMA

This research utilizes SINR and throughput analysis to provide an overview of the
D/L NOMA network. Following that, a high SNR study was carried out to compare the
performance of the OMA and NOMA approaches. As seen in Fig. 2 [14], the BS sends the
superimposed signal to the various user equipment based on their power allocation factor
values at the transmitter (Tx) side of the D/L NOMA network. The SIC process should be
run consecutively at each user’s receiver until the user’s signal is recovered. The optimal
power allocation factors are assigned in an inversely proportional manner based on their
fading channel scenarios. A wireless user with a low channel gain receives more power
than a user with a strong fading channel gain. Therefore, the user with the bad channel
condition recovers its signal without using the SIC approach, since the other users’ signals
are considered noise. Other users, on the other hand, insist on performing SIC schemes.
The SIC system detects signals that are larger than the user’s intended signal first. After
subtracting the signals from the receiving signal, the procedure is repeated until the linked
user’s signal is retrieved. Finally, by neglecting users with lower power allocation factors,
each user decodes their signal. The following is a representation of the sent signal at the
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BS [14–17],

X =
N
∑

l=1

√
βlPxsl , (1)

where sl is the lth user equipment (UEl) information with E
(
|sl |2

)
= 1, i.e., unit energy

symbol. The total power transmitted from the BS is represented as Px and βl represents

the lth user power allocation factors subject to:
N
∑

l=1
βl = 1, and β1 ≥ β2 ≥ ·· · ≥ βN . Since

the users with weak channel strength have a high power allocation factor as compared to
strong channel gain users, the channel gains are arranged as follows: |g1|2 ≤ |g2|2 ≤ ·· · ≤
|gN |2, where lth user channel coefficient is represented as gl based on the power domain
NOMA concept. The signal received by the lth user can be written as follows [14–17]:

yl = glX +Nl = gl
N
∑

l=1

√
βlPxsl +Nl , (2)

where Nl is AWGN noise sample having zero average value and variance of Φ2, i.e.,
Nl ∼

(
0,Φ2

)
.

1.2 Literature Survey

DL is an ML method that allows computers to learn by example in the same way
that people do. The system understands the useful items within, learns characteristics
and patterns, and solves issues by interpreting the incoming data on feeding. In the
review work [18], the authors give a detailed investigation of DL-assisted communica-
tion. The history and significance of DL are examined. The authors discuss the rele-
vance of DL in prospective wireless methods such as MIMO, NOMA, and mmWave. In a
NOMA-assisted wireless communication system, a schematic of the DL scope is shown in
Fig. 3 [18]. The authors discuss the problems, possibilities, and future research directions
for DL in the wireless environment. In a DL-aided NOMA system, it has been demon-
strated how to enhance SE, EE, data rate, and CSI. The direction of arrival and estimations
of large-scale MIMO channels are studied using a DL-aided MIMO system. In mmWave
communication, DL performance is investigated with extremely high-power consumption
and limited link gains. In the work [17], the authors examine 2 single-cell to k-user multi-
cell wireless networks utilizing OMA schemes to offer a comprehensive assessment of
D/L NOMA. Different NOMA system elements and problems, such as SIC, power allo-
cation factor, CSI, and inter-channel interference (ICI), are comprehensively examined.
Furthermore, the impact of ML and DL on the 5G-NOMA system is investigated. In [18],
the authors examine the advantages of DL-assisted NOMA channel estimation and detec-
tion. The authors present a comprehensive examination of 5G-NOMA system problems
and examine the possibility of DL. The examination is divided into three sections: opti-
mal power allocation, channel decoding, and 5G waveform design. The opportunity and
shortcomings of DL-assisted NOMA in 5G networks are examined in this review paper.
Offline and online training are two forms of training identified in the MIMO-NOMA net-
work. Fig. 4 demonstrates the DL-based NOMA model [20]. The hidden layer is utilized
for classification and training. Multiple neurons are found in large quantities in hidden
layers. A layer in Fig. 4 is the noise layer, which can be used to contaminate the processed
signal using AWGN. With the help of current fading channel models and extensive input
data formation, CSI knowledge can be acquired automatically. Offline training involves
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Fig. 1. Technologies associated with
5G-IoT.

Fig. 2. D/L NOMA network.

appropriately training arbitrary sequences of input symbols using CSI information learned
from simulations for real-time propagation circumstances. With the training data, the out-
put signals may be utilized to precisely predict the fading channel coefficients. The pilot
symbols are used for gaining knowledge of the CSI in the online training phase, and af-
ter the training of the input signals is done using this information. A block schematic
of the NOMA system for CSI auto-detection with online and offline training is shown in
Fig. 5. In the case of adverse wireless conditions such as bad weather or heavy rain, the
DL scheme can also be employed to detect the fading channel. The LSTM strategy is
employed to detect the fading channel coefficients in the event of time-selective fading
channel scenarios, such as in the vehicular-to-vehicular (V2V) wireless network. Hidden
layers can act as a network state memory, in this case, allowing the DL to save, remember,
and explore the complex data symbols that came before it.

