
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 63-79 (2017)
DOI: 10.6688/JISE.2017.33.1.5

63

Traceable Threshold Proxy Signature*

KE GU1,2, YONG WANG2 AND SHENG WEN3

1School of Computer and Communication Engineering

Changsha University of Science and Technology

Changsha, 410114 P.R. China
2School of Information Science and Engineering

Central South University

Changsha, 410083 P.R. China
3School of Information Technology

Deakin University

 Melbourne, 3217 Australia

E-mail: {gk4572@163.com}

Threshold proxy signature (TPS) is a variant of proxy signature, which allows that a

delegator may delegate his signing rights to many proxy signers. Compared with proxy
signature, threshold proxy signature can limitedly prevent that some of proxy signers
abuse their signing rights. In this paper, we show a traceable threshold proxy signature
(TTPS) frame. Also, we propose a traceable (t, n) threshold proxy signature scheme,
which is based on the Waters’ signature scheme and the Xiong et al.’s threshold signa-
ture scheme in the standard model. The proposed scheme is proved to have a security re-
duction to the CDH assumption and the threshold proxy signature unforgeability under
an adaptive chosen message attack, and to have the threshold proxy signature traceability.
Compared with other (t, n) threshold proxy signature schemes, the proposed scheme is
secure in the standard model.

Keywords: threshold proxy signature, traceability, provable security, CDH, standard model

1. INTRODUCTION

The concept of proxy signature was firstly proposed by Mambo et al. in [20]. In the

proxy signature schemes [2, 20, 21, 23, 24, 39, 40], delegator (original signer) may del-
egate his signing rights to proxy signer. If proxy signer gets proper delegation, then
proxy signer can represent delegator to exercise his signing rights. Proxy signature is an
extension of ordinary signature. Compared with the ordinary signature schemes [3, 5, 22,
30], the proxy signature schemes have four security properties [1], which are unforgea-
bility, non-repudiation, strong identifiability and prevention of misuse. First provable
security model of proxy signature was proposed by Boldyreva et al. in 2003. Then many
researchers and scholars proposed some improved security models for proxy signature
[21, 23, 24], which are based on the Boldyreva et al.’s model [2]. In 2012, Boldyreva et

al. summarized the related work [2, 10, 21, 23] about the provable security models of
proxy signature in [1], and questioned how to measure adversary's ability in the different
security models. In [1], Boldyreva et al. proposed a more complete and accurate security
model for proxy signature. In their security model, security of a proxy signature scheme
needs to be analyzed in four situations, and generating self-proxy signature is considered

Received November 12, 2015; revised May 28, 2016; accepted June 25, 2016.
Communicated by Hung-Min Sun.
* This work is supported by the National Natural Science Foundation of China (No. 61402055, No. 61462048).

 KE GU, YONG WANG AND SHENG WEN

64

as a weak secure situation [1, 23].
Currently, many variants of proxy signature were also proposed, such as multi-

proxy signature [4, 7, 10, 14, 16, 25, 29, 31], proxy multi-signature [6, 18, 26, 27], proxy
blind signature [15, 19, 41] and so on. In the multi-proxy signature schemes, delegator
may delegate his signing rights to many proxy signers. Compared with the proxy signa-
ture schemes, there are two types of collusion attacks in the multi-proxy signature
schemes, which are collusion attack of proxy signers and collusion attack of original
signer and partial proxy signers. Then many provable security models of multi-proxy
signature [4, 7, 10, 14, 16, 25, 29, 31] were proposed. Because all proxy signers must
participate in signing, the multi-proxy signature schemes are not flexible. Based on the
multi-proxy signature schemes, the threshold proxy signature schemes [9, 11-13, 17, 33]
were proposed. Compared with the multi-proxy signature schemes, the concept of (t, n)
threshold [8, 28, 35, 42] is introduced into the threshold proxy signature schemes. If
delegator delegates his signing rights to n proxy signers and the number of proxy signers
participating in signing can meet threshold value t, then t proxy signers may compute out
a threshold proxy signature. Thus, the threshold proxy signature schemes are more flexi-
ble. Compared with multi-proxy signature, threshold proxy signature can be more easily
used for many applications, such as distributed systems, grid computing, mobile agent
applications, distributed shared object systems, and so on.

Some (t, n) threshold proxy signature schemes [9, 11-13, 17, 33, 34, 36-38] have
been proposed. In [11], Huang et al. proposed a (t, n) threshold proxy signature scheme
based on the Schnorr’s scheme. Compared with the existing (t, n) threshold proxy signa-
ture schemes, their scheme reduces the amount of computations and communications.
However, their scheme has a security weakness, because it can’t resist collusion attacks.
In [33], Yang et al. proposed an efficient threshold proxy signature scheme. However,
their scheme is also not secure, because it can't resist frame attack and public-key substi-
tute attack [12]. In [12], Hu et al. proposed an improved threshold proxy signature
scheme based on the Yang et al.’s scheme [33]. In [9, 13, 17, 38], some (t, n) threshold
proxy signature schemes were also proposed, but a complete security model of (t, n)
threshold proxy signature is still not proposed. Although the papers [9, 13, 17] claim
their schemes are secure, their schemes still need to be further studied due to lacking
complete security proof. Additionally, in a (t, n) threshold proxy signature scheme, del-
egator delegates his signing rights to n proxy signers, then t proxy signers of n proxy
signers represent n proxy signers to compute a threshold proxy signature, the (t, n)
threshold proxy signature scheme has second proxy property. So, we need to consider
the following situation. If there is not a trusted third party of computing signatures in a (t,
n) threshold proxy signature scheme, and some of t proxy signers participating in signing
(include the proxy signer collecting distributed proxy signatures) deny to have partici-
pated in signing, then the signature receivers will not know who the t proxy signers par-
ticipating in signing are. Thus, a secure (t, n) threshold proxy signature scheme must
prevent the situation. Obviously, it is very important to trace t proxy signers participating
in signing. However, most of the existing (t, n) threshold proxy signature schemes can-
not trace t proxy signers participating in signing, the schemes are not adequately secure.
Although the schemes of Huang et al. and Hu et al. [11, 12] also have the limited thresh-
old proxy signature traceability by adding the identities of the actual proxy signers to the
final signature, the method still needs to be further studied due to lacking complete secu-

TRACEABLE THRESHOLD PROXY SIGNATURE 65

rity proof. Yang et al. [34] proposed a traceable certificateless threshold proxy signature
scheme based on bilinear pairings in the random oracle model. However, their scheme
traces the t proxy signers participating in signing by setting an additional tag and lacks
the security proofs. Further, the tag-added method may influence the acceptance of veri-
fiers and breaks the anonymity of t proxy signers.

Thus, we propose a traceable (t, n) threshold proxy signature scheme in the standard
model, which is based on the Waters’ signature scheme [30] and the Xiong et al.’s
threshold signature scheme [32]. The proposed scheme can be proved to have a security
reduction to the CDH assumption and the threshold proxy signature unforgeability under
an adaptive chosen message attack, and to have the threshold proxy signature traceability
so as to trace t proxy signers participating in signing.

2. A FRAME FOR TRACEABLE THRESHOLD PROXY SIGNATURE

Definition 2.1: Traceable Threshold Proxy Signature: Let TTPS=(DS, TDelegate,

TProxyKeyGen, TProxySign, TProxyVerify, TProxyTrace)

be a (t, n) threshold proxy

signature frame, where DS=(Setup, KeyGen, Sign, Verify)

is an ordinary signature frame.

In TTPS, all algorithms are described as follows:

1. Setup: The randomized algorithm inputs a security parameter 1k, and then outputs all

system parameters.
2. KeyGen: The randomized algorithm generates user’s public/private key pair (pki, ski) with i{1, 2, …, n, n+1}, where i is the indexed number of user, pki

is the public key

of user i, ski is the private key of user i.
3. Sign: The randomized algorithm is a standard signature algorithm. Signer needs to

sign a message M{0, 1}*. The algorithm inputs (sk, M), and then outputs a standard
signature , where {0, 1}*{}, sk is the private key of signer and pk is the cor-
responding public key.

4. Verify: The signature receivers verify a standard signature . The deterministic algo-
rithm inputs (M, pk, ), and then outputs the boolean value, accept or reject.

5. TDelegate: We assume the user i is a delegator with i{1, 2, …, n, n+1}. The ran-
domized algorithm inputs (pki, PK{1, 2, …, n, n+1}/i, ski, wi), where PK{1, 2, …, n, n+1}/i

is a

public key list including all users’ public keys except for that of the user i, wi{0, 1}*
is the warrant of the user i. Then the algorithm outputs a delegation δi,j for every proxy
signer j with j{1, 2, …, n, n+1}/i.

6. TProxyKeyGen: The randomized algorithm generates a distributed proxy signing key.
TProxyKeyGen run by every proxy signer

j

inputs (δi,j, pki, PK{1, 2, …, n, n+1}/i, skj), and

then outputs (wi, pski,j), where pski,j is a distributed proxy signing key of the proxy
signer

j in wi.

7. TProxySign: We assume t proxy signers of n proxy signers need to sign a message

M{0, 1}* on the signing delegation of the user i. Without loss of generality, we set
the indexed numbers of t proxy signers are {1, 2, …, t}, then two following steps need
to be finished:
 For every proxy signer j

participating in signing, the algorithm run by the proxy

signer j

inputs (wi, pski,j, M), and then outputs a distributed proxy signature pi,j

with

http://www.iciba.com/key/
http://www.iciba.com/key/
http://www.iciba.com/key/

 KE GU, YONG WANG AND SHENG WEN

66

j{1, 2, …, t}.
One proxy signer p

collects the distributed proxy signatures of t proxy signers in-

cluding p

own distributed proxy signature with p{1, 2, …, t} and p j; then the

algorithm run by the proxy signer p

inputs (pi,1, pi,2, …, pi,t), and outputs a thres-

hold proxy signature (wi, pi), where pi{0, 1}*{}; if the number of proxy
signers participating in signing are less than t, then the signing procedure will abort.

8. TProxyVerify: The signature receivers verify a threshold proxy signature(wi, pi)

on

M{0, 1}*. The deterministic algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi, i
p), and

then outputs the boolean value, accept or reject.
9. TProxyTrace: The trusted authority traces the t proxy signers participating in signing

by the traceable threshold proxy signature (wi, i
p)

on M{0, 1}*. The deterministic

algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi, i
p), and then outputs the public keys of

the t proxy signers participating in signing.

3. PRELIMINARIES

3.1 Bilinear Maps

Let G1 and G2 be groups of prime order q and g be a generator of G1. We say G2 has

an admissible bilinear map, e: G1G1G2 if the following two conditions hold. The map
is bilinear; for all a, b, we have e(ga, gb)=e(g, g)ab. The map is non-degenerate; we must
have that e(g, g)1.

3.2 Computational Diffie-Hellman Assumption

Definition 3.1: Computational Diffie-Hellman (CDH) Problem: Let G1

be a group of

prime order q

and g be a generator of G1; for all (g, ga, gb)G1, with a, bZq, the CDH

problem is to compute gab.

Definition 3.2: The (h, )-CDH assumption holds if no h-time algorithm can solve the
CDH problem with probability at least .

4. TRACEABLE THRESHOLD PROXY SIGNATURE SCHEME

Let TTPS=(Setup, KeyGen, Sign, Verify, TDelegate, TProxyKeyGen, TProxySign,

TProxyVerify, TProxyTrace)

be a traceable (t, n)

threshold proxy signature scheme. In

TTPS, all algorithms are described as follows:

TTPS.Setup: The algorithm run by the authority system inputs a security parameter 1k.
Additionally, let G1 and G2 be groups of prime order q and g be a generator of G1, and let
e: G1G1G2 denote the bilinear map. The size of the group is determined by the secu-
rity parameter. A hash function, H:{0, 1}*Z1kq can be defined and used to generate any
integer value in Z1kq (where 1k represents the corresponding decimal number). And all
messages will be represented as bit strings of length nm, then a collision-resistant hash
function, H1:{0, 1}*{0, 1}nm can be defined and used to create messages of the desired

TRACEABLE THRESHOLD PROXY SIGNATURE 67

length. Then the system parameters are generated as follows. One group element  G1
and a (n+1)-length vector =(gi) are randomly chosen, with giG1 and i{1, 2, …, n,
n+1}. Additionally, the system chooses a random G1 and a random nm-length vector
=(i), whose elements are randomly chosen from G1. Finally, the system outputs the
public parameters, (G1, G2, e, g, , , , , t, n).

TTPS.KeyGen: Private Key Generator (PKG) generates all users’ public/private key
pairs. PKG randomly chooses skiZq

as the private key of user i, and computes and out-
puts the corresponding public key, pki = gski with i{1, 2,…, n, n+1}, where i is the in-
dexed number of user. Then PKG respectively sends the private key to the corresponding
user by a secure channel.

TTPS.Sign: Let M be the bit string of length nm representing a message, and let {1,
2, …, nm} be the set of index d such that M[d]=1, where M[d] is the d-th bit of M. The
algorithm run by signer chooses a random vZq, and computes Q1=g1

sk

(

d M

d)v and
Q2=gv, and then outputs a signature  =(Q1, Q2).

TTPS.Verify: The algorithm run by verifier verifies the signature  =(Q1, Q2) by the
equation, e(Q1, g)=e(g1, pk)e(

d M

d, Q2)..

TTPS.TDelegate: We assume the user i is a delegator with i{1, 2, …, n, n+1}. The
algorithm run by the user i inputs (pki, PK{1, 2, …, n, n+1}/i, ski, wi), where PK{1, 2, …, n, n+1}/i

is
a public key list including all users’ public keys except for that of the

user i, and wi is the

warrant of the user i. Then the algorithm chooses a random riZq, and computes
i=g

isk

n 

 {1, 2, ..., , 1}, , i i n n i ir H pk PK w

n



 and Ri=gri. Finally, the algorithm outputs a delegation
i,j=(Ri, i, wi) for every proxy signer j with j{1, 2, …, n, n+1}/i, and sends i,j to the
proxy signer j by a secure channel.

TTPS.TProxyKeyGen: The algorithm run by every proxy signer j generates a distributed
proxy signing key with j{1, 2, …, n, n+1}/i. In the algorithm, the following steps need
to be finished:

 1. The algorithm run by every proxy signer j verifies the delegation, i,j=(Ri, i, wi)

by

the equation e(i
n, g)=e(gi, pki)(, Ri)H(pki, PK(1, 2, …, n, n+1)/i, wi

); if the above equation is not
correct, then the proxy signer j may require the user i resends the delegation i,j.

2. The algorithm run by every proxy signer j computes

 

,

{1, 2, ..., , 1}, ,

i j

i i n n i ii

j j

r H pk PK wsk
sk sk n n
j i j iosk g g g 



    .

3. The algorithm run by every proxy signer j randomly chooses one polynomial:

2 1
, , ,1 , ,2 , , 1() ... t

i j i j i j i j tf x a x a x a x 

      , ai,j,dZq, d{1, …, t1}.

Then the algorithm sets Fi,j(x)=oski,j
fi, j(x), and computes Ai,j,d =e(, g)ai, j,d. Finally, the

algorithm broadcasts Ai,j,d.

http://www.iciba.com/key/
http://www.iciba.com/key/
http://www.iciba.com/key/
http://www.iciba.com/key/

 KE GU, YONG WANG AND SHENG WEN

68

4. The algorithm run by every proxy signer j computes si,j,p=Fi,j(p) for every proxy signer
p with p{1,…, n, n+1}/i, and if jp, then the algorithm sends si,j,p to the correspond-
ing proxy signer p by a secure channel.

5. After every proxy signer p receives si,j,p
from other proxy signer j, the algorithm run

by every proxy signer p verifies it by the equation e(si,j,p, g)=e(gj, pkj)e(i, g)
1

1

t

d







(Ai,j,d)pd; if the equation is correct, then the whole procedure continues, otherwise the
proxy signer p may require that the corresponding proxy signer j resends si,j,p; then
thealgorithm run by every proxy signer p respectively computes averifying data, Bi,j=

1

1,

n

p p i



 

 (e(gl, pkl)e(i, g)

1

1

t

d





 

(Ai,l,d) j

d) for each distributed proxy signature computed by
other proxy signer j.

6. Finally, the algorithm run by every proxy signer j computes and outputs a distributed
proxy signing key pski,j=

1

1,

n

p p i



 

 si,p,j according to si,j,p.

TTPS.TProxySign: We assume t proxy signers of n proxy signers need to sign a message
M on the signing delegation of the user i. Let M be the bit string of length nm representing a
message, and let {1, 2, …, nm} be the set of index d such that M[d]=1, where M[d] is
the d-th bit of M. Additionally, without loss of generality, we set the indexed numbers of t
proxy signers are {1, 2, …, t}, then the following steps need to be finished:
1. For every proxy signer j participating in signing with j{1, 2, …, t}, the algorithm run

by the proxy signer j computes Qi,j,1=pksi,j(',, ,1 '
j

i j

r

i j d
d M

pskQ  


 
 
 
 

  d)rjand Qi,j,2=grj, and then outputs a
distributed proxy signature pi,j=(Qi,j,1, Qi,j,2).

2. One proxy signer p collects the distributed proxy signatures of t proxy signers includ-
ing p own distributed proxy signature with p{1, 2, …, t} and pj. Then the following
two steps are finished. Firstly, the algorithm run by the proxy signer p verifies each
distributed proxy signature pi,j

by the equation, Bi,j=e(Qi,j,2, g)e(Qi,j,2, 

d M

 d)1 for
every proxy signer j; if the equation is correct, then the whole procedure continues,
otherwise the result indicates the proxy signer j is not honest, the procedure may abort.
Secondly, the algorithm run by the proxy signer p computes Qi,1=  ,1 , ,1

1

j

p

Lt
sk

pi i j
j

Q Q g




 (Qi,j,1)Ljgp
skp and

Qi,2=  ,2 , ,2
1

jLt

i i j

j

Q Q


 (Qi,j,2)Lj, and sets Qi,3=gri, where Lj =
1,

j

d d j

t d
L

d j 






is the corresponding Lagrange

interpolation coefficient, then the algorithm outputs a traceable threshold proxy signa-
ture (wi, pi=(Qi,1, Qi,2, Qi,3)) on M. Additionally, if the number of proxy signers par-
ticipating in signing are less than t, the procedure aborts.

TTPS.TProxyVerify: A signature receiver verifies the traceable threshold proxy signa-
ture (wi, pi=(Qi,1, Qi,2, Qi,3)) on M. The algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi,
pi), and then computes the equation

   {1, 2, .., , 1}

1 1 , ,
,1 ,2 , 3

1

, (,) , ' (,) (,) ,i in n i
n

H pk PK w

i p p i d j j i

d M j

e Q g e g pk e Q e g pk e Q   




 

 
     

 
 

where pkp

is the public key of the proxy signer p collecting distributed proxy signatures.
If the equation is correct, then the algorithm outputs the boolean value accept, otherwise
the algorithm outputs the boolean value reject.

http://www.iciba.com/key/

TRACEABLE THRESHOLD PROXY SIGNATURE 69

TTPS.TProxyTrace: The trusted authority traces the t proxy signers participating in sig-
ning by the traceable threshold proxy signature (wi, pi) on M. Then the following steps
are finished:
1. For the public key of the potential proxy signer p collecting the distributed proxy sig-

natures (p{1, 2, …, t}), the algorithm computes the following equation:

 

 

{1, 2, ..., , 1}
1 , ,

,3
1

1

,1 ,2

(,) (,)
(,) ,

, , '

i in n i
n

H pk PK w

j j i

j

p p

i i d

d M

e g pk e Q

e g pk

e Q g e Q



 













 

  
 





If the above equation is correct, then the algorithm outputs the public key of the proxy
signer p collecting the distributed proxy signatures and runs into the next step, other-
wise the algorithm outputs ⊥.

2. By the proxy signer p collecting the distributed proxy signatures of other t−1 proxy
signers, the algorithm gets all distributed proxy signatures pi,j=(Qi,j,1, Qi,j,2) of t proxy
signers (j{1, 2, …, t}). And the following two steps are finished:

(a) The algorithm computes Qi,1=  ,1 , ,1
1

'
jLt

i i j
j

Q Q


(Qi,j,1)Lj and Qi,2=
1

t

j

 (Qi,j,1)Lj, where Lj=
1,

j

d d j

t d
L

d j 




 is
the corresponding lagrange interpolation coefficient, and then checks the two equations
e(Qi,1, g)= e(Qi,1, g)e(gp, pkp) and Qi,2=Qi,2. If the above two equations are correct,
then the algorithm continues, otherwise the results indicate the real proxy signer p is not
honest, the procedure may abort and the algorithm outputs .

(b) The algorithm verifies each distributed proxy signature pi,j by the equation,
Bi,j=e(Qi,j,2, g)e(Qi,j,2, 

d M

 d)1 for every real proxy signer j, then the indexed
numbers of other t−1 proxy signers participating in signing may be confirmed, where
the algorithm gets Bi,j by the proxy signer p or, one or several of other n−1 proxy
signers in this scheme. If the above equation is correct, then the algorithm outputs the
corresponding public key of of the real proxy signer participating in signing; If the
number of outputting the indexed number are less than t−1, the result still indicates the
real proxy signer p is not honest, the algorithm outputs .

5. ANALYSIS OF THE PROPOSED SCHEME

5.1 Correctness

Claim 5.1: In the algorithm TTPS.TProxyVerify, the signature receivers may verify a
traceable threshold proxy signature (wi, pi=(Qi,1, Qi,2, Qi,3)) on M by the equation

   {1, 2,..., , 1}

1 1 , ,
,1 ,2 ,3

1

, (,) , ' (,) (,) .i in n i
n

H pk PK w

i p p i d j j i

d M j

e Q g e g pk e Q e g pk e Q   




 

 
     

 
 

Proof: Firstly, in TTPS.TProxyKeyGen, If we set Y=
1

,
1,

n

i j

j j i

osk


 

 oski,j, then we may compute

Y=  ,
1

j

i j

t
L

j

Y psk


(pski,j)Lj

according to the Shamir’s sharing scheme [28] and the Xiong et al.’s

threshold signature scheme [32], where pski,j=,

1

, ,
1,

i j

n

i p j

p p i

psk s


 

  si,p,j and Lj=
1, 





t

j

d d j

d
L

d j . Then we may

 KE GU, YONG WANG AND SHENG WEN

70

get the equation e(( ,

1

,
1 1,

, ,j

i j

t n
L

i j

j j j i

pske g e osk g


  

   
   

   
 pski,j)Lj, g) = e( ,

1

,
1 1,

, ,j

i j

t n
L

i j

j j j i

pske g e osk g


  

   
   

   
  oski,j, g).

Secondly, the following computation may be made in TTPS.TProxyVerify:

 
1

,1 ,2, (,) , 'i p p i d

d M

e Q g e g pk e Q  





 
   

 


   
1

, ,1 , ,2
1 1

, (,) , '
j j

p

L Lt t
sk

i j p p p i j d

j j d M

e Q g g e g pk e Q  





  

   
          

   
  

   
1

, ,1 , ,2
1 1

, , '
j jL Lt t

i j i j d

j j d M

e Q g e Q  



  

   
        

   
  

 
1

,
1 1,

, , ,
jLt n

i j

j j j i

i je g e osk gpsk


  

   
     

  
 

 {1, 2, ..., , 1}, ,1

1,

,
i i n n i ii

j

r H pk PK wskn
sk n n
j i

j j i

g ge g


 

  
    

  
  



      {1,2, ..., , 1}
1

, ,

1,

, , , i i n n i ij i

n
r H pk PK wsk sk

j i

j j i

g ge g e g e g 




 

      
 {1,2, ..., , 1}

1 , ,

1
,3, , .i n n i i

n
H pk PK w

j j

j

ige pk e Q






 

Thus, the claim follows.

5.2 Efficiency

In this paper, we compare the proposed scheme (the scheme of Section 4) with the
threshold proxy signature scheme proposed by Huang et al. [11], the traceable certifi-
cateless threshold proxy signature scheme proposed by Yang et al. [34], the threshold
proxy signature scheme proposed by Hu et al. [12] and the unidirectional threshold
proxy re-signature scheme proposed by Hu et al. [38] by Table 1. From the description
of Table 1, we may know that the signature length of our proposed scheme is shorter
than those of three of the other four schemes, and although our proposed scheme in-
creases some computation costs, our proposed scheme is constructed in the standard
model and has the full threshold proxy signature traceability.

Table 1. Comparison of five schemes.

 The length of signature Model Assumptions Traceability
Scheme [11] 2  |Zq|+t  |ID|+|w| / DLP and OWHF partial
Scheme [34] (2  t +4)  |G1|+|w| random oracle model CDH and CHF full
Scheme [12] 2  |G1|+|Zq|+t  |ID|+|w| / DLP and OWHF partial
Scheme [38] 3  |G1| standard model CDH and CHF no
Our Scheme 3  |G1|+|w| standard model CDH and CHF full

5.3 Unforgeability

Theorem 5.1: The scheme of Section 4 is (j, , qe, qs)-secure, assuming that the (h,  )-
CDH assumption holds in G1, where:

Caption: |Zq| represents the length of element in Zq, |ID| represents the length of identity,|w| represents the
length of warrant, |G1| represents the length of element in G1, DLP represents discrete logarithm problem,
OWHF represents one way hash function, CHF represents cryptographic hash function.

TRACEABLE THRESHOLD PROXY SIGNATURE 71

  

 
2 2

12 1 3
'

64 1
,m s e

m s

n q q

q n q




     


   

 4 1 ,
e m s

q n q   

      ' 6 9 4 4 | | 9 4 | | 18 ,e mul exp s m mul exph h O q C C q n U C U C                  

and qe is the maximal number of proxy signing key queries, qs is the maximal number of
signature queries, nm is the length of message represented as bit strings, |U| is the size of
U which is the set of no corrupted users, Cmul

and Cexp

are respectively the time for a

multiplication and an exponentiation in G1.

Proof: Let TTPS be a traceable (t, n) threshold proxy signature scheme on n+1 users.
Additionally, let  be an (h, , qe, qs)-adversary attacking TTPS. From the adversary ,
we construct an algorithm , for (g, ga, gb)G1, the algorithm  is able to use  to
compute gab. Thus, we assume the algorithm  can solve the CDH with probability at
least  and in time at most h, contradicting the (h,  )-CDH assumption. Based on the
Boldyreva et al.’s work [1], such a simulation may be created in the following way:

Setup: The algorithm  inputs a security parameter 1k. And the algorithm  sets lm=4qs,
and randomly chooses kmZlm, with 0kmnm. We will assume that lm(nm+1) q and
qe4(nm+1) qs for the given values of qe, qs, nm. Then the algorithm  chooses x Zlm
and a vector X=(xi) of length nm, with xi Zlm for all i, and chooses yZq

and a vector
Y=(yi) of length nm, with yiZq

for all i. And let {1, 2,…, nm} be the set of in-
dex  such that M[]=1, where M[] is the -th bit of M. To make the notation easier to
follow, the following two functions are defined for a message M:F(M)=
x+() ' m m

M

F x x l k


   M , J(M)=y+
M

y



 . Also, to make our description simpler, we assume
that the indexed numbers of all no corrupted users are {1, 2, …, |U|}, and the indexed
numbers of all corrupted users are {|U|+1, |U|+2, …, ||}, so we have that the no cor-
rupted user ui

*U with i{1, 2, …, |U|}, and the corrupted user diD with

i{|U|+1,

|U|+2, …, ||}, where  is a set which includes n+1 users, the user ui with i{1,
2, …, n, n+1}; D is a set which includes all corrupted users with D  ; U is a set which
includes all no corrupted users with U  ; ||=n+1 and |||U|=|D|=t. Additionally, to
make our proof easier to understand, we set u1

*U as a challenger in the security game.
Then the algorithm  constructs the public parameters by making the following as-

signments. The algorithm  sets g1=gb and bZq( doesn’t know b), and randomly
chooses iZq for all i with i{2, 3, …, |U|}, sets gi=g1

i for all i with i{2, 3, …, |U|},
and randomly chooses gjG1 with j{|U|+1, |U|+2, …, n+1}, and then generates a
(n+1)-length vector =(gi) with

i{1, 2, …, n+1}. And then  chooses 0Zq and sets

=g1
0g, and computes =g1

lmkm+xgy, =g1
xgy,  , with 1nm. Then all public pa-

rameters (G1, G2, e, g, , ,, (), t, n) are outputted to the adversary , where'
M

 

=gF(M) gJ(M). And the algorithm  sets pk1=ga as the public key of u1
* with aZq (

doesn’t know a), and sets pki= gski

= gai

as the public key of no corrupted user ui

* for all i
with i{2, 3,…, |U|}, and runs the algorithm KeyGen to generate all corrupted users’
public/private key pairs, (pkj=gskj, skjZq)  KeyGen(parameters), with j{|U|+1,
|U|+2, …, n+1}. Lastly, all corrupted users’ public/private key pairs, the public keys of
all no corrupted users are passed to the adversary .

http://www.iciba.com/key/
http://www.iciba.com/key/

 KE GU, YONG WANG AND SHENG WEN

72

Queries: When running the adversary , both proxy signing key queries and signature
queries can occur. The algorithm  answers these in the following way:
 ProxyKey Queries:

(I) A no corrupted user u1
* is a delegator and is also simulated as n proxy signers, so the

simulator simulating as u1
* needs to delegate his signing rights to n oneself and generate

a proxy signing key (u1
* is also one proxy signer collecting distributed proxy signatures).

Because the algorithm  does not know the private key of u1
*, the algorithm randomly

chooses rZq, and computes psk =pk1 0

n


r, R=(pk1 0

n


gr)  1 {1}

1
, ,H pk PK w , where  gets the

warrant w

by the query of , PK{1} is a public key list including n public
keys of u1

*. Setting r=(r
0

n a)  0 1 {1}

1
'

, ,
n a

r r
H pk PK w


  
 
 
 

, psk =g1
na

rH(pk1, PK{1}, w) and R=gr. So psk is
a valid proxy signing key for threshold self-proxy signature of u1

*.

If 0H(pk1, PK{1},

w)=0 mod q, then the above computation cannot be performed and the simulator will
abort; otherwise a valid proxy signing key psk and the information R are passed to the
adversary .
(II) A corrupted user di is a delegator with i{|U|+1, |U|+2, …, n+1}, so a corrupted
user di needs to delegate his signing rights to other n true users and generate a proxy
signing key(we assume another corrupted user dp is one proxy signer collecting dis-
tributed proxy signatures with pi and p{|U|+1, |U|+2,…, n+1}). The algorithm 
does not know the private keys

of all no corrupted user uj

* with j{1, 2,…, |U|}, but
know the private keys

of all corrupted users and can get the warrant w

by the query of

, so  randomly chooses rZq, and then computes

 0 0

1 | | 1

1
2 | | 1,

,
j

j

U n
sk

j j

j j U j p

r
psk pk pk g 

 

   


 
   
 
 

 
 {1,2, ..., , 1}

0 0

1
1 , ,| |

1
2

j i n n iH pk PK wU
r

j

j

R pk pk g
 





  
   

  
  

 ,

where PK{1, 2,…, n, n+1}/i is a public key list including n proxy signers’ public keys.
Similarly, setting r'=(ra(

0

1 +  
2

| |

2 0

U
j

j

))  {1, 2, ..., , 1}

1
, ,

i n n i
H pk PK w



, we can get that psk=
1

1,

n

j j p



 

 (gj
skj)

rH(pk1, PK{1, 2, …, n, n+1}/i, w) and R=gr'. So psk is a valid proxy signing key for
threshold proxy signature of di, where we assume dp is one proxy signer collecting
distributed proxy signatures. If 0H(pki, PK{1, 2,…, n, n+1}, w)=0 mod q, then the above
computation cannot be performed and the simulator will abort; otherwise a valid
proxy signing key psk and the information R are passed to the adversary .
(III) A no corrupted user u1

* is a delegator, so the simulator simulating as u1 needs to
delegate his signing rights to other n true users and generate a proxy signing key(we
assume one corrupted user dp is one proxy signer collecting distributed proxy signa-
tures with p{|U|+1, |U|+2, …, n+1}). The algorithm  does not know the private
keys

of all no corrupted user, but know the private keys

of all corrupted users and can

get the warrant w

by the query of , so  randomly chooses rZq, and then computes

 0 0

1 | | 1

1
2 | | 1,

,
j

j

U n
sk

j j

j j U j p

r
psk pk pk g 

 

   


 
   
 
 

 
 1 {2, ..., , 1}

0 0

1
1 , ,| |

1
2

,
j n nH pk PK wU

r

j

j

R pk pk g
 





  
   

  
  



http://www.iciba.com/key/

TRACEABLE THRESHOLD PROXY SIGNATURE 73

where PK{2, …, n, n+1} is a public key list including n proxy signers’ public keys. Simi-
larly, psk is a valid proxy signing key for threshold proxy signature of u1

*, where we
assume dp is one proxy signer collecting distributed proxy signatures. If 0H(pk1,
PK{2,……, n, n+1}, w)=0 mod q, then the above computation cannot be performed and the
simulator will abort; otherwise a valid proxy signing key psk and the information R are
passed to the adversary .

 Signature Queries:

(I) Consider a query for a threshold self-proxy signature of u1
* on M and

w. If F(M) 0

mod q, then the simulation continues and u1
* is simulated as n proxy signers. The al-

gorithm  randomly chooses r, vZq, and computes and outputs a threshold self-proxy
signature (w, p(Q1, Q2, Q3)) of u1

* (u1
* is also one proxy signer collecting distributed

proxy signatures), where:

 1 {1}
()

, ,()
1 1 '

vn J
r H pk PK wF

M

Q pk 


  


 



 
  
 

   
M

M , ()
2 1

n

F vQ pk g


 M and Q3=gr.

If we set

()
n a

v
F




 
M

, then

p(Q1, Q2, Q3)
 1 {1}, ,

1 ' , , r H pk PK wn a r

M

g g g









  





  
    
   

 .

And (w, p(Q1, Q2, Q3)) is passed to the adversary . The adversary  can verify it.
To the adversary , all threshold self-proxy signatures computed by the algorithm 
will be indistinguishable from the signatures generated by a true challenger (or the us-
er u1

*). As [22], F(M)0 mod lm, will ensure that a threshold self-proxy signature can
be constructed.
(II) Consider a query for a threshold proxy signature of di on M and

w, with i{|U|+1,

|U|+2, …, n+1}. If F(M)0 mod q, then the simulation continues. Thus, the algorithm 
randomly chooses r, vZq, and then computes and outputs a threshold proxy signature (w,
p(Q1, Q2, Q3)) of di (we assume that one corrupted user dp is one proxy signer collecting
distributed proxy signatures with pi and p{|U|+1, |U|+2, …, n+1}), where

   {1,2,..., , 1}

()() | | 1
, ,() ()

1 1
2 | | 1,

' ,
j

i n n ij

vJJ U n
r H pk PK wskF F

j j

j j U j p M

Q pk pk g 



  


 



    

   
       
    

  
MM

M M

1 | |
() ()

2 1
2

jU
vF F

j

j

Q pk pk g
 



 
   
 
 

M M

and Q3=gr.

If we set =va
 

2
| |

2

1
() ()

U
j

jF F

 
 
 
 


M M

, then (w, p=(Q1, Q2, Q3)) is a valid threshold

proxy signature. To the adversary , all threshold proxy signatures computed by
the algorithm  will be indistinguishable from the signatures generated by the
true proxy signers. Similarly, F(M) 0 mod lm, will ensure that a threshold proxy

 KE GU, YONG WANG AND SHENG WEN

74

signature can be constructed.
(III) Consider a query for a threshold proxy signature of u1

*

 on M and

w. If F(M)0

mod q, then the simulation continues. Thus, the algorithm  randomly chooses r,
vZq, and then computes and outputs a threshold proxy signature(w, p=(Q1, Q2,
Q3))of u1

*(we assume that one corrupted user dp is one proxy signer collecting distrib-
uted proxy signatures with p{|U|+1, |U|+2, …, n+1}), where:

   1 {2...... , 1}

()() | | 1
, ,() ()

1 1
2 | | 1,

' ,
j

n nj

vJJ U n
r H pk PK wskF F

j j

j j U j p M

Q pk pk g 



  


 



    

   
       
    

  
MM

M M

1 | |
() ()

2 1
2

jU
vF F

j

j

Q pk pk g
 



 
   
 
 

M M and Q3=gr.

Similarly, (w, p=(Q1, Q2, Q3))

can be verified by the adversary . To the adversary

, all threshold proxy signatures computed by the algorithm  will be indistinguisha-
ble from the signatures generated by the true proxy signers. Similarly, F(M)0 mod lm,
will ensure that a threshold proxy signature can be constructed.

Forgery: If the algorithm  does not abort as a consequence of one of the queries above,
the adversary  will, with probability at least , return a forgery according to the fol-
lowing situation.

(I) The adversary  returns a no corrupted user u1
, a message M, and a valid thresh-

old self-proxy signature forgery, (w*, p*=(Q1
*, Q2

*, Q3
*))

with

p*=(Q1
*, Q2

*, Q3
*)  

*

*1 {1}
* * *, ,

1 ' , ,
r H pk PK wn a r

M

g g g









  




  
     
   

 .

If 0H(pk1, PK{1},w*)0 mod q or F(M*)0 mod q, then the algorithm  will

abort. If 0H(pk1, PK{1},w*)0 mod q and F(M*)=0 mod q, then the algorithm 
computes and outputs

 
 

 

 

 
 

 

*

* *
1 {1}

* * * *
1 {1} 1 {1}* * * *

1

1
, ,

1*
1

, , () , , ()

'
n

r H pk PK wn an

M

H pk PK w J H pk PK w J
r r

g
Q

g g g g






 

  




  
      
       
   

   
 



M M  
1

1 1
n a a abng g g  

which is the solution to the given CDH problem.
(II) The adversary  returns a corrupted user di with i{|U|+1, |U|+2……n+1}, a mes-
sage M*, and a valid threshold proxy signature forgery,

(w*, p*=(Q1

*, Q2
*, Q3

*))

with

p*=(Q1
*, Q2

*, Q3
*)=    

*

*{1,2, ..., , 1}
* * *1 , ,

1,

' , , i n n ij

n
r H pk PK wsk r

j

j j p M

g g g









  





  

  
   
   

  ,

TRACEABLE THRESHOLD PROXY SIGNATURE 75

where we assume that one corrupted user dp is one proxy signer collecting distributed
proxy signatures with pi and p{|U|+1, |U|+2,……, n+1}. Similarly, we can know

p*is the solution to the given CDH problem.
(III) The adversary  returns a no corrupted user u1

, a message M, and a valid
threshold proxy signature forgery, (w*, p*=(Q1

*, Q2
*, Q3

*))

with

p*=(Q1
*, Q2

*, Q3
*)=    

*

* *1 {2, ..., , 1}
* *1

, ,

1,

' , , n nj

n
r H pk PK wsk r

j

j j p M

g g g









  





  

  
   
   

  ,

where we assume that one corrupted user dp is one proxy signer collecting distributed
proxy signatures with p{|U|+1, |U|+2, …, n+1}. Similarly, we can know p* is the
solution to the given CDH problem.

Now, we analyze the probability of the algorithm  not aborting. To make the
analysis simpler, we will define the events Ei, E*, j, 

* as Ei: 0H(*, *, wi)0 mod q,
with i=1, 2, …, qe, where qe is the number of proxy signing key queries; E*: 0H(*, *,
wi)0 mod q; j: F(Mj)0 mod lm, with j=1, 2, …, qs, where qs is the number of signa-
ture queries; *: F(M*)=0 mod q.

So the probability of  not aborting is

* *

1 1
Pr(_) Pr EE

e sq q

i j
i j

not abort 
 


 
  
 

  

3 1 1
1

4 4 1
1

e

s m

q

q q nq
     

 

 
 
   

3 1 1
1

1 4 4 1
1

e

m m s m

q

l n q nq
     

  

 
 
 

 

 
2 2

12 1 3

64 1
.m s e

m s

n q q

q n q

    


   

We can get that =
  

 
2 2

12 1 3

64 1
m s e

m s

n q q

q n q

     

   
. The time complexity of the algoithm

 is h=h+O(qe(6Cmul+9Cmul+)+qs[(4nm+4U+9)Cmul+(4U+18 Cexp)]).

5.4 Traceability

Theorem 5.2: The scheme of Section 4 has the threshold proxy signature traceability so
as to trace t proxy signers participating in signing when it is unforgeable (Theorem 5.1
holds).

Proof: The scheme of Section 4 has been proved to have the threshold proxy signature
unforgeability in Section 5.3. So, in the algorithm TTPS.TProxyTrace, the trusted au-
thority may certainly uncover out the proxy signer p collecting distributed proxy signa-
tures from the equation,

 

 

{1,2...... , 1}
1 , ,

,3
1

1

,1 ,2

(,) (,)
(,)

, , '

i in n i
n

H pk PK w

j j i

j

p p

i i d

d M

e g pk e Q

e g pk

e Q g e Q



 













 

  
 





.

 KE GU, YONG WANG AND SHENG WEN

76

Therefore, the proxy signer p cannot deny to have participated in signing. Additionally,
the proxy signer p can verify each distributed proxy signature pi,j by the equation,
Bi,j=e(Qi,j,1, g)e(Qi,j,2, 

d M

 d)1 respectively for other t−1 proxy signers participated in
signing. Thus, other t−1 proxy signers participated in signing cannot deny to have par-
ticipated in signing.

6. CONCLUSIONS

In this paper, we propose a traceable (t, n) threshold proxy signature scheme in the
standard model, which is based on the Waters’ signature scheme and the Xiong et al.’s
threshold signature scheme. In our proposed scheme, there is not a trusted third party of
computing signature, then computing a threshold proxy signature is more flexible. Also,
we show the complete analysis for security of the proposed scheme. Compared with oth-
er types of proxy signature schemes, constructing a secure and efficient traceable (t, n)
threshold proxy signature scheme is very challenging [1, 9, 11-13, 17]. Thus, the work
about threshold proxy signature still needs to be further progressed.

REFERENCES

1. A. Boldyreva, A. Palacio, and B. Warinschi, “Secure proxy signature schemes for
delegation of signing rights,” Journal of Cryptology, Vol. 25, 2012, pp. 57-115.

2. A. Boldyreva, A. Palacio, and B. Warinschi, “Secure proxy signature schemes for
delegation of signing rights,” http://eprint.iacr.org/2003/096.

3. D. Boneh and X. Boyen, “Short signatures without random oracles,” Advances in

Cryptology, Vol. 3027, 2004, pp. 56-73.
4. F. Cao and Z. F. Cao, “A secure identity-based multi-proxy signature scheme,”

Computers and Electrical Engineering, Vol. 35, 2009, pp. 86-95.
5. J. C. Cha and J. H. Cheon, “An identity-based signature from Gap Diffie-Hellman

groups,” Public Key Cryptography, LNCS, Vol. 2567, 2002, pp. 18-30.
6. F. Cao and Z. Cao, “A secure identity-based proxy multi-signature scheme,” Infor-

mation Sciences, Vol. 179, 2009, pp. 292-302.
7. G. Fuchsbauer and D. Pointcheval, “Anonymous consecutive delegation of signing

rights: unifying group and proxy signatures,” Lecture Notes in Computer Science,
Vol. 5458, 2009, pp. 95-115.

8. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold DSS sig-
nature, Advances” in Proceedings of International Conference on Cryptology-

EuroCrypt, LNCS, Vol. 1070, 1996, pp. 354-371.
9. S. J. Hwang and C. C. Chen, “New threshold-proxy threshold-signature schemes,”

Computers and Electrical Engineering, Vol. 31, 2005, pp. 69-80.
10. J. Herranz and G. Saez, “Revisiting fully distributed proxy signature schemes,” http:

//eprint.iacr.org/2003/197.
11. H. F. Huang and C. C. Chang, “A novel efficient (t, n) threshold proxy signature

scheme,” Information Sciences, Vol. 176, 2006, pp. 1338-1349.

TRACEABLE THRESHOLD PROXY SIGNATURE 77

12. J. H. Hu and J. Z. Zhang, “Cryptanalysis and improvement of a threshold proxy
signature scheme,” Computer Standards and Interfaces, Vol. 31, 2009, pp. 169-173.

13. C. L. Hsu and T. S. Wu, “Efficient nonrepudiable threshold proxy signature scheme
with known signers against the collusion attack,” Applied Mathematics and Compu-

tation, Vol. 168, 2005, pp. 305-319.
14. Z. P. Jin and Q. Y. Wen, “Certificateless multi-proxy signature,” Computer Com-

munications, Vol. 34, 2011, pp. 344-352.
15. Y. S. Kim and J. H. Chang, “Provably secure proxy blind signature scheme,” in Pro-

ceedings of the 8th IEEE International Symposium on Multimedia, 2006, pp.
998-1003.

16. Z. H. Liu, Y. P. Hu, X. S. Zhang, and H. Ma, “Provably secure multi-proxy
signature scheme with revocation in the standard model,” Computer Communica-

tions, Vol. 34, 2011, pp. 494-501.
17. R. X. Lu, Z. F. Cao, and H. J. Zhu, “A robust (k, n)+1 threshold proxy signature scheme

based on factoring,” Applied Mathematics and Computation, Vol. 166, 2005, pp. 35-45.
18. X. Li and K. Chen, “ID-based multi-proxy signature, proxy multi-signature and

multi-proxy multi-signature schemes from bilinear pairings,” Applied Mathematics

and Computation, Vol. 169, 2005, pp. 437-450.
19. S. Lal and A. K. Awasthi, “Proxy blind signature scheme,” http://eprint.iacr.org/

2003/072.
20. M. Mambo, K. Usuda, and E. Okamoto, “Proxy signature: delegation of the power

to sign messages,” IEICE Transactions on Fundamentals of Electronics Com-

munication and Computer Science, Vol. E79-A, 1996, pp. 1338-1354.
21. T. Malkin, S. Obana, and M. Yung, “The hierarchