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The development of electronic equipment technology, followed by the advancement 

of electronic systems, has increased the sensitivity of signal identification. Control and 
monitoring is a matter that forces existing engineers to make decisions and protect sys-
tems. In this paper, the distributed least mean p-norm method (dLMP) has been evaluated 
and evaluated to estimate the distributed frequency of the signal in three incremental, 
consensus, and scattering strategies. In the proposed method, based on the definition of 
appropriate cost functions, a distributed method is used to estimate the frequency of 
common sinusoidal signals with a common frequency in a wireless sensor network. The 
results of simulation with MATLAB software showed that the proposed algorithm has 
better and more favorable performance compared to other methods such as single-sensor 
and distributed methods. In the proposed method simultaneously with the distributed fre- 
quency estimation, the domain and phase estimation with a suitable and fast convergence 
is possible locally. Due to this advantage compared to the distributed filter method, the 
proposed method is less complicated and the convergence rate is appropriate and better.      
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1. INTRODUCTION 
 

The use of the wireless sensor network to the fifty-fifth century and the Cold War 
time are attributed to two superpowers. It is said to have been used for the first time in 
the Vietnam War. But what is certain is its widespread use which goes back to the last 
two decades [1]. The recent advances in integrated circuit manufacturing technology in 
small sizes, and the development of wireless communications technology, on the other 
hand, have paved the way for designing wireless sensor networks. The main elements in 
the wireless sensor network include the sensor or sensor, the central processor, and the 
communications and communications sector (transmitter/receiver) [2, 3]. Wireless sensor 
network consists of tens to hundreds of sensors according to their application. Sensors 
will be placed in a standard, predefined structure, or placed in an unclear and distributed 
space. One of the standard structures of sensors in the network, one-to-one structure, a 
star structure, a mesh structure, and a tree cluster structure, which is also a kind of com-
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bination of main structures, can be mentioned [2]. Sensors detect an event or physical 
state through unique algorithms, and the results are sent to management centers for deci-
sion making after analyzing the environmental parameters after the conversion into an 
electrical signal. The management centers may include back-up systems, computer pro-
cessing centers, administrative servers, or human operators that fit the design and appli-
cation of the network [4]. In sum, the unique features of the wireless sensor network, 
which has been developed in the light of the relevant technologies, has led to the rapid 
development of its applications. Thus, in the present era, its widespread use in various 
sectors of military, security, medical engineering, transportation, industry, environment, 
production, transmission and distribution networks, etc. [4, 5].  

2. RESEARCH PROBLEM 

The enhancement in electronic technology has grew the sensitivity of signal identi-
fication. Significant parameters of the signal, such as amplitude, phase, and frequency, 
are categorized in the signal recognition process. Considering the importance of main-
taining the stability of electronic and telecommunication systems, many methods have 
been proposed to allow accurate and accurate estimation of these parameters in various 
conditions and disruptive environments [1]. However, wireless sensor network has the 
ability to analyze environmental parameters and then send data to databases and eventu-
ally receive and respond to appropriate conditions [4]. Therefore, the capability of these 
networks on the one hand and the importance of estimating signal parameters, especially 
frequency, on the other hand, provide the basis for research and integration of these two. 
Signal frequency estimation and recognition algorithms can be categorized into two 
groups of single-sensor or non-distributed methods and multi-sensory or distributed 
methods. Different methods and algorithms of single-sensor are based on signal pro-
cessing. Among these methods, we can use methods such as Discrete Fourier Transform 
(DFT) [6-8], weighted least square [9], least square error method [10], artificial intelli-
gence techniques [11] algorithms such as recursive wavelet [12], Newton [13, 14], Kal-
man filter [15], phase locked loop [16] and zero crossing technique [17]. These are ex-
amples of several existing and developing methods in this area that have more applica-
tions. Different methods for estimating the distribution in the wireless sensor network are 
presented. In general, three common methods are the incremental method, the consensus 
method and the diffusion method. Among these three methods, according to the ad-
vantages of the diffusion method, this method is more widely used [18]. In this method, 
after updating the estimation in each sensor, with the distribution of estimates, adjacent 
sensor estimates are combined with each other and the final estimate is obtained. Fur-
thermore, this method looks at the cutoff points of execution of disseminated stochas-
tic-inclination arrangements and talks about systems that assistance bring their potential 
all the more completely. The introduction receives a helpful factual system and infers 
execution results that explain the mean-square security, combination, and unfaltering 
state conduct of the learning systems. The work likewise represents how appropriated 
preparing over diagrams offers ascend to some noteworthy objects because of the cou-
pling impact among the operators. These objects are talked about in the unique situation 
of versatile systems, alongside models from an assortment of zones including dissemi-



FE BY METHOD OF MINIMUM MEAN SQUARED ERROR AND P-VALUE DISTRIBUTED IN WSN 1101

nated detecting, interruption discovery, circulated estimation, online adjustment, organ-
ize framework hypothesis, and machine learning. 

3. REVIEW THE METHODS FOR IDENTIFYING AND ESTIMATING 
THE SIGNAL 

The precise recognition of the signal and its parameters helps to accurately and ac-
curately measure the system. The use of this topic in the military field to detect Douppler 
frequency of a fighter or helicopter and equipment of the enemy through radar and other 
identification equipment is necessary after frequency analysis to deal with it. In the field 
of security and the detection of specific sound frequencies among a variety of different 
sounds and noise, and even in the industrial grid and smart grid, and many other applica-
tions, it is evident that the signal parameters and errors in the system will be timely esti-
mated and timely diagnosed in the system. Several methods are presented in two sin-
gle-sensor and distributed models to estimate the signal frequency with high accuracy 
and convergence velocity. The following is a brief summary of the important methods 
used in the paper. 
 
3.1 Single-Sensor Methods (Non-distributed) 
 

There are many methods for estimating signal parameters in single-sensor condi-
tions, which, based on their application and importance, some of these methods are de-
scribed below. The Maximum Likelihood Estimation (ML) method for estimating signal 
parameters by sensors is mainly one of the most popular approaches for evaluating prac-
tical estimates [19]. Another method and algorithm has been presented in recent years in 
the discrete Fourier transform and fast Fourier transforms. In 2012, a method to detect 
high-frequency frequencies using DFT sampling was presented at three points [6, 7]. In 
fact, this method has the ability to trace and estimate the frequency by performing the 
following two steps. 

1. Large-scale search of the signal with N-point DFT 
2. Better estimation based on the results of the first step 

In total, it can be said that this method, in addition to less operations and calcula-
tions, has a higher accuracy and is better for environments with SNRs [6]. Signal pro-
cessing is a promising tool for the next generation of wireless networks and electrical 
systems. In this context, the least-mean square (LMS) method was introduced for the 
first time by Holf & Widrow in 1960 and was widely used for calculations because of its 
simple structure and high capability [21]. The LMS algorithm has been studied by many 
researchers, and over the years, many improvements have been proposed. Among them 
is the article [10], which in 2005, based on an adaptive filter, provided a more appropri-
ate model for the LMS method [10]. The LMS method updates the filter coefficients in a 
specific loop, so that the square of the error signal is minimized. That is why this method 
is called the least squares error method or least squares mean. In other words, it can be 
said that the input signal after receiving by the sensor will be in a repeating loop, in this 
loop, the estimated estimate is instantaneously estimated by the instantaneous moment, 
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until the square of the error signal is minimized. This operation is calculated in each rep-
etition by the following equation [21]. 

 
k+1 = k  e2(n)  
 
Where  is the step size and ω specifies the filter coefficients. In the mentioned re-

lationship, the gradient of the signal indicates an error relative to the filter coefficient 
[21]. In recent years, improvements have been made to this method, such as CLMS1 [10], 
ACLMS2 [22] and MLMS3 [23]. The methods mentioned above have the proper perfor-
mance in the power network and also in presence of high noise [23]. One of the methods 
of frequency estimation that has been presented in recent years is the Kalman Filter 
method [15]. This method depends on the signal state space model. In this method, it is 
tracked and estimated by eliminating disturbing noise and system error as well as har-
monics in the input frequency signal of the system. This method is applicable to both 
linear and nonlinear systems. Kalman Filter is divided into two types of Linear Kalman 
Filter and Extended Kalman Filter, whose extended type is most commonly used for 
nonlinear functions [15]. This algorithm is capable of estimating in high noise, especially 
in power systems [24]. Another method for estimating the frequency is the phase locked 
loop (PLL) algorithm. Phase locked loop is a fundamental method with many applica-
tions in electrical engineering. The main idea in this method is to produce a sinusoidal 
signal, which phase amplifies the main component of the input signal. More precisely, 
the phase locked loop method is similar to a servo system, which controls the phase of 
the output signal, so that the error between the output phase and the input phase is mini-
mized [16]. Another algorithm is the zero crossing technique for estimating network pa-
rameters. The zero crossing method can be used to track the frequency in power net-
works, because the existence of many harmonics in a power network signal requires a 
suitable method for network identification and estimation. In simple and general terms, 
this method calculates the number of points passing through zero at a given interval of 
the input signal. The final estimation in this method is calculated by calculating discrete 
Fourier transform and analyzing the sinusoidal and cosine elements of the incoming sig-
nal during specific relationships [17]. Among other methods that can be mentioned are 
methods such as recursive wavelet, Newton algorithm, neural network methods, weight- 
ed least square method, and methods that are derived from the integration of several al-
gorithms. Each of the proposed methods, according to the environmental conditions and 
type of input signal, and other factors, should be selected and applied. 
 
3.2 Multi-Sensor Methods (Distributed) 
 

In a wireless sensor network, sensors have limitations in power supply, signal pro-
cessing, and communication capabilities. Signal input to sensors is often influenced by 
noise. Network constraints will result in the loss of sensitive and original signal data or 
inaccessibility and the correct estimation of signal parameters. Distributed methods 
should be presented in such a way as to deal with these unfavorable conditions, so that 
they can be better utilized in the wireless sensor network with higher precision. There are 
three general strategies for estimating the following: [18]. 

1 Complex LMS 
2 Augmented complex LMS 
3 Modified LMS 
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(1) Incremental: In this strategy, a loop in the network is considered and from the begin-
ning of the loop, the sensor first updates its target and delivers the second sensor in the 
loop. As shown in Fig. 1, this works in the same way to reach the sensor in the loop. One 
of the disadvantages of this strategy is that, with the failure of a sensor in the loop, the 
estimate is error-prone [16]. In the incremental strategy, the network model and the algo-
rithm shown in Figure 1 are used to estimate the desired parameter. In general, the algo-
rithm of this strategy is shown in Fig. 1 [18]. 
 

  
Fig. 1. Network model and update algorithm in incremental strategy [18]. 

 

In the relationship mentioned, , k, i and k are the steps of the length of the step, 
the estimated parameter in the instant of the sensor and the number of sensors. 
 
(2) Consensus: In this strategy, adjacent sensors acquire an estimate of consensus. In fact, 
in this strategy, each sensor simultaneously estimates the parameter according to at least 
one cost function and also the combination of estimations obtained from neighboring 
sensors [19, 20]. 


, 1, 1,( )k i k i k k ik J

         (1) 

  
Fig. 2. Network model and update algorithm in consensus strategy [18]. 

  

As shown in Fig. 2, the update algorithm estimates the signal parameters according 
to the consensus strategy during the two stages of the combination and updating. Which 
uses the following two equations of their results at any given time for the final estimation 
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of the parameter [21].  
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In the above-mentioned relations, Φk represents the coefficient of the neighborhood of 
the sensors and i  1 represents the combination obtained from the estimation of neigh-
boring sensors at the moment i  1 [22, 23]. 

4. MINIMUM DISTRIBUTED LEAST MEAN P-NORM METHOD (DLMP) 

In this paper, the distributed least-mean-p-norm (dLMP) method has been evaluated 
to estimate the distributed frequency of the signal in three additive, consensus, and scat-
tering strategies. In the proposed method, based on the definition of a proper cost func-
tion, a distributed method is used to estimate the frequency of common sinusoidal signals 
with a common frequency in a wireless sensor network. One of the advantages of the 
proposed method is that it has the ability to simultaneously, in addition to estimating the 
distributed frequency, estimate the amplitude and phase of the sinusoidal signal locally in 
each sensor with accurate convergence and high velocity. The results also show that the 
complexity of the proposed method is less than the Notch filter-based algorithm, since it 
does not use the Notch filter to eliminate the central sinusoidal frequency. In the second 
part of this paper, we briefly refer to some of the available single-sensor and distributed 
methods. Then, in the third part of this paper, we will describe the proposed distributed 
method. In the fourth section, the results of simulation and comparison of distributed and 
single-sensor methods in the specific conditions are compared with the proposed method, 
and the conclusion is presented in the fifth section. In the proposed method, a network of 
sensors is considered. In that network, each sensor receives a high-noise (high-noise) 
sine signal as sensor input. Each sensor is in a two-way communication between itself 
and neighbors (the connection that sensors can exchange data for better estimation). The 
estimation process in this method is repeated several times and each time it is updated, 
the estimation of each sensor will be updated. The proposed method allows a network 
with the help of the collaboration of sensors in the network to identify and evaluate the 
parameters of the environment, especially the frequency, with precision and speed. The 
proposed paper method, which benefits from all three types of distributed distribution 
strategies and compares them, is the least-distributed algorithm (DLMP) of the distrib-
uted distributions (dLMP) [24]. This method with high speed convergence and high ac-
curacy will have many applications in multi-sensor networks [25]. The advantage of this 
method is the optimal and fast convergence as well as high sensitivity to high SNRs. In 
addition to the distributed frequency estimation, another advantage of this method is to 
estimate the amplitude and phase of the sinusoidal signal locally in each sensor with ac-
curate convergence and high speed. In this section, we first introduce the network model 
and the overall estimation signal model, and then the dLMP method for three distributed 
strategies is presented separately, based on article [16], where in [16]. the researcher 
manages a standout amongst the most critical issues in the control of matrix-associated 
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converters, which is the discovery of the positive grouping major segment of the utility 
voltage. The examination completed. Furthermore, in this study, exact, and hearty posi-
tive grouping voltage indicator offering a decent conduct, regardless of whether uneven 
and contorted conditions are available in the lattice. The proposed indicator uses another 
“twofold synchronous reference outline PLL” (DSRF-PLL), which totally kills the cur-
rent mistakes in customary synchronous reference outline PLL frameworks (SRF-PLL) 
while working under uneven utility voltages. In the investigation performed in this paper, 
the positive and negative arrangement segments of the uneven voltage vector are legiti-
mately portrayed. At the point when this unequal vector is communicated on the DSRF, 
the examination of the signs on the DSRF tomahawks grants to plan a decoupling system 
which secludes the positive and negative succession parts. This decoupling system offers 
ascend to another PLL structure which recognizes the positive arrangement voltage seg-
ment rapidly and precisely. In the proposed system the sensor network consists of a 
number of N specific sensor nodes in a randomized geographic area. Sensors have the 
capability to share their information with adjacent (adjacent) sensors via existing com-
munication channels, while each sensor has a number of adjacent and neighboring sen-
sors. Neighborhood communication can be fully connected between sensors, or that each 
sensor is connected to a number of sensors only. This depends on the dimensions and 
conditions of the network, so in general, the number of neighbors of the sensor k can be 
specified. The sine signal is distributed in the distribution. Let’s suppose that in the k- 
sensor, the signal of the discontinuity observed. 

Xk(i) = Ak cos(0iT + k) + k(i)  (3) 

Where Ak, k, k(i) and T are equal to the amplitude, initial phase and signal noise, ob-
served by the k-sensor and the periodicity of the signal. Then, together with the neigh-
boring sensors and by sharing the initial estimation of each sensor with neighboring sen- 
sors, the common parameters are estimated. Based on the proposed method, we can use 
the following equation to estimate the frequency or any other parameter of the observed 
signal. 

i+1 = i  (|e|p)  (4) 

Where  is the frequency or any other desired parameter for estimation in Fig. 3 shown 
the main steps of the proposed algorithm. 

5. SIMULATION RESULTS 

Based on the proposed method, several experiments have been conducted to evalu-
ate the performance of this method. The proposed method is named as the minimum 
P-norm method of distributed error. The performed experiments are performed in two 
values, p = 2, which are commonly known as minimum error squares (LMS) and p = 4, 
usually the minimum mean quadrant error, the minimum average error cube (LMF). As 
noted, the proposed method for estimating the distributed frequency is presented as a 
common parameter between the sensors within the network. Therefore, in the simulation, 
the proposed method is based on similar single-sensor methods and distributed distribu-
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tions such as three-point Fourier transform, maximum field appearance, minimum square 
error and minimum P-norm of single sensor error also distributed filtering method are 
analyzed and compared for distributed frequency estimation [27]. The method is also 
compared to three distributed strategies, simulations and comparisons. In the proposed 
method, the phase and domain estimation capabilities are localized, according to the de-
scription and the proven relationships in the previous sections, simultaneously with the 
distributed frequency estimation. The simulation carried out in the Matlab programming 
environment was performed using a sampling frequency of 500 Hz [28]. Each simulation 
experiment is 100 times repeated. The optimal signal is considered as the input signal to 
the network with phase, amplitude and frequency of  / 2, 5, and 50 Hz, respectively [29]. 
The sensor network designed in this simulation is modeled with five sensors, all of 
which are distributed structurally, in the same way [30].  

In all experiments, to calculate the performance matrix, the mean squared error 
(MSE) frequency is used, which is defined as follows. 

 2
0 0

1

1 1
( )

K

K

MSE f f
K K

     (5) 

In the relationship mentioned above, K = 100, f̂ 0 as the initial value of the frequen-
cy, and also f0, represent the estimated frequency of the frequency. In general, two types 
of experiments, a comparison test with all single-sensor and distributed distribution 
methods (distributed Notch filter), as well as a comparison test between the proposed 
distributed strategies were performed. Each experiment was individually divided into 
two experiments with Gaussian noise and also in the presence of impulse noise. In total, 
four experiments in this paper have been evaluated and analyzed for the accuracy of the 
proposed method.  
 
Experiment 1: in the first experiment, Gaussian noise with a noise variance of 0.1 (2 = 
0.1) is considered. For simulation, the sampling frequency is 500 Hz and 700 repeats for 
algorithms.  for each method is considered as convergent in 700 replications. The pur-
pose of the first experiment is to compare and evaluate the proposed method with similar 
single-sensor and distributed methods. In Fig. 3, the convergence diagram of the com-
parative methods is presented. As can be seen, the proposed method of LMP has a faster 
convergence than the rest of the methods.  
 

 
Fig. 3. Convergence diagram and estimation in 

Gaussian noise mode. 
           Fig. 4. MSE chart based on SNR. 
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In Fig. 4, the MSE (Mean square error) is shown in terms of signal to noise in each 
method. Different domains have been used to compute signal-to-noise ratio (SNR), 
which is calculated as follows. 

2

210
2

10 log ( )
A

SNR


   (6) 

Where A represents the amplitude of the signal and 2 of the variance of noise (2 = 
0.1). Simulated SNR is taken from 10dB to 30dB. As is evident from the figure, in the 
high-noise signal, the proposed distribution method of LMP with p = 4 is the best. 

 
Experiment 2: In the second experiment, Bernoulli-Gaussian impact noise was consid-
ered with 10% of the impact samples. As in the previous experiment, a second test was 
carried out at a sampling frequency of 500 Hz and 700 repetitions.  is intended for each 
method in a way that converges to 700 repetitions. In Fig. 5, the distributed frequency 
convergence diagram shows the method presented with single-sensed and distributed 
methods such as the first one. As can be seen, the proposed LMP method has a higher 
convergence rate than other methods. 
 

 
Fig. 5. Convergence diagram and frequency 

estimation with impulse noise. 
Fig. 6. MSE diagram in terms of SNR in shock 

mode. 
 

In Fig. 6, the noise-to-noise error diagram is shown for each method. As can be 
seen from the figure, the LMP single-sensor method and distributed LMP with p = 4 
have better signal-to-noise ratio than other methods. 
 
Experiment 3: In this noise experiment Gaussian noise with a noise variance equal to 
0.1 (2 = 0.1). All sampling and simulation conditions are considered as the previous 
tests. This experiment aims to compare the proposed method with distributed strategies 
(incremental, consensus, and dispersion) with p = 4 and p = 2. In Fig. 7, the convergence 
diagram of the estimation frequency is observable. As is well known, the LMIP consen-
sus strategy has the highest convergence rate. 
 

In Fig. 7, the signal-to-noise error diagram shows the comparison methods in this 
test. As we can see, the LMP-type dispersion strategy has the least error. As shown in 
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Fig. 8, distributed LMP methods of the LMP type of ATC distributed type of CTA and 
distributed LMP type of consensus are better and better than other methods. Among 
these methods, with a low difference, the distributed LMP method has a better status 
than the two other methods in SNR > 12dB. 

 

 
Fig. 7. The convergence and estimation diag- 

ram method in Gaussian noise mode. 
Fig. 8. MSE chart in terms of SNR distributed 

methods in Gaussian noise mode.   
 

Experiment 4: In this experiment, as a second experiment, the shock noise was consid-
ered as a beryllulonics with 10% of the impact specimens. All sampling and simulation 
conditions are considered as previous tests. This experiment aims to compare the meth-
ods of this test, as in the third experiment, but in the presence of shock noise. Fig. 10 
shows the convergence diagram of the methods. In this case, similar results are obtained 
with Gaussian noise, in which the consensus-type strategy of the LMIP type has the 
fastest convergence. 
 

 
Fig. 9. Convergence diagram and estimation of dis- 

tributed frequency with impulse noise. 
Fig. 10. MSE Chart based on SNR distributed 

methods in impact noise mode.  
 

In Fig. 9, the noise-to-noise error diagram is shown in the comparison methods in 
this experiment under shock noise. In this case, the results are similar to the Gaussian 
noise state, and again, the LMP-type dispersion strategy has the least error in estimating 
the frequency.  
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As shown in Fig 10, the distributed LMP methods of the ATC type have a signifi-
cantly better performance than other methods in different SNRs. This is while the dis-
tributed LMIP method of consensus type is at a distance of 30dB SNR, which is an ATC 
type. The overall result of the above experiments indicates the proper status of the pro-
posed method with the dispersion strategy. So locally in a sensor, the amplitude and 
phase convergence diagram of the minimum 2-error mode with p = 2 and p = 4 = simul-
taneously with the distributed frequency estimation, in both Gaussian noise and the 
shock with the same and the same conditions with the tests performed, it can be seen in 
Figs. 11 and 12. 
 

 
Fig. 11. Convergence diagram and estimation of the 

first sensor domain. 
Fig. 12. Convergence diagram and estimation of 

the first sensor phase locally.  
 

As shown in Figs. 12 and 13, according to the local estimation carried out simulta-
neously with the distributed frequency estimation method, the speed and accuracy of the 
convergence in the proposed method is better and more appropriate. 

5. CONCLUSIONS 

In this paper, a new method called the distributed error of distributed P-norm (LMP) 
is proposed for estimating not only the frequency but also the amplitude and phase. The 
simulations show that the proposed algorithm has better and more favorable performance 
compared to other methods, such as single-sensor and distributed methods. In the pro-
posed method simultaneously with distributed frequency estimation, domain and phase 
estimation with optimal and fast convergence is possible locally. Due to this advantage 
compared to the distributed filter method, the proposed method has less complexity and 
better convergence speed, since the Notch filter has not been used in the proposed 
method. Therefore, in general, based on all the experiments conducted, the results of 
distributed strategies show the superiority of the dispersion method. According to the 
results, the distributed least significant p-norm method (dLMP) and its implementation 
with the Dispersion Strategy (ATC), is prone to research and development in various 
applied industries, including three-phase power networks. 



OSAMAH IBRAHIM KHALAF AND GHAIDA MUTTASHAR ABDULSAHIB 

 

1110

 

REFERENCES 

1. E. Jacobsen and P. Kootsookos, “Fast, accurate frequency estimators,” IEEE Signal 
Processing Magazine, Vol. 24, 2007, pp. 123-125.    

2. A. Motamedi, “Wireless sensor network (WSN),” First Printing, Tehran, Amir Kabir 
University of Technology (Tehran Polytechnic), 2015.    

3. R. H. Mahyar, A. Mahyar, and A. Hemmatbar, “Wireless sensor networks, applica-
tions and challenges,” Computer Release, No. 198, 2011, p. 16. 

4. M. Melemary, M. Ibrahim, and S. Ramakrishnan, Wireless Sensor Network from 
Theory to Application, CRC Press, Taylor & Francis Group, 2016.  

5. K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Network Technology, Proto-
cols, and Application, John Wiley & Sons, Inc., Hoboken, NJ, 2007.    

6. C. Candan, “A method for fine resolution frequency estimation from three DFT 
samples,” IEEE Signal Processing Letters, Vol. 18, 2011, pp. 351-354. 

7. C. Candan, “Fine resolution frequency estimation from three DFT samples: case of 
windowed data,” Elsevier Signal Processing, Vol. 144, 2015, pp. 245-250.   

8. X. Liang, A. Liu, X. Pan, Q. Zhang, and F. Chen, “A new and accurate estimator 
with analytical expression for frequency estimation,” IEEE Communications Letters, 
Vol. 20, 2016, pp. 105-108.    

9. M. D. Kušljević, J. J. Tomić, and L. D. Jovanović, “Frequency estimation of a three- 
phase power system using weighted-least-square algorithm and adaptive FIR filter-
ing,” IEEE Transactions on Instrumentation and Measurement, Vol. 59, 2010, pp. 
322-329.  

10. A. K. Pradhan, A. Routray, and A. Basak, “Power system frequency estimation us-
ing the least mean square technique,” IEEE Transactions on Power Delivery, Vol. 
20, 2005, pp. 1812-1816. 

11. L. L. Lai, C. T. Tse, W. L. Chan, and A. T. P. So, “Real-time frequency and har-
monic evaluation using artificial neural networks,” IEEE Transactions on Power 
Delivery, Vol. 14, 1999, pp. 52-59.   

12. J. Ren and M. Kezunovic, “Real-time power system frequency and phasors estima-
tion using recursive wavelet transform,” IEEE Transactions on Power Delivery, Vol. 
26, 2011, pp. 1392-1402.    

13. V. Vladimir, B. Milenko, and D. Branko, “Voltage phasor and local system fre-
quency estimation using newton type algorithm,” IEEE Transactions on Power De-
livery, Vol. 9, 1994, pp. 1368-1374. 

14. M. S. Reza, M. Ciobotaru, and V. G. Agelidis, “Power system frequency estimation 
by using a newton-type technique for smart meters,” IEEE Transactions on Instru-
mentation and Measurement, Vol. 64, 2015, pp. 615-624. 

15. P. K. Dash, R. K. Jena, G. Panda, and A. Routray, “An extended complex Kalman 
filter for frequency measurement of distorted signals,” IEEE Transactions on In-
strumentation and Measurement, Vol. 49, 2000, pp. 746-753. 

16. P. Rodríguez, J. Pou, and J. Bergas, “Decoupled double synchronous reference 
frame PLL for power converters control,” IEEE Transactions on Power Electronics, 
Vol. 22, 2007, pp. 584-592. 



FE BY METHOD OF MINIMUM MEAN SQUARED ERROR AND P-VALUE DISTRIBUTED IN WSN 1111

17. B. Milenko and R. Zeljko, “Frequency measurement of distorted signals using fouri-
er and zero crossing techniques,” Elsevier Electric Power Systems Research, Vol. 78, 
2008, pp. 1407-1415.   

18. A. Sayed, Adaptation, Learning and Optimization Over Network, University of Cal-
ifornia at Los Angeles, Publishers Inc., Vol. 7, 2014, No. 4-5. 

19. Y. Xia and D. P. Mandic, “Augmented MVDR spectrum-based frequency estimation 
for unbalanced power systems,” IEEE Transactions on Instrumentation and Meas-
urement, Vol. 24, 2017, pp. 123-125.   

20. B. Farhang-Boroujeny, Adaptive Filter: Theory and Applications, 2nd ed., John Wi- 
ley & Sons, USA, 2013.    

21. H. Zayyani and S. M. Dehghan, “Frequency estimation of unbalanced three-phase 
power system using a new LMS algorithm,” Iranian Journal of Electrical and Elec-
tronic Engineering, Vol. 11, 2015, pp. 71-78.   

22. C. Li and H. Wang, “Distributed frequency estimation over sensor network,” IEEE 
Sensors Journal, Vol. 15, 2015, pp. 3973-3983. 

23. S. Kanna, S. P. Talebi, and D. P. Mandic, “Diffusion widely linear adaptive estima-
tion of system frequency in distributed power grids,” in Proceedings of IEEE Inter-
national Energy Conference, 2014.   

24. S. Kanna, D. Dini, H. Dahir, Y. Xia, S. Y. Hui, and D. P. Mandic, “Distributed 
widely linear Kalman filtering for frequency estimation in power networks,” IEEE 
Transactions on Signal and Information Processing Over Networks, Vol. 1, 2015, 
pp. 45-57.   

25. A. Sayed, “Adaptive networks,” Proceedings of the IEEE, Vol. 102, 2014, pp. 460- 
497. 

26. D. H. Dini and D. P. Mandic, “A class of widely linear complex Kalman filters,” 
IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, 2012, pp. 
775-786.  

27. F. Dressler, S. Ripperger, M. Hierold, T. Nowak, C. Eibel, B. Cassens, F. Mayer, 
K. Meyer-Wegener, and A. Koelpin, “From radio telemetry to ultra-low power 
sensor networks  tracking bats in the wild,” IEEE Communications Magazine, 
Vol. 54, 2016, pp. 129-135. 

28. M. Hartmann, T. Nowak, L. Patino-Studencki, J. Robert, A. Heuberger, and J. 
Thielecke, “A low-cost rssi-based localization system for wildlife tracking,” IOP 
Conference Series: Materials Science and Engineering, Vol. 120, No. 012004, 
2016. 

29. T. Nowak, M. Hartmann, T. Lindner, and J. Thielecke, “Optimal network topolo-
gy for a locating system using rssi-based direction finding,” in Proceedings of the 
6th International Conference on Indoor Positioning and Indoor Navigation, 2015. 

30. T. Routtenberg and J. Tabrikian, “Cyclic cramer-rao-type bounds for periodic 
parameter estimation,” in Proceedings of the 19th International Conference on In- 
formation Fusion, 2016, pp. 1797-1804.  
 
 
 
 
 



OSAMAH IBRAHIM KHALAF AND GHAIDA MUTTASHAR ABDULSAHIB 

 

1112

 

Osamah Ibrahim Khalaf is a Senior Engineering and Tele-
communications Lecturer in Al-Nahrain University/College of In- 
formation Engineering. He has hold 10 years of university-level 
teaching experience in computer science and network technology 
and has a strong CV about research activities in computer science 
and information technology projects. He has had many published 
articles indexed in (ISI/Thomson Reuters /SCI) and has also par-
ticipated and presented at numerous international conferences. He 
holds patents and has received several medals and awards due to 

his innovative work and research activities. He has good skills in software engineering 
including experience with: .Net, SQL development, database management, mobile ap-
plications design, mobile techniques, Java development, android development, IOS mo-
bile development, cloud system and computations, website design. His brilliant personal 
strengths are in highly self-motivated team player who can work independently with 
minimum supervision, strong leadership skills, and outgoing personality. In 2004, he got 
his B.Sc. in Software Engineering field from Al_Rafidain University College in Iraq. 
Then in 2007, he got his M. Sc. in Computer Engineering field from Belarussian Nation-
al Technical University. After that, he got his Ph.D. in 2017 in the field of Computer 
Networks from faculty of Computer Systems and software engineeringUniversity Ma-
laysia, Pahang. He has overseas Work experiences in University in Binary University in 
Malaysia and University Malaysia Pahang. 

 

 
Ghaida Muttashar Abdulsahib got her B.Sc. in 2007 in 

Computer Engineering from University of Technology Iraq. Then 
in 2012, she got her M. Sc. in Computer Networking and after that 
she got her Ph.D. in 2017 in the field of computer network from 
Faculty of Computer Systems and Software EngineeringUniver- 
sity Malaysia Pahang. She holds patents and has also received sev-
eral medals and awards for her innovative researches in computer 
science, computer engineering and information technology. Now 

She is a Senior Engineering and Telecommunications Lecturer in University of Tech-
nology and she has 10 years of university-level teaching experience in computer science 
and network technology. She has a strong CV due to her implemented projects in com-
puter science and networking. She has had many published articles in ISI/Thomson Reu-
ters indexed journals and she has also presented at many international conferences. She 
has good skills in software engineering including experience with: .Net, SQL develop-
ment, database management, mobile applications design, mobile techniques, Java devel-
opment, android development, IOS mobile development, cloud system, website design 
and so on. Her personal Strengths and abilities are in highly self-motivated team player 
who can work independently with minimum supervision, strong leadership skills, and 
outgoing personality. She has overseas work experiences in International University of 
Malaya-Wales in Malaysia and University Malaysia, Pahang. 

 
 