The optimal resource allocation is a significant factor in determining the outage and
end-to-end system performance of the NOMA system. In the case of multiple users, the
DL algorithm is a potential strategy for solving the problem of optimal power alloca-
tion. Furthermore, dynamic power allocation is challenging under time-selective fading
channel circumstances. Maximizing energy utilization through efficient resource alloca-
tion is an important research problem using NOMA. Several ML algorithms have been
developed to handle this problem. In the work [21], the authors have proposed a deep be-
lief network (DBN) as a DL technique for maximizing the total available power at the BS.
The problem of dynamic power allocation may also be addressed with deep reinforcement
learning (DRL). DRL develops an optimal power allocation framework using a deep de-
terministic policy gradient (DDPG), and Q-learning is utilized to investigate the resource
allocation problem. The classic SIC model has several flaws. When cellular traffic grows,
using the SIC technique to correctly encrypt data becomes increasingly difficult. Prop-
agation error has an impact on the SIC system as well. Signal classification allows the
deep neural network (DNN) to recover a discrete data sequence from a decaying sig-
nal [22]. Using DL, the SIC system might be much improved. The authors have proposed
an online learning detection strategy for NOMA U/L transmission in their work [23] to
improve the SE. Another use of DL in NOMA might be in constellation design. As the
data is delivered, the constellations of several users are superimposed. The basic idea is
that the input source bits are translated into symbol sequences using DL after being modu-
lated. To improve EE, an extra layer called the normalizing layer is constructed to link the
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Fig. 3. A diagram of the DL scope in
a NOMA-assisted wireless communica-
tion system.

Fig. 4. Schematic representation of the DL-based
NOMA model.

transmitter. In the work [24], the authors investigate an autoencoder-based DL strategy
for optimizing constellation design. The technique developed is beneficial for multi-user
access in a variety of channel situations. In NOMA, DL may also be utilized for latency
optimization, subchannel matching and, power reduction. In the work [19, 25, 26], recent
research efforts in 5G-IoT networks are thoroughly examined and the authors investigate
the shortcomings that massively networked devices provide in terms of channel assign-
ment, user clustering, resource allocation, interference control, and network coverage
extension. Furthermore, the concepts of DL schemes are examined, as well as the scope
of the DL algorithm in resource management for IoT-assisted systems. Different types of
DNNs are investigated in detail, as well as their recent contributions to wireless communi-
cation issues. The study advances research and knowledge of 5G and B-5G technologies
such as AR, VR, NOMA, 5G heterogeneous networks, and machine-to-machine (M2M)
communication. In the work [19], the authors investigate the optimal power allocation
problem for home-based vehicular wireless communication. The DDPG approach is uti-
lized in the proposed wireless network, and V2V communication functions as an agent
that interacts with the unknown environment to acquire experience, with NOMA being
used to allocate radio resources. Due to node mobility, the fading channel is no longer
frequency flat, and it becomes time selective in nature. Due to time selectivity, channel
coefficients change rapidly, and it is very difficult to estimate the coefficients correctly,
especially for the V2V systems. In the proposed decentralized discrete-time and finite-
state Markov decision processes, the DDPG approach is employed to tackle the resource
allocation problem. After 125 epochs, the proposed DDPG approach outperforms the
DQN-based algorithm by 26 % and achieves faster convergence than DQN. The proposed
approach surpasses the random resource allocation scheme by more than 90Mbps for 50
automobiles and by 40Mbps over the DRL algorithm in terms of attainable data trans-
mission rate. With 120 deployed vehicles and a payload of 1 Mb, the proposed DDPG
achieves a 95 percent average delivery probability. Furthermore, with 60 deployed vehi-
cles, it obtains a 95.6 percent delivery probability for a 1.6 Mb payload, whereas the DRL
achieves an 80 % delivery probability for the same payload. Research gap: While the sug-
gested technique solves the resource allocation problem, the proposed DDPG algorithm’s
convergence behavior must be explored to determine the ideal conditions.

