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Software development effort estimation is the basis for the effective project plan-

ning and scheduling as well as for the project’s budget definition. This article describes 
the most common methods used in the software effort estimation (SEE) and presents the 
study performed in a software development organization (SDO) that is implementing the 
software development process improvement framework Capability Maturity Model Inte-
grated (CMMI). Currently SDO estimates the software effort based on the opinion of one 
area expert. The disadvantages of this method and the willingness to incorporate the best 
practices of CMMI encouraged the SDO to replace the existing effort estimation method 
by a formal one. The stepwise Multiple Linear Regression (MLR) technique was se-
lected and used for the software development and software testing processes. The results 
achieved with MLR were compared with the estimates provided by the area expert. The 
model obtained for the testing team performed better results than the expert judgments, 
while for the development team no satisfactory model was found and a proposal for col-
lecting data from new variables is presented.      
 
Keywords: software development, effort estimation, multiple linear regression, practical 
case, CMMI    
 
 

1. INTRODUCTION 
 

Software effort estimation (SEE) is the prediction about the amount of effort re-
quired to make a software system and its duration [1]. SEE first appeared in 1950s, and 
since then continued to attract attention of software community specialists having the 
objective of developing useful models that constructively explain the development 
life-cycle and accurately predict the cost of developing a software product [2, 3]. Since 
then, there were developed a lot of models for the effort and cost estimation. The diver-
sity of these models reported in the literature can be considered an indicator of the prob-
lem complexity, since there is no unique model that completely satisfies the need for 
objective, fast and accurate predictions in all circumstances. 

Galorath and Evan [4] summarize the steps that are generally followed to obtain the 
project’s effort estimation as: (i) establishment of estimation scope; (ii) establishment of 
technical baseline and assumptions; (iii) collection of data; (iv) software sizing; (v) pre-
paring of baseline estimates; (vi) quantification of risks and their analysis; (vii) valida-
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tion and review of estimate; (viii) creation of project plan; (ix) documentation of estimate 
and lessons learned, and (x) tracking of project throughout development.  

The ability to deliver the software on time, within the budget and with the expected 
functionalities and quality is a challenge for all software development organizations. In-
accurate estimations in software development industry is one of the most serious prob-
lems that cause the software projects failure. Both under and over estimations have nega-
tive impact on projects’ results. While underestimation causes schedule delays and cost 
overruns that subsequently reduce the quality of end products, overestimations may lead 
to the loss of potential customers and partners, as well as to the inefficient distribution of 
the resources.  

The quality of the estimates is one of the factors that determine the success of the 
project and helps to avoid the risks related to costs and schedule overruns. SEE is usually 
required in the beginning of the development phase, making the task of effort estimation 
more complex. According to [5], the error of estimation decreases as the project pro- 
gresses because each subsequent project milestone brings new information that comple-
ments the existing one. In this way, it is possible to reduce the variability of effort esti-
mation and make more accurate predictions. 

This article presents a study carried out on a specific software development organi-
zation (SDO) where the effort required to prototype, develop, test and document soft- 
ware products was estimated by the respective area expert. The disadvantages associated 
to this method (like lack of experts and objective criteria for the estimation performance, 
difficulty to reproduce and use the knowledge and experience of an expert and question-
able reliability of estimates [6]) and willingness to incorporate the best practices of the 
software development process improvement framework – Capability Maturity Model In- 
tegrated (CMMI) – encouraged the SDO to replace the existing effort estimation method 
by a formal one. 

The aim of this paper is to present the main software effort estimation methods, 
their advantages and disadvantages and to apply a formal method based on the Multiple 
Linear Regression technique to the historical data of a medium-sized multinational soft-
ware company. Besides, the study performs predictive accuracy’s comparison between 
the method used in the company before the study (expert judgment) and the MLR results. 

The authors believe that the contribution of the present article is valuable for both 
academic and practical purposes as it provides a literature based comparison and evalua-
tion of different effort estimation techniques, associated advantages and disadvantages 
and main motivation and obstacles of their application, after which a practical case is 
described. The study may be of particular relevance for software development organiza-
tions that aim to improve the quality of their software effort estimates. Besides, the adop-
tion of formal effort estimation methods is a requirement that has to be fulfilled by com-
panies that intend to be CMMI appraised. 

2. THEORETICAL BACKGROUND 

This section provides literature overview of the existing classifications of software 
effort estimation techniques, characterizes the most popular classification, performs the 
motivations and reasons for failure of the effort estimations, and finally describes the 
model used to perform effort estimations in the studied SDO. 
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2.1 Classification of Software Effort Estimation Techniques 
 
The literature reports a great variety of classifications of the SEE methods. Li, Ruhe 

et al. [7] and Shepperd, Schofield et al. [8] provide common classification of effort esti-
mation techniques, categorizing them into expert judgment, analogy based or machine 
learning and algorithmic methods: 
 
 Expert judgment effort estimation techniques are based on the person’s experience and 

intuition [7]; 
 Analogy based or machine learning techniques predict the estimate from the analysis of 

projects with similar characteristics [7, 9]; 
 Algorithmic techniques are based on mathematical models and produce effort estima-

tions as function of a number of variables [7, 10]. 
 

Singh, Bhatia et al. [1] give a more detailed classification of effort estimation tech-
niques than the previous one and divide them in empirical techniques, model/theory tech-
niques, expertise techniques, regression techniques, composite techniques and machine 
learning techniques. 

 
 Empirical techniques correspond to the analogy-based techniques which estimations 

are based on the practice and previous experience. 
 Model/Theory based techniques are the algorithm based techniques that include Func-

tion Point Analysis, SLIM, Checkpoints and COCOMO model. 
 Expertise techniques are equivalent to the expert judgment when a person carries out 

estimation based on non-explicit and non-recoverable reasoning [1]; 
 Regression based models are used to infer how the Y-variables are related to X-vari- 

able(s), requiring data from previous projects; 
 Composite techniques combine both approaches  expert judgment and project data  

in a consistent way in order to obtain the effort estimation [2, 11]. 
 
Attarzadeh and Ow [12] and Leung and Fan [10] give more generalized classifica-

tion of effort estimation techniques dividing them into algorithmic and non-algorithmic 
ones. Algorithmic techniques are based on mathematical models that are categorized as 
analytical and empirical ones [10]. Empirical models establish the formula for the current 
project using data available from previous projects, while the analytical models’ formula 
is based on a set of global assumptions, such as the rate at which the developer solves 
problems and the number of available problems [10, 13]. 

The classification of effort estimation techniques presented by Boehm, Abts et al. [2] 
is close to the Singh, Bhatia et al. [1] classification approach, adding the dynamics based 
techniques. Dynamics based models emphasize the dynamic character of the software 
project effort data and consist on the application of a continuous simulation modeling 
methodology that detects the changes of the effort data over the duration of the project 
[2]. 

Laird and Brennan [14] enrich the Li, Ruhe et al. [7] and Shepperd, Schofield et al. 
[8] classification by adding methods using benchmark data, proxy points and custom 
models. Models based on the use of a benchmark data allow organizations that do not 
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have their own historical database to elaborate effort estimation based on existing data 
offered by another organization. Proxy point method decomposes the development task 
in components (proxies) and estimates size of each element, based on the historical data 
[15, 16]. Custom models opposite to all referred techniques do not impose any standard 
model for effort estimation, allowing modifications of formal models in order to adapt to 
the specific reality and needs of organization.  

Table 1. Categories and respective equivalent of the most popular techniques. 
Categories Equivalent Technique from another Classification (Author) 

 Expertise Technique (Singh, Bhatia et al. [1]) 
 Expert Opinion (Laird and Brennan [14]) 
 Expertise Based Technique (Boehm, Abts et al. [2]) 

Expert 
Judgement 

  Expert Judgment (Li, Ruhe et al. [7]; Shepperd, Schofield et al. 
[8]) 

 Empirical and Machine Learning techniques (Singh, Bhatia et 
al. [1]) 

 Analogy base or machine learning (Li, Ruhe et al. [7]) 
 Analogy (Laird and Brennan [14]) 

Analogy 
base or 

machine 
learning 

 Learning oriented techniques (Boehm, Abts et al. [2]) 
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Composite 
techniques 

 Composite techniques   
(Boehm, Abts et al. [2]; Singh, Bhatia et al. [1]) 

 Algorithmic effort estimation  
 (Li, Ruhe et al. [7]; Shepperd, Schofield et al. [8]) 
 Algorithmic Model (Attarzadeh and Ow [12]; Leung and Fan [10]

Laird and Brennan [14]) 
 Dynamics Based Techniques (Boehm, Abts et al. [2]) 
 Regression Techniques (Singh, Bhatia et al. [1]; Boehm, Abts et 

al. [2]) 
 Model/Theory Technique (Singh, Bhatia et al. [1]) A
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or
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Algo-
rithmic 
Model 

 Model Based Technique (Boehm, Abts et al. [2]) 

All mentioned classifications have a common set of techniques, which name may 
vary from classification to classification but the meaning maintains the same, besides 
some categories are particularizations of the more generic classifications. From our point 
of view, the presented techniques fall into one of the following categories: (i) expert 
judgment; (ii) algorithmic; (iii) analogy based or machine learning; and (iv) composite 
techniques. These categories can be characterized as algorithmic or non-algorithmic and 
in this way can be structured in a hierarchical way. Table 1 presents the categories and 
gives the respective equivalents from the earlier presented classifications. Algorithmic 
models group all the techniques that have mathematical basis, such as dynamics based, 
regression based and model/theory based techniques, while the non-algorithmic models 
are based on expert judgments and analogy/machine learning techniques. Composite 
techniques consist of a combination of both algorithmic and non-algorithmic models 
aggregating the advantages of both approaches. 
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2.2 Advantages and Disadvantages of the Most Common Software Effort Estima-
tion Approach 
 
The most popular classification described in section 2.1 is the one provided by Li, 

Ruhe et al. [7] and Shepperd, Schofield et al. [8], grouping the techniques in three main 
categories: (i) expert judgment; (ii) analogy based or machine-learning approach; and (iii) 
algorithmic effort estimation. The main advantages and disadvantages of each of these 
categories are presented in Table 2. This information can help in choosing which one 
shall be used in each specific situation. 

Table 2. Advantages and disadvantages of the most popular classification of software ef- 
fort estimation. 

 Advantages Disadvantages 
Expert  
judg-
ment 

 Provides fast estimation [17];
 Is useful when organization 

does not have any historical 
data in database [1]; 

 Provides estimates which are 
adjusted and calibrated to the 
past of organization by means 
of expert experience; 

 Does not require any histori-
cal data; is good for unique 
or new projects [4]. 