In the work [25], the authors developed an approach to allocating energy-saving re-
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sources for heterogeneous IoT 5G-NOMA networks. In cognitive relaying systems with
IUI reduction, the proposed approach solves (a) imperfect SIC, (b) stepwise resource al-
location for cellular and 5G-IoT wireless users, and (c) recurrent neural networks (RNN)
is utilized to identify users based on rate demands in limited spectrum heterogeneous
networks. In the orthogonal frequency division multiple access (OFDMA) system, no
cellular user may access the channel, but in the low SINR regime, NOMA enables 25 %
of cellular users to access the channel and shares the spectrum with IoT. The access ratio
is unaffected by the target SINR. At 5 dB IoT target-SINR, NOMA achieves a greater
sum rate at 2 bits per second than OFDMA. Research gap: The EE of 5G NOMA het-
erogeneous networks is decreased when the spectrum is shared among mobile users and
5G-IoT devices. In the work [26], the authors have investigated the DL-assisted cross-
layer optimization NOMA network. The authors employ the NOMA in conjunction with
the OFDMA scheme for video transmission. The users are categorized and seen as a
multi-label classification problem. The DL-assisted cross-layer optimization NOMA net-
work’s highly complicated transmission blocks are changed with appropriate supervised
learning DNN structures. All the layers in the research, except for the output layer, use
the rectified linear unit (ReLU) activation function. The sigmoid activation function is
used in the output layer. After the output layer, a post-processing technique is provided
to improve user grouping. When both the application and physical layers are considered,
the average SNR enhances to 40.37 with a variation of 0.0036 (video quality). The typi-
cal resource allocation of the NOMA system gives identical performance characteristics
with and without DL, according to the research study. As a result, DL’s importance must
be examined. In the work [27], the authors examine the optimal power problem in a
grant-free NOMA network. The advantage of the Grant-free NOMA is that it provides
massive connectivity, allowing 5G-IoT devices to be connected in the 5G and B-5G wire-
less networks. The grant-free NOMA system’s performance is further improved by DL
enhanced user recognition and decoding. An auto-encoder is used as an alternative to a
SIC detector, with the encoder to the user and the decoder to the receiver.

A multi-layer DL architecture is being developed for a grant-free NOMA for effec-
tive energy communications. The suggested DL-based detector improves the SNR by 16
dB over the usual SIC receiver for a Bose–Chaudhuri–Hocquenghem (BCH) code, result-
ing in a block error rate of 10−6 and a rate of 0.6. Research Gap: Because coding tech-
niques are employed to increase the BER performance, the system’s SE is the worst. In the
NOMA-assisted system, resource management is a critical process. The computational
complexity of typical resource management techniques is significant. In the work [28], the
authors have proposed the efficient resource management problem by doing basic changes
in DNN designs. The proposed algorithm considers the incorrect SIC at the detector, in-
cluding user ordering and optimal power allocation based on a dynamically fluctuating
channel. In optimal power allocation, the interior point method (IPM) is employed, al-
lowing for a higher data transmission rate. Power levels are labeled in the fully linked
DNN model. The user scheduling technique is then used to raise the throughput even
higher. DNN obtains a 90.67 % sum rate using a 22-bit input. The proposed power distri-
bution system provides a total throughput of 15 bits/sec/Hz, which is 3 bits/sec/Hz faster
than the single IPM method. Research gap: Unsupervised learning can be considered as
part of the resource allocation approach to the practical system. In their research [28],
the authors used the NOMA system for massive connectivity in a wireless IoT network.
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The IoT network relays data from IoT devices to faraway servers using solar-powered
unmanned aerial vehicles (UAVs). The UAV uses the conventional SIC channel estimator
and detector to decode data from many devices, whereas IoT devices employ the slotted
aloha medium access protocol. To achieve better throughput, a DRL-based optimization
method was designed to handle the problem of dynamic channel access probability. In
comparison to a system without DRL, the suggested method yields an 83 % better tempo-
ral average channel capacity. Research gap: DRL-based resource management might be
built since the suggested model comprises huge IoT devices. The authors of [29] discuss
resource allocation difficulties in NOMA-assisted cache-based mobile edge computing.
To allocate resources, an LSTM algorithm-based network is utilized to process requests
for computational task requests. To examine the long-term resource allocation strategy,
a single-agent Q-learning algorithm has been designed. In addition, Bayesian learning-
assisted multiagent Q-learning is used to offload choices to choose optimum actions at
each state. By expending 60-time slots, the suggested approach predicts real job popu-
larity with a probability of 0.10. Research gap: The proposed scheme is designed for a
larger number of requests for computing tasks. According to the study work described
above, different DL frameworks are employed in different types of NOMA-aided systems
to optimize the resource allocation problem via DL. The DDGP algorithm was used in the
V2V [19] communication search to dramatically improve BER performance and outage
probability. Similarly, [28] indicates a significant increase in attaining channel capacity
using the DRL technique. BiLSTM-based modeling outperforms traditional LSTM-based
models in terms of prediction. BiLSTM models outperform autoregressive integrated
moving average and LSTM models in terms of prediction. In their study [30], the authors
employed a Bi-LSTM based DL technique to estimate fading channel coefficients in a
variety of multipath circumstances. The performance of the Bi-LSTM algorithm is evalu-
ated about the number of pilot symbols and cyclic prefixes. The BER statistics show that
the Bi-LSTM scheme outperforms state-of-the-art channel estimation approaches such as
the minimal mean square and error (MMSE) estimation method. The main contribution of
the paper is given below: (i) Due to the advantage of the Bi-LSTM over the LSTM algo-
rithm, the Bi-LSTM algorithm is used for the U/L NOMA wireless network instead of the
traditional SIC NOMA receiver. (ii) We employ the Bi-LSTM algorithm to solve imper-
fect SIC problems that are not processed by conventional NOMA receivers. The proposed
Bi-LSTM technique would decrease the gaps caused by imperfect SIC while also increas-
ing the net throughput of the decoded signal. (iii) The simulation results demonstrate how
numerous DL system parameters are considered. There are several elements to consider,
including the number of users, epochs, suitable power allocation parameters, batch size,
modulation types, and learning rate. According to the simulation findings, the proposed
system outperforms the classic SIC technique.

2. MIMO-NOMA DL SYSTEM MODEL

2.1 Channel Model

We examine a 5G-NOMA system that contains a BS with L antennas and two users,
each user equipment is equipped with Gl , l = 1,2, antennas. For the sake of simplic-
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ity, the number of paired users for both U/L and D/L is limited to two. Expanding the
suggested MIMO-NOMA techniques to more than two users while keeping their desired
characteristics of IUI-free communication appears to be a difficult task that is outside the
scope of this research. Furthermore, we assume that the user closest to BS is the second,
and the user farthest away from BS is the first, resulting in a higher path loss. It is criti-
cal to pair users who are experiencing distinct channel conditions to reap the benefits of
NOMA [31, 32]. Between the ltb user, l = 1, 2, and the BS, the D/L MIMO channel is
described as [31–34],

1√
Πl

Zl , (3)
Small scale fading or fast fading effects are represented by the elements of the matrix

Zl ∈ Gl×L, l = 1,2. Furthermore, Zl ∈ Gl×L, l = 1,2. denotes the route loss between the BS
and the ltb user [31][26], which models the uplink MIMO channel between the ltb user
and the BS as shown below [31].

1√
Πl

ZH
l , (4)

Additionally, it has been assumed that both MIMO matrices Z1 and Z1 have perfect
knowledge of the CSI [31, 32].

2.2 U/L NOMA Data Transmission Model

Let Kl = min{Gl ,L} ; l = 1,2 be the ltb user′s symbol vector length, and TU
1 =

[TU
1, 1, . . . ,T

U
1, K1

]T ∈ K1×1 and TU
2 = [TU

2,1, . . . ,T
U
2,K2

]T ∈ K2×1 represent the 1st 1st and 2nd

2nd users transmit symbol vectors, respectively. In this investigation, we have consid-
ered that TU

l,m ∼ (0,1), l = 1,2, m = 1,2, . . . ,Kl , are frequency-flat i.i.d. Rayleigh fading
links in this example. For the sake of evaluating the attainable user rates for MIMO-
NOMA [31–34], we assume perfect Gaussian signaling. Using a linear precoder matrix
PU

l ∈ GlKl , l = 1,2, the ltb user precodes and sends a symbol vector. There are known
modulation and coding methods that may nearly match the performance of perfect Gaus-
sian signaling and can be employed in practical implementations, such as [34], where
the ltb user precodes them transmit symbol vector using a linear precoder matrix PU

l . To
communicate their precoded symbol vectors to the BS, both users use the same resource.
The ltb user′s transmit power PU

l , l = 1,2 is expressed as [31],

PU
l = tr

(
PU

l

(
PU

l

)H
)
. (5)

The received signal at the BS, y
′U ∈ L×1, is given by [30–33],

y′U = 1√
Π1

HH
1 PU

1 TU
1 + 1√

Π2
HH

2 PU
2 TU

2 +η ′U . (6)

At the BS, the letter η ′U ∼
(
0,σ2IL

)
stands for the AWGN vector. The received

signal at the BS is first processed using a unitary detection matrix QU ∈ L×L to generate
[25, 31],

y = QU y′U = 1√
Π1

QU HH
1 PU

1 TU
1 + 1√

Π2
QU HH

2 PU
2 TU

2 +ηU , (7)

which is then decoded. Where ηU = QU η ′U ∼
(
0,σ2IL

)
is subsequently used for decod-

ing.

2.3 DL Based NOMA System

DNN, convolutional neural network (CNN), and RNN are among the most common
DL strategies. The fundamentals of various DL-based schemes are briefly discussed in
this section. The DNN is a more advanced form of the neural network, with three layers:
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output, input, and hidden. The hidden layers may be extended to many layers according
to the complexity of the signal processing method. The effects are only applied to nearby
levels, and each layer comprises many nodes. Fig. 4 gives the schematic representation
of a DNN model. Linear and nonlinear relationships exist between neighboring layers.
Each layer’s linear relationship between input and output is controlled by the linear com-
ponent. The two types of operations are multiplication (denoted by the weight m̃ ) and
addition (denoted by the bias t̃ ). However, in most real-time propagation scenarios, we
are confronted with nonlinear issues that cannot be handled using the linear technique. As
a consequence, the nonlinear component is handled using the activation function, the non-
linear component is handled using the activation function f (.) . Assume that the (l−1)th

layer’s output is yl−1, the lth layer’s weight matrix is m̃l , the bias vector is t̃l , and the lth

layer’s output yl may be denoted as follows:
yl = f (m̃l .yl−1 + t̃l) , (8)
The sigmoid function is a classic activation function for DNNs (9). The function’s

range is restricted to [0, 1], and it can only approximate the probability. The tanh function
(10) is a standard activation function as well. The range of the tanh function is expanded to
[-1, 1], and the output center of each layer is adjusted to 0, resulting in faster convergence
using stochastic gradient descent (SGD). Another important activation approach is the
rectified linear unit (ReLU) function (11). The ReLU function rises linearly when u > 0
and is zero when u < 0, rather than confining the value to [0, 1] or [–1, 1]. After repeated
nonlinear procedures, the gradient does not vanish.

fsig(u) = 1
1+exp(−u) , (9)

tanh(u) = eu−e−u

eu+e−u , (10)

ReLU(u) =
{

u ,u≥ 0
0 ,u < 0 (11)

The transmission equation for several hidden layers may be defined as follows, as-
suming that the bias is 0 for simplicity.

yn = f (m̃n f (m̃n−1 f . . . m̃2 f (m̃1y0)) (12)

The sigmoid function (9) and the softmax function are the most frequent choices for
the output layer. The softmax function, which is mostly used for multiclass classification,
is defined as follows:

fso f t(u)i =
eui

∑
j

eu j . (13)

In DL algorithms, we frequently need to input the system a large amount of data,
known as the training set, so that it can modify itself adaptively to the optimal status
offline. Correct data should be utilized during the training phase to correct the result.
Then, a supervised relationship between the input and the output may be constructed. The
trained system may then be applied to the test set to evaluate the DNN’s performance. To
increase and allow the full potential of 5G, DL schemes are being applied. DL schemes
popularity began to rise in the early 2000s, but it was not until lately that DL became
more widely used. DL can understand, produce, and investigate practically any task given
to it, producing concise and trustworthy outcomes. It boasts cutting-edge performance,
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and some of its notable achievements include VR, AR, image classification, and object
identification. DL algorithms are developed in a variety of disciplines, including wireless
networks and 5G, to provide more rapid, more consistent, and more trustworthy outcomes
using simple techniques [34, 35]. In [35], the authors have uncovered new research re-
sults in the following five 5G schemes: low-density parity-check coding, efficient power
allocation in NOMA networks, massive MIMO, and security. Millimeter-wave blockage
prediction, resource allocation in code domains NOMA, SE, EE, and channel capacity
are the major topics in 5G and B-5G communication. The 5G and B-5G schemes include
optical free-space communication, reconfigurable intelligent surfaces, visible light com-
munication, Terahertz communication, and UAVs that may employ DL. Data processing
is growing increasingly difficult and diversified, as is obtaining the optimal CSI. By suc-
cessfully training these complicated data symbols, better performance may be produced.
DRL is a kind of DL technique that is considered crucial in 5G MIMO-NOMA wireless
communications [36]. The most well-known use of the DRL method thus far has been
resource management. Prior knowledge of the CSI is not necessary for generating results
in the Q-learning-based DRL scheme.

3. RNN BASED DL ALGORITHM

A feed-forward neural network allows information to travel only in one direction:
from the input nodes to the output nodes, passing via the hidden layers. In the network,
there are no loops or cycles. Because they are meant to extract contextual information by
specifying the connections between multiple time steps, RNN [7,8] is a type of NN that is
commonly employed in the sequence analysis process. An RNN is made up of a series of
recurrent layers that are modeled successively to map one sequence to another. RNN has a
great capacity to extract contextual information from a sequence. Contextual signals in the
network structure, on the other hand, are consistent and successful in data classification.
RNN is capable of processing sequences of any length. The RNN classifier’s architecture
is depicted in Fig. 6. RNNs function by maintaining a layer’s output and feeding it back
into the input to anticipate the layer’s output. RNNs, which are cutting-edge algorithms
for sequential information sequences, are used by virtual digital assistants such as Alexa,
Google Home, Apple’s Siri and, Cortana. It is the first read-only memory (ROM) algo-
rithm to identify its input, making it perfect for ML challenges requiring sequential data
symbols. RNNs are the only neural networks with internal memory, making them a very
efficient and dependable form of neural network. The existence of loops in hidden lay-
ers extends feedforward NN to RNN. An RNN takes a sequence of samples as input and
calculates the temporal connection between them. In RNNs, it is easier to remember past
data because of the presence of internal memory, resulting in accurate prediction. RNNs
are therefore the most effective way to process audio, text, time series, and a variety of
other forms of sequential data. Unlike other DL algorithms, RNNs have the potential to
produce a far more thorough interpretation of a sequence’s meaning. Due to its ability to
memorize data, the RNN is another popular topic in natural language processing (NLP)
research. By creating a link between the present and past data, RNNs can cope with sit-
uations where sequences from distinct slots have associations with each other (and even
future data). Fig. 7 shows the fundamental structure of an RNN. The preceding data is
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Fig. 5. NOMA system block diagram with
online and offline CSI auto-detection train-
ing.

Fig. 6. Schematic representation of the RNN clas-
sifier.

Fig. 7. Block diagram representation of
the RNN [33].

Fig. 8. Block Diagram representation of the
LSTM algorithm [36-38].

summarized as a state W (t)
k for solving the output ŷ(t) with the present input. The number

of RNNs outputs may differ from the number of inputs in a variety of applications, includ-
ing 5G signal processing, sentiment analysis and classification, and machine translation.

3.1 LSTM Scheme

LSTM networks are an RNN enhancement that effectively increases memory. The
LSTM handles classification issues by integrating network parameters with the hidden
node and releasing the state based on input data. As a result, it is highly suited to learning
from large events separated by extended periods. The layers of an RNN, also known as
an LSTM network, are built with LSTM network units. RNNs may store inputs for a long
period because of LSTMs. This is since LSTMs store data in a computer-like memory.
Fig. 8 shows the LSTM algorithm. The LSTM is capable of erasing, writing, and reading
data from its memory [37].

3.2 Proposed Bi-LSTM Scheme

Two separate hidden layers are used to process the network in two directions: back-
ward and forward. In the work [21], the authors demonstrate that the Bi-LSTM networks
outperformed unidirectional networks in scenarios like phonemic grouping, according to
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the authors of [21]. Fig. 9 shows a schematic illustration of the RNN algorithms. The
output of both the backward and forward layers is calculated in the same way as the uni-
directional RNN. The output Yt of the Bi-LSTM method is given as [22],

Yt (⃗ht ,
←
ht), (14)

where Yt (⃗ht ,
←
ht) signifies the backward layer result order and h⃗t denotes the forward output

layer. Layers in all networks employ the dropout function, which is a mechanism for
preventing network overfitting. This shows that learning occurs across several topologies
and neuron types. Fig. 10 (a) shows the networks before and after dropout (b).

4. SIMULATION AND ANALYSES

In this sub-section, we investigate the end-to-end SER performance of the Bi-LSTM
based MIMO-NOMA scheme and simulation outcomes have been demonstrated for var-
ious system parameters in Table 2. To begin, the SER performance of Bi-LSTM, LSTM,
and SIC schemes has been examined for various modulation schemes under frequency
flat i.i.d. Rayleigh fading channel circumstances. Second, in perfect and imperfect CSI
circumstances, the SER performance of Bi-LSTM, LSTM, and SIC schemes is compared
for various values of power allocation factors. We also ran simulations for various values
of mini-batch sizes to speed up the convergence of the Bi-LSTM scheme. Finally, prac-
tical suggestions for accelerating training are given. For performing ML tasks, a variety
of tools and software are available. We used Python 3.10.2 (open source), MATHEMAT-
ICA, the R programming language (open source), and MATLAB 2021b (licensed version)
in the simulations because of their usability and computing efficiency. The suggested DL
approach is built using graphics processing unit (GPU) acceleration, Azure ML Studio,
and Google TensorFlow, which is a powerful open-source ML framework from Google.
Given the imperfect CSI conditions, the fading channel is robust and frequency flat (i.i.d.
Rayleigh fading). For simplicity, two-user U/L MIMO-NOMA has been used in the simu-
lations, with each user equipment having six antennas. The MIMO fading channel model
has a size of 6× 6 with a single cluster that has been examined in this paper. In simula-
tions, the total available power is limited to 1W, and the distant user or poor channel gain
user receives almost all the available power for improved SER, while the user with good
channel conditions receives less power (nearly 10 percent of total available power). Hid-
den layers have a sigmoid activation function [35], whereas output layers have a ReLU
activation function [36]. The 500,900 number of data symbols and mini-batch (smaller
data sets) are considered in this work for getting the faster convergence rate and optimal
SER performance [20, 38].

In the supervised learning-based DL scheme, all the labels are one-hot encoded. The
various simulation parameters are listed in Table 3. In the simulation, the DL MIMO-
NOMA model is set up, and training data is generated and adjusted in a proper for-
mat. In the works [8–10], the authors have investigated the SER of the DL NOMA sys-
tem considering the binary phase-shift keying (BPSK) and quadrature phase-shift keying
(QPSK) symbols. In this work, we have considered the quadrature amplitude modulation
(QAM) modulated data symbols in the SER analysis over Rayleigh distributed fading
links. The simulations show that the SER performance increases considerably. The to-
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Table 2. Variables.

Simulation Pa-
rameters

Assigned Values Simulation Parameters Assigned Values

Linux operat-
ing system

Windows 7 Enterprise TxPower = 1W TxPower = 1W

Simulation
Software:
Python 3.9.2
and MATLAB
2020b

Simulation Software:
Python 3.9.2 and MAT-
LAB 2020b

First UE power allocation fac-
tors = 0.80, second UE power
allocation factor = 0.20

First UE power alloca-
tion factors = 0.80, sec-
ond UE power alloca-
tion factor = 0.20

6 × 6 MIMO
i.i.d. frequency
flat fading links
considering the
AWGN noise

6× 6 MIMO i.i.d. fre-
quency flat fading links
considering the AWGN
noise

Hidden layer Activation
function-Sigmoid Activation
Function

Hidden layer Activa-
tion function-Sigmoid
Activation Function

i.i.d. Frequency
Flat Rayleigh
Fading Links

i.i.d. Frequency Flat
Rayleigh Fading Links

Output Layer Activation
function-ReLU Activation
Function

Output Layer Activa-
tion function-ReLU
Activation Function

2 UEs per clus-
ter

2 UEs per cluster Number of Rx Antennas = 6 Number of Rx Anten-
nas = 6

Number of Tx
Antennas = 6

Number of Tx Anten-
nas = 6

Training symbols=500,900 Training
symbols=500,900

Google cloud
auto machine
learning tool
box

Google cloud auto ma-
chine learning tool box

tal number of slots is assumed to be M, and the input column vector is expressed as,
S =

{
S[1],S[2], . . . ,S[L]

}
. At the lth time slot, the element of the column vector is S[l].

The key system parameters, including as the output layer, output functions, learning rate,
mini-batch, and hidden layer, have been set once the data has been generated and adjusted
in the proper format. The DNN layer’s bias and weight have now been initialized after
this step. The forward DL technique is then used to achieve the required results, which is
marked by R̂l =

{
R̂[1]

l , R̂[2]
l , . . . , R̂[L]

l

}
[10]. The cross-entropy loss function for the average

probability q is calculated as, W (R, R̂) = −R× log(q)− (1− r) ∗ log(1− q) ; R ∈ (0,1) .
The correction parameter values are computed and updated by utilizing the convex opti-
mization and adaptive learning rate schemes. The data is tested once it has been trained,
and then curves between the SNR in dB and the BER are shown.

There is a performance difference between DL-based MIMO-NOMA and standard
SIC MIMO-NOMA systems. To access this gap, the suggested Bi-LSTM method is com-
pared against the LSTM and SIC-based channel estimators. It has been assumed that the
SIC scheme has correct information about the fading channel coefficients and that both
user equipment and traditional SIC-based MIMO-NOMA detectors take into considera-
tion QAM complex modulated signals. The 1st user signal is initially demodulated using
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Fig. 9. The Schematic block diagram
description of RNN DL models. (a)
Unidirectional RNN, (b) Bi-directional
RNN models [34].

Fig. 10. Structure of networks (a) before and (b)
after applying dropout [35].

Fig. 11. Performance comparison be-
tween the Bi-LSTM MIMO-NOMA, LSTM
MIMO-NOMA, and SIC NOMA schemes.

Fig. 12. Bi-LSTM MIMO-NOMA-DL perfor-
mance comparison for several modulation tech-
niques.

the signal received from the second user as an interference signal in traditional SIC meth-
ods. The signal from the second user is recovered after subtracting the first user signal
from the composite MIMO-NOMA signal obtained from the BS. However, in the Bi-
LSTM MIMO-NOMA strategy, the received signal is forwarded to the DNN, and labels
are established just for the second user sequence during the training phase. During the
training phase, the input signal is introduced to the DNN detector input as a column vec-
tor, and only the second user data sequence labels are selected. As shown in Fig. 11, the
conventional SIC NOMA system achieves 15 dB, whereas the Bi-LSTM MIMO-NOMA
scheme achieves for iterations. The Bi-LSTM MIMO-NOMA schemes outperform the
SIC MIMO-NOMA strategies by a factor of four. Instead of using conventional SIC
schemes for determining the fading channel coefficients and decode signals, the proposed
scheme uses the powerful Bi-LSTM algorithm to estimate the proper data symbol. In
Fig. 12, simulations have been demonstrated for various modulation schemes. It is worth
noting that no pre or post-processing is done. We have employed a sophisticated Bi-
LSTM scheme to accomplish reliable signal recognition rather than typical complicated
5G signal processing for channel estimation and demodulation. User signals can utilize a
variety of modulation schemes. Because in power domain NOMA, non-orthogonal carri-
ers have been used, MUI particularly the type of modulation they use – has a huge impact
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on demodulation performance. Table 3 shows three groups of stimulation parameter set-
tings, including the scenarios where both user equipment had 4-QAM or quadrature QAM
modulation and where (a) the First user used 4-QAM modulation, and second user used
4-QAM (first case) (b) First user used 8-QAM modulation, and second user used 8-QAM
(second case) (c) the First user used 16-QAM modulation and second user used 16-QAM
(third case) (d) First user used 32-QAM modulation and second user used 32-QAM (third
case). Because the second user signal must be decoded first using the SIC approach, we
only used the Bi-LSTM scheme to identify the second user signal owing to its higher
signal processing complexity. Fig. 12 represents the SER performance in all four sce-
narios. The SER performance of the Bi-LSTM MIMO-NOMA system is demonstrated
to be excellent. Aside from the previously mentioned example 1, case 1 resulted in a 4
dB performance rise, whereas case 4 resulted in a 1.5 dB gain. These results imply that
the Bi-LSTM might be utilized to learn the Rayleigh distributed MIMO channel’s fading
channel coefficients, as well as signal demodulation using NOMA. In addition, optimal
resource allocation is implemented, with various amounts of power allocated to different
user equipment dependent on channel strength. Using QAM complex modulated signals,
several user equipment are investigated in the simulation. Because the MIMO-NOMA
scheme considers non-orthogonality, which is one of the most important determining fac-
tors in calculating SER performance, interference from other users must be addressed.
The DL MIMO-NOMA detector outperforms SIC-based systems, as shown by the curves
in Fig. 13. Aside from case 1, which had a 4 dB increase in output, scenario 2 saw a
1 dB improvement in performance. These outcomes show that the DL approach may
be utilized to learn both the properties of the wireless MIMO Rayleigh fading channel
and the symbol detection using NOMA. Fig. 14 represents the end-to-end performance
of DL MIMO-NOMA systems employing 8-QAM complex modulated symbols and vari-
ous power allocation channel coefficient values.The proposed method outperforms earlier
approaches for all scenarios of power distribution channel coefficients. When the power
allocation coefficient is equal to 0.90, the SER is the least, and the dynamic power alloca-
tion scheme outperforms the fixed power allocation approach significantly. The imperfect
knowledge of the CSI has a significant impact on SER performance as well as the de-
tection and estimation method during the training stage. The fading channel coefficients
detection and estimation are done at the training phase. We investigated how the sug-
gested Bi-LSTM scheme was accomplished when the estimated CSI differed from the
real-time propagation scenario by presenting the error into the channel at the testing step.
The relation between i.i.d. Rayleigh fading channel matric with channel error, represented
as, Z and the actual channel matrix, represented as, Ẑ is expressed as, Z = Ẑ+αβ . Where
β represents the channel error matrix and α represents the error factor. During the testing
phase, imperfect CSI is considered, and the effect of imperfect CSI on SER performance
for the Bi-LSTM MIMO-NOMA scheme is shown in Fig. 15. The SER performance of
the Bi-LSTM MIMO-LSTM system degrades dramatically as the value is increased from
0 to 1. Even when the perfect CSI is considered, the Bi-LSTM MIMO-NOMA based
detector outperforms the SIC MIMO-NOMA detector for the value of α < 0.07. The Bi-
LSTM MIMO-NOMA detector’s performance is shown to be the worst when changes
between actual and predicted (channel with estimation error) channel states occurred, al-
though the Bi-LSTM based approach can keep its superiority within a given tolerance.
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Modulation Scheme 1st UE 2nd UE
1 4-QAM 4-QAM
1 4-QAM 4-QAM
1 4-QAM 4-QAM
1 4-QAM 4-QAM Fig. 13. SER performance comparison between

the Bi-LSTM, LSTM, and SIC-based MIMO-
Table 3. Modulation techniques used in simu-NOMA schemes for 4-QAM and 8-QAM mod-
lations. ulation schemes.

Fig. 14. SER performance comparison
for various values of the power alloca-
tion factors.

Fig. 15. SER performance comparison between
the Bi-LSTM, LSTM, and SIC schemes for vari-
ous values of channel error factors.

5. CONCLUSION

The perfect and imperfect SIC schemes are explored in this paper, and it is demon-
strated that the suggested Bi-LSTM MIMO-NOMA system may increase SER perfor-
mance over the conventional SIC-based MIMO-NOMA scheme even when the SIC is
not perfect. Simulation results with various channel estimation error factors showed the
learning performance of the Bi-LSTM MIMO-NOMA. The performance of DL degrades
considerably as the channel error factor goes from 0 to 1. Even when the perfect CSI is
considered, the DL detector outperforms the SIC NOMA detector for channel error fac-
tors smaller than 0.07. The DL detector’s performance is shown to be the worst when
discrepancies between actual and estimated channel states occurred, whereas the DL-
based approach can keep its superiority within a certain tolerance range. Because of its
excellent SE and low latency, NOMA is widely acknowledged as having enormous im-
portance in 5G and beyond communication systems. DL has the potential to significantly
improve its performance. The unique functions of DL techniques in various NOMA appli-
cations are briefly covered in this work. It is explained how DL approaches boost NOMA
performance. In addition, the individual DL approaches that have been employed in the
literature are given, along with their roles. Finally, a brief discussion on potential future
research topics is held.

Table 3. Modulation techniques used in 
simulations. 
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