 Provides estimations that are relied on 
the experts experience and intuition 
that sometimes are questionable; fac-
tors that influence the estimation are 
hard to be documented [1, 6, 17]; 

 May not provide consistent estimation 
[4]. 

Analogy 
based or  
machine- 
learning  
approach 

 Is low cost, simple and rela-
tively accurate [18]; 

 Can employ a wide range of 
metrics [19]; 

 Is not sensitive to the out-
liers; deals with poorly un-
derstood domains; can be 
made in the early phase of 
the project [7]. 

 Is unable to handle missing and non- 
quantitative data; quality of estimates 
relies on quality of historical data [7]; 

 Requires database of appropriate pro-
jects [19]; 

 Does not include adjustments related to 
extreme analogues and inaccurate esti-
mations [9]; 

 Needs analogies that match the new 
project characteristics [18]. 

Algorith- 
mic effort 
estima-
tion 

 Is objective, fast and easy to 
use [4]; 

 Provides relatively accurate 
results in the case of exis-
tence of historical data [8]; 

 Provides more objective re-
sults and can be iterated in 
different lifecycles [17]. 

 

 Needs to be adjusted or calibrated to 
the local circumstances [8]; 

 Uses size variables that are difficult to 
obtain in the early stages of the project; 

 Has difficulty in modelling inherent 
complex relationships between contrib-
uting factors;  

 Is unable to support categorical data [12]; 
 The data analysis can be complex [20]; 
 Is sensitive to outliers [21]. 
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Expert judgment is usually used by organizations that do not have any database with 
historical data [1], providing rather fast estimations adjusted to the past of the organiza-
tion. Galorath and Evan [4] recommend this method of effort estimation for new or 
unique projects whose characteristics do not fall into the pattern of the past projects. 
Among the main disadvantages of this method, Singh, Bhatia et al. [1] and Bajwa [17] 
mention difficulty of extraction of factors that influence the estimation and total depend-
ency of results accuracy on the expert experience and intuition that sometimes are ques-
tionable. 

Analogy based or machine learning approach is distinguished by its low cost, sim-
plicity and relative accuracy when there exists a reliable database [18]. This method can 
be applied on the early phases of the project’s lifecycle [7], employing a great variety of 
metrics [19]. Besides, analogy based or machine learning approaches are not sensitive to 
the outliers’ presence and can deal with poorly understood domains [7]. The main weak-
ness of this model lies in the need of a database with appropriate projects similar to the 
new one to perform the effort prediction of high quality [18, 19]. Analogy based or ma-
chine learning techniques are unable to handle missing and non-quantitative data [7] and 
do not make adjustments related to extreme analogues and inaccurate estimations [9]. 

Galorath and Evan [4] characterize algorithmic effort estimation as objective, fast 
and easy to use. Estimations based on this method are relatively accurate in the case of 
existence of historical data [8]. Algorithmic effort estimation, opposite to the analogy or 
machine learning technique, is sensitive to the outliers which may influence the quality 
of final results [20]. As algorithmic effort estimation is based on the software size meas-
ure variables (such as lines of code  LOC, function points, number of functions, mod-
ules or program features required) that are normally available only in the end of the pro-
ject, this type of estimation is difficult to be applied in the project’s early stages [12]. 
Algorithmic effort estimation methods, opposite to the expert judgment, need to be cali-
brated or adjusted to the local circumstances [8] and are unable to support categorical 
data [12]. 
 
2.3 Main Motivation and Obstacles of Formal Effort Estimation Models Application 

 
In spite of the existence of a great variety of models for SEE there is no unique 

method that presents more accurate and precise results in every situation and for all pro-
jects [1, 20]. There is no consensus in literature about the effectiveness of one or another 
SEE method. For example, Li, Ruhe et al. [7] state that in 60% of published studies, 
analogy-based effort estimation shows better results than the other two methods (expert 
judgment and analogy-based model).  

Galorath and Evan [4] resume the main reasons for the software estimation failures 
to: (i) the lack of or misuse of historical data; (ii) overoptimistic leadership or manage-
ment; (iii) failure to use the estimate or (iv) failure to keep the estimate current. 

According to Jorgensen [21] low popularity of software development effort models 
may be explained by the discomfort performed by the software development organiza-
tions during the use of models that they do not fully understand. 

Some of the reasons for a software development organization moving from the 
method based on expert judgments to a formal one are concerned with: (i) the better per-
formance shown by models in the case of less predictive environments [22]; (ii) inde-
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pendence from the experts presence and experience; and finally; (iii) satisfaction of the 
requirements imposed by the frameworks for software development process improve-
ment (such as CMMI and SPICE BPG) for adoption of rationale method of effort and 
cost estimation in order to guarantee the evolution to higher capability/maturity levels. 
 
2.4 Assessment of Models’ Accuracy 

 
The major challenge of an effort estimation model consists in its capacity to produce 

accurate predictions. Among the main causes of inaccuracy of estimates, Jorgensen and 
Molokken-Ostvold [23] refer unexpected events and overbooked tasks, change requests 
from the clients, problems with resource allocation, poor requirements specification and 
too little time spent on effort estimation work. On the other hand, such factors as en- 
largement of the buffer in order to deal with unexpected events and requirements speci-
fication changes, experience from previous projects, high degree of flexibility, knowl-
edge in how to implement requirements specification, good cost control and much time 
spent on effort estimations positively contribute to the accuracy of estimates.  

The most common accuracy predictive statistics are the mean magnitude relative 
error (MMRE) and the percentage relative error deviation within x (PRED(x)) [24]. Both 
these measures are based on the value of magnitude relative error (MRE).  

MRE is a normalized measure of the discrepancy between the actual data values (in 
this case effort values) and the estimated values [25] in Eq. (1). 

 
| |actual estimated

actual

Effort Effort
MRE

Effort


    (1) 

 
MMRE is the mean value of MRE of all observations (n) in the sample: Eq. (2). 
 

1

1
( )

n

i
i

MMRE MRE
n 

     (2) 

 
PRED(x) is defined as the average fraction of the MRE’s values that are off by no 

more than x [24], and is calculated in the following way in Eq. (3). 
 

1

1,  if 1
( )

0,  otherwise

n

i

MRE x
PRED x

n 


  


    (3) 

 
In this paper, x value is considered to be 0,25 as recommended by most authors. 

PRED(0,25) is used to give the percentage of estimates that were found to be within the 
tolerance of 25% of their actual value. Some studies also use PRED(0,20) and PRED 
(0,30) with little differences in results. Conte, Dunsmore et al. [26] consider the values of 
MMRE ≤ 0,25 and PRED(0,25) ≥ 0,75 as desirable for accurate effort model. 
 
2.5 Multiple Linear Regression 

 
Multiple Linear Regression belongs to the algorithmic group of techniques. Accor- 

ding to Leung and Fan [10] it is an empirical model that requires data from the past pro-
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jects in order to evaluate the current projects. Boehm, et al. [2] and Singh, et al. [1] dis-
tinguish MLR as one of the categories of effort estimation techniques that is used to find 
out how the dependent variable (Y) is related to the independent variables (Xi) [27]. MLR 
model is defined as in Eq. (4): 

 
Y = 0 + 1X1 + 1X1 +…+ nXn +    (4) 
 

where X1, X2, ..., Xn are regressors; 0 is the intercept parameter; 1, 2, ..., n are the re-
gression coefficients; and  is the error component. 

To assess the adequacy of the model, the coefficient of determination R² is used [28]. 
It measures the proportion of the total variability of the independent variable about the 
mean that results from the fitting of the multiple regression model [29]. 

As was already mentioned, each technique has its own specific characteristics that 
make it suitable to solve a particular problem. According to [30], MLR technique is usu-
ally employed when: (i) the number of cases is significantly higher than the number of 
parameters to be estimated; (ii) the data has a stable behaviour; (iii) there is a small num-
ber of missing data; (iv) a small number of independent variables are sufficient (after 
transformations if necessary) to linearly predict output variables (also transformed if nec-
essary), so as to enable an interpretable representation. Regression may be used when 
there is a need for a simple model and analysis tool of effort estimation to support the 
preliminary attempts [31]. Application of MLR method requires verification of the asso-
ciated assumptions. The major assumptions to be considered are [32, 33]: 

 Linearity – the relationship between each Xi and Y is linear, thus the model adequately 
describes the behaviour of data; 

 The error component is an independent and normally distributed variable with constant 
variance and mean value zero.  

Problems in data set or use of incorrect model may result in violation of these assump-
tions [34]. 

There are several possible procedures for the selection of the independent variables 
to be included in the MLR model. One of them consists in the inclusion of all the inde-
pendent variables that are considered relevant, while others use stepwise procedures – 
forward regression, backward regression and stepwise regression [35, 36]. This study 
uses the stepwise model, which is more popular than the other ones. This method in-
cludes the independent variables one at a time (Xi), beginning with the one that has high-
est correlation with Y. In each step, R² value is evaluated and it is verified if each of the 
previously included variables contribute to the R² increase, if not it is excluded. 

The next section describes the approach followed by a medium-sized multinational 
software development company using a stepwise MLR method for the estimation of the 
effort for testing and development teams. 

3. FORMAL EFFORT ESTIMATION APPROACH: APPLICATION IN A 
SOFTWARE DEVELOPMENT ORGANIZATION 

This part of the study presents the approach followed by a specific multinational SDO 
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in order to implement a formal software effort estimation method. This need emerged as 
a result of the adoption, by organization, of the framework for software development 
process improvement – CMMI. In order to stimulate the software development process 
maturity in the Project Planning process area CMMI requires the establishment of esti-
mates for work products and tasks based on estimation rationale [37]. 

Before the implementation of CMMI practices organization’s estimates were based 
on the judgement of only one expert. Since it is not considered to be a valid method, 
there were identified two possible solutions to meet the requirements of CMMI. One of 
them consisted in adoption of the formal Delphi method [10] with participation of at least 
3 area experts for the effort prediction. Another solution was the implementation of the 
algorithmic model for the effort estimation based on the historical data of organization. 
Due to the more favourable costs/benefits relationship associated to the second proposal, 
the organization decided to proceed with it. 

Project planning and further monitoring and control within the organization are 
made by means of change set’s management. Change set (CS) is the element of work 
breakdown structure that is considered to be the work unit grouping a set of requirements. 
For this reason, project’s effort and cost estimations are performed in the CS level, pro-
viding possibility for more detailed cost and effort control. 

The existence of two-years old data in the SDO’ historical database where the criti-
cal variables of finished projects were saved and the need for a simple, objective, fast and 
accurate model of effort estimation to support the preliminary attempts [31] led to ex-
plore the possibility of using a software effort estimation method based on MLR. 

 

Developed 

Requirements 

Software Factory 

 Prototyping  Development   Testing  Documentation 
  6%      64%      25%      5% 

Market needs 

Requirements analysis 

Product Managers 

 
Fig. 1. SDO’s project workflow. 

 

3.1 Problem Contextualization 
 
SDO has a matrix organizational structure that is typical of the medium and large 

software development companies [38]. Thus, SDO’s work is organized by projects, in-
volving specialists from different departments. Fig. 1 presents the workflow for the typi-
cal project within the SDO. The requirements specification is developed by the elements 
from the Product Management team and delivered to the Software Factory that consists 
of 4 main independent units responsible for the CS prototyping, development, testing and 
documentation. Each of these teams provides its estimations for the project’s CSs, re-
sulting in the overall effort estimation.   

The sample that was used as the basis of the effort estimation method considered all 
closed CSs, which were carried out along the prototyping, development, testing and 
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documentation phases within the Software Factory. The requirements analysis phase was 
excluded from the study, since Product Management team is not included in the Software 
Factory, where the productive process begins after the requirements delivery. Thus, there 
were considered 106 CSs from 13 projects of different sizes. From the tasks associated 
with the referred CS, 6% of the effort was dedicated to the CS prototyping, 64% was 
spent on CS development (i.e. programming and realizing the unitary tests), while 25% 
and 5% were spent on CS testing and documenting, respectively. Due to the low weight 
of the prototyping and documentation efforts, when compared to the total project effort, 
it was decided, for the initial phase, not to include these tasks in the scope of the formal 
effort estimation method and continue with the effort prediction based on the opinion of 
the area expert. Nevertheless, in a later phase, estimations for the prototyping and docu-
mentation tasks should also be formalized. 

The variables used to characterize each CS included in the sample are presented in 
the Table 3. 

Table 3. Characterization of the variables included in the study. 

Variable  
Acronym 

Variable Description 

Dev_Eff Effective hours spent on programming of CS and unitary tests. 

Dev_Frc 
Number of hours forecasted by the expert to program the CS and effectu-
ate unitary tests. 

QA_Eff Number of effective hours spent on testing the CS. 
QA_Frc Number of hours forecasted by the expert to test the CS. 
Nr_Req Number of requirements of the CS. 
Nr_CRs Number of change requests – development tasks – of the CS. 

Nr_Modules Number of modules – logic units of code – in which the CS had impact. 

Prot 
Variable that indicates if CS will (Prot=1) or will not (Prot=0) be proto-
typed. 

Code 
Complexity 

Ordinal variable that presents the complexity of CS programming, which 
vary from low to high (1-3). 

Table 4. Descriptive statistics of CSs. 
Development Team Testing Team 

All CSs 
Dev_Eff Dev_Frc QA_Eff QA_Frc 

Mean 67,64 57,45 21,68 20,22 
Stand. Deviation 72,49 58,46 21,55 20,02 

Minimum 3,00 3,00 1,00 2,00 
Maximum 363,50 280,00 120,00 105,00 

Median 38,25 35,00 14,00 14,00 
 

Table 4 presents some descriptive statistics for the variables Dev_Eff and Dev_Frc 
(development team) and QA_Eff and QA_Frc (testing team). As can be observed in Table 
4, on average, estimated values are less than the effective values for development and 
testing teams, showing that there is a tendency to the effort underestimation on both 
processes (difference of 10,19 for development and 1,47 for testing). The high values 
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obtained for the standard deviation for the four variables are due to the diversity of the 
nature of the projects, being some of them simple (minimum of 3 hours of development) 
and others more complex (maximum of 363,5 hours of development). It can also be 
noted that the distributions of the variables’ values are right-asymmetric, as the median 
values are, in all the cases, lower than the mean values. This indicates that the majority of 
the CSs are small ones, consuming much less development and testing time than the big 
CSs (50% of the CSs took less than 40 hours to be developed, while the more complex 
CSs took 363,5 hours and the average length of their development was 67,64h). 

The described scenario indicates that the effort estimation task is complex, and that 
it may cause delays on project delivery and cost overruns. 

 
3.2 Effort Estimation Model for the Development Team 

 
The effort estimation of the software development team was performed considering 

the already mentioned sample of 106 CSs. Table 5 contains some information about 10 
MLR models obtained using the stepwise method. They differ one from another by the 
sample size, by the set of independent variables included in the model and by the vari-
able transformation used in the dependent variable.   

Table 5. Summary of the regression models for the development team. 
Dependent variable (Y) Independent variables (Xn) Model 

Number 
Sample 

Size 
R² 

Dev_Eff ln(Dev_Eff) Prot Nr_Req
Code 

Complexity
Nr_CRs Nr_Modules 

1 106 0,493 x  x  x x  
2 106 0,382  x  x x x x 
3 89 0,508 x  x   x x 
4 89 0,547  x x  x x  
5 84 0,537 x  x x  x  
6 84 0,524 x  x x x x  
7 84 0,524  x x x x   
8 84 0,358  x  x x x  
9 76 0,429  x x x x   

10 69 0,092 x     x  
 

The second column of the Table 5 refers to the sample size considered in each 
model, which variation is justified by the successive elimination of outliers. The third 
column represents the R2 value, which meaning was already referred. The fourth and fifth 
columns contain the information about the dependent variable considered in the model – 
either the original one (Dev_Eff) or the transformed one (ln(Dev_Eff)). Transformation 
was performed in order to try to obtain better results. The last five columns refer to the 
inclusion, or not, of the independent variables in the models.  

As can be observed, the higher value of R² corresponds to the model 4, elaborated 
on the basis of Prot, Code Complexity and Nr_CRs variables and explains 54,7% of the 
effective software development effort variation.  
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Table 6. Summary of accuracy predictive statistics for the development team. 

Model Number 
MMRE  
Expert 

MMRE  
Regression 

PRED(0,25) 
Expert 

PRED(0,25) 
Regression 

1 0,36 1,44 44% 22% 
2 0,36 1,06 44% 18% 
3 0,59 1,04 45% 26% 
4 0,59 0,69 45% 27% 
5 0,52 1,12 44% 40% 
6 0,52 1,13 44% 42% 
7 0,52 0,72 44% 26% 
8 0,52 0,93 44% 26% 
9 0,48 0,80 43% 34% 

10 0,35 1,53 46% 26% 
 

Table 6 presents a summary of accuracy predictive statistics used to assess the re-
sults of the regression models and of the estimates provided by the expert for the devel-
opment team. 

MRE values were obtained for regression and expert judgment models using Eq. (1). 
MMRE Regression values were calculated using Eq. (2). MMRE Expert values were 
calculated on the basis of the effective time spent on development (Dev_Eff) and time 
forecasted by the expert to develop the CS (Dev_Frc), using the same equations. PRED 
(0,25) Expert and PRED(0,25) Regression were calculated on the basis of MRE Expert 
and MRE Regression results, respectively, using Eq. (3). 

It can be noticed that all the regression based models present worse results than the 
ones obtained with the expert opinion, either in terms of MMRE or in terms of PRED 
(0,25), as:  
 
MMRE Expert < MMRE Regression and PRED(0,25) Expert > PRED(0,25) Regression. 

 
Besides, there is a great variation of MMRE and PRED(0,25) values in the MLR 

approach, originated by the sample size decrease or independent variables set changes. 
This phenomenon revealed data instability that may be originated by the absence of a 
common reference scale for variables characterization. 

Due to the results obtained with referred analysis it was decided not to adopt any of 
the presented MLR models and proceed with identification and classification of the 
variables that will further compose the organization’s variables database and allow the 
creation of a formal model of effort estimation for the development team. The study 
made in order to propose the new set of variables will be presented in the next section. 
Meanwhile, effort estimation procedure will be based on the formal Delphi method to 
guarantee the implementation of CMMI’s Specific Practice 1.4 – Determine Estimates of 
Effort and Cost based on formal model [37]. This will contribute to the achievement of 
Specific Goal 1 – Establish Estimates of Project Planning Process Area. 
 
3.2.1 Proposal for the variables selection for the haracterization of the CS 

 
In order to define new variables and enrich the existing set of variables that will best 
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describe the CS, there were carried out interviews with five developers, in addition to the 
literature review. 

One of the principal factors that determine the accuracy of effort prediction is the 
size measurement. Laird and Brennan [14] argument the importance of measuring accu-
rately size, as:  

 
 Contracts signed with customers and employees depend upon the size; 
 Size shows the volume of the software; 
 Effort is calculated from the size. 

 
Koch and Mitlöhner [19], Finnie, Wittig et al. [20], Lucia, Pompella et al. [40] and 

Hill, Thomas et al. [18], among other authors, distinguish size as the main factor that 
influences the algorithmic effort estimation approaches. Size of CS was referred by all 
interviewed developers as the important variable for effort estimation. One of the possi-
ble reasons for the failure of the regression-based models for the estimation in the case of 
the development team may consist in the absence of the size-measure variable. As may 
be observed from the set of variables used to classify the CS, none of them corresponds 
to the CS size. The CS Size adapted to the reality of the SDO can be calculated in the 
following way in Eq. (5): 

 

1

 (      ),
n

i i
i

CS Size Requirement Complexity Number of Use Caseper Requirement


  (5) 

i – number of requirements that compose CS. 
Requirement complexity is an ordinal variable that varies from 1 to 3 and measures 

the complexity of requirement in terms of functionalities to be implemented. Number of 
Use Cases per requirement corresponds to the number of Use Cases that have to be 
specified in order to perform the requirement in the Use Case diagram. 

In addition to the size variable, Hill, Thomas et al. [18] refer the need to measure 
system complexity, personnel capabilities and experience, hardware constraints and the 
availability of software development tool.  

According to Jones [3] there are four key factors that have impact on software esti-
mating methodologies: (i) the experience of personnel, (ii) the technologies used (pro-
gramming languages, support tools, etc.), (iii) the development process, and (iv) the pro-
gramming environment where the developer works. 

All factors named by Hill, Thomas et al. [18] and Jones [3] were, in one or another 
way mentioned by the organization’s development specialists as relevant during the 
software effort prediction. Thus, there were considered other five ordinal variables 
(which scale varies from 1 to 3 and in a case of CS Implementation Impact variable – 
from 1 to 5) to complement the CS size variable and to ensure the best characterization 
of the effort estimation unit – Change Set:  

 
 Business acquaintance – defines the degree to which team elements are familiar with 

the business rules, laws, etc.; 
 CS implementation Impact – expresses the volume of changes to make to the impacted 

processes; 
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Fig. 2. Outliers analysis for the model 1. 

 Code reuse – indicates if there is any already existing code and in which extent it will 
be reused;  

 Technical experience – measures the degree of experience of the development team in 
using the technology and programming language;  

 Code complexity of CS – expresses the degree of complexity of code elaboration for the 
CS.  

 
Variables classification may be seen in Appendix A.  
The formal Delphi method that will be used in SDO incorporates the characteriza-

tion of the earlier described variables in order to help in estimating the effort correspon-
dent to each CS and, at the same time, ensures the collection of data required for the da-
tabase creation.  

 
3.3 Effort Estimation Model for the Testing Team 

 
The effort estimation model for the testing team was performed taking into account 

95 CSs from the original sample of 106, as there were some missing values in the QA_Eff 
variable. The stepwise MLR technique was applied to the list of independent variables 
characterized in Table 3, and the model that best fitted the data is summarized in Table 7 
(model nr. 1). Variables Dev_Eff and QA_Eff were transformed to the logarithmic scale 
in order to have a residual distribution more approximated to the normal one.  

Table 7. Summary of the regression models for the testing team. 
Model Nr. Sample Size R² Dependent Variable (Y) Independent Variable (X) 

1. 95 62,4% ln(QA_Eff) ln(DEV_Eff) 
2. 92 71,5% ln(QA_Eff) ln(DEV_Eff) 

 

To verify the existence of outliers there was elaborated the sequence chart of the 
studentized deleted residuals (Fig. 2), which values should vary between ‘2’ and ‘2’ 
[39]. There were detected three outliers, which removal originated the sample of 92 CSs 
for the second model (Table 7).  
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In the second model the value of coefficient of multiple determination R² shows that 
the natural logarithm of dependent variable Dev_Eff explains 71,5% of the variation of 
the natural logarithm of the independent variable QA_Eff, while in the first model the 
same variable explains only 62,4%. This improvement can be explained by the fact of 
outliers’ elimination that resulted in the regression line’s best fitting to the existing data. 
Fig. 3 shows the values of the variable ln(QA_Eff) as a function of the values of the 
variable ln(Dev_Eff) and the correspondent regression line for the second model pre-
sented in Table 7. 

 
Fig. 3. Linear regression line for model 2. 

Table 8 summarizes accuracy predictive statistics that were used to assess the re-
sults of the regression models and of the estimates provided by the expert for the testing 
team. 

MRE, MMRE and PRED(0,25) values for the regression models and expert judge-
ments were obtained using Eqs. (1)-(3), respectively.   

Both regression models perform rather accurate results with values of PRED(0,25) ≥ 
0,75 and MMRE ≤ 0,25. Nevertheless the second model presents better results than the 
first one. It can also be noted that in the case of Model 2 the results obtained are more 
accurate than the ones estimated by the expert, as MMRE Regression < MMRE Expert 
and PRED(0,25) Regression > PRED(0,25) Expert. Thus, the second model was ana-
lyzed in order to verify MLR assumptions. 
 
3.3.1 Verification of regression model assumptions for model 2 

 
MLR is based on assumptions that errors are independent, normally distributed with 

constant variance and mean value zero. Verification of these assumptions is fundamental 
to validate the developed model. 

Tables 9 and 10 and Figs. 4 and 5 show the test results and the plots for Model 2 
based on the outputs from the statistical tool SPSS. Kolmogorov-Smirnov and Durbin- 
Watson tests do not violate the assumption of the residuals’ normality and independence, 
respectively, with the p-value of 0,489 of Kolmorov-Smirnov test (Sig>0,05) and Dub- 
lin-Watson test value of 2,139 (approximately 2). Figs. 4 and 5 are used to verify the as- 
sumption of constant variance of the residuals. As may be observed, residuals maintain 
approximately constant amplitude relatively to the horizontal axis and do not perform any 

Table 8. Summary of accuracy predictive 
statistics for testing team. 

Model
Nr. 

MMRE
Regression

MMRE 
Expert

PRED(0,25) 
Regression 

PRED(0,25) 
Expert 

1. 0,189 0,174 75% 73% 
2. 0,158 0,161 79% 74% 
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Table 9. Residual normality test. 

  
Studentized 

Residual 
N 92

Mean 0,0001073Normal Parame-
tersa,b Std. Deviation 1,005643

Absolute 0,087
Positive 0,087

Most Extreme Dif-
ference 

Negative 0,48
Kolmogorov-Smirnov Z 0,835
Asymp. Sig. (2-tailed) 0,489

a: Test distribution is Normal. 
b: Calculated from Data. 

Table 10. Test of residuals’ con-
stant variance. 

Model Dublin-Watson 

2 2,139 
a: Predictors: ln(Dev_Eff). 
b: Dependent Variable: ln(QA_Eff) 

Fig. 4. Variance analysis with Y = ZRE¹ and X = 
UPRED2. 

1 ZRE – Regression Standardized Residual 
2 UPRED – Regression Unstandardized Predicted Value

 
Fig. 5. Variance analysis with Y = SRESID³ and 

X = ZPRED4. 
3 SRESID – Regression Standardized Residual 
4 ZPRED – Regression Standardized Predicted Value 

 

increasing or decreasing tendency. Since there is no defined pattern in the residuals loca-
tion, it may be assumed that error variance remains constant [39]. 

As the effort estimation model for testing does not violate any of the MLR model’s 
assumptions it may be further used by the organization for the testing tasks estimations. 
Nevertheless, this model requires validation with new projects in order to confirm the 
quality of produced results. 

4. CONCLUSIONS 

The study described in this paper was carried out in a medium-sized multinational 
software development organization that is implementing the CMMI maturity level 2. In 
order to answer the CMMI requirements for the Project Management Process Area, a 
formal effort estimation method is requested. 

The project effort within the organization is divided along the prototyping, devel-
opment, testing and documentation phases. Due to the relatively low weight, prototyping 
(6%) and documentation (5%) tasks were excluded from the scope of this study. 

The practical study presented in the paper was aimed at obtaining formal models of 
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effort estimation for the development and testing teams, which were previously based on 
the expert judgement technique supported by the opinion of one expert. 

In order to achieve a suitable model, there were analyzed different effort estimation 
techniques with the respective advantages and disadvantages. Among the variety of the 
studied methods and in accordance with the existing two year old organizational histori-
cal data that contained information about the amount of time spent on the development 
and testing of the basic elements of the work breakdown structure – Change set (CS); 
quantity of requirements; code complexity; and number of development tasks, it was 
selected the stepwise MLR technique. This method belongs to the algorithmic category 
of effort estimation methods and aims at establishing a linear relationship between a de-
pendent variable and one or more independent variables. To assess the model’s adequacy 
and accuracy, the coefficient of determination (R²) and mean magnitude relative error 
(MMRE) with the percentage relative error deviation within x (PRED(x)) were used. 

The stepwise MLR applied to the data of development team did not perform any 
viable model for the effort prediction as there were detected (i) instability of variables’ 
behaviour during the inclusion of the new variables and the elimination of outliers and (ii) 
low levels of explanation of the dependent variable variation by the independent ones 
revealed by the low values of R². 

Taking into consideration all mentioned factors, the organization’s management de-
cided not to adopt any of the deduced models for the development team effort estimation 
and to proceed with the relevant variables identification and classification to ensure the 
creation of the database required for the future formal method application, as well as to 
train the development team in variables classification to avoid the data instability. These 
variables were identified based on interviews carried out with the software developers 
and in accordance with some studies presented in the literature. As a result of this elicita-
tion, the following set of variables to be considered for future effort estimation model 
emerged: (i) CS size, (ii) business acquaintance, (iii) technical experience of the devel-
opment team, (iv) CS implementation impact, (v) code reuse and (vi) code complexity of 
CS.  

While there is no sufficient data to use the regression methods for the development 
team, the formal Delphi method will be applied considering the referred variables, in 
order to satisfy the requirements of the CMMI in elaboration of project effort and cost 
estimations.  

The stepwise MLR method applied to the testing team lead to inclusion of only one 
independent variable, resulting in a linear regression model. The estimates produced by 
the linear regression are better when compared to those of the single area expert judge-
ments. While expert estimates presented the values of mean magnitude relative error 
(MMRE) and percentage relative error deviation PRED(0,25) of, respectively, 0,161 and 
74%, the regression based estimates presented a MMRE value of 0,158 and a PRED(0,25) 
value of 79%. 

Verification of the MLR assumptions did not reveal the violation of the model’s 
hypotheses. Still the regression based model for testing team need to be validated with 
new projects’ data in order to verify its suitability. 

It is believed that the contribution of the present article is valuable for both aca-
demic and practical purposes. On the one hand, it provides literature based comparison 
and evaluation of different effort estimation techniques, associated advantages and dis-
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advantages and main motivation and obstacles of their application. On the other hand, the 
paper presents a practical case where the results of the MLR and expert judgment tech-
niques are compared in the context of the software development. This might be of special 
interest for the software organizations that aim to improve their effort estimates, particu-
larly in the case of CMMI implementation, as it requires the adoption of formal effort 
estimation methods. 

Based on the difficulties faced by the SDO in selecting the most suitable method of 
effort estimation among  the great variety of existing ones, and as a proposal for future 
work, it is believed that a Decision Support System could be developed as a tool which 
would help on minimizing the time spent on the selection of an accurate effort estimation 
method and would help organizations on (i) defining the most adequate effort estimation 
method in different software development environments; (ii) implementing the selected 
technique, and finally (iii) testing of the resulting model accuracy. 
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APPENDIX A 

Variables Characterization 
Business acquaintance – if team elements are familiar with the business rules, laws, etc.:  

1 – More than 3 years of experience;   
2 – From 6 months to 3 years of experience;  
3 – Between 0 and 6 months of experience. 

CS implementation impact – volume of changes to make, number of processes to change: 
1 – Alteration concerns only one file;   
2 – Alteration concerns different files of unique functionality;   
3 – Alteration concerns different files and different functionalities;  
4 – Alteration concerns different files, functionalities and modules;   
5 – Alteration results in a great amount of changes that are not known on the 
moment of estimation. The impact is considered to be maximal. 

Code reuse – if the already existing code will be reused:  
1 – With code reuse (more than 80% of code will be reused and the existing 
code has a high quality);  
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2 – With some code reuse (approximately 40-70% of code will be reused);  
3 – Without any code reuse. This decision may be taken in 2 situations: when 
the code is absent and when the existing code has a low quality (evaluation 
made according to the code reviews criteria) and it costs less to rewrite it than to 
make alterations.  

Technical experience – experience of development team in use of technology and in pro-
gramming language:   

1 – High (no changes of technology/programming language);   
2 – Moderate (some changes in technology/programming language);  
3 – Low (change of technology/ programming language). 

Code complexity of CS – complexity of code elaboration for the determinate CS:  
1 – Code has a low complexity;  
2 – Code has a moderate complexity;  
3 – Code has a high complexity.  
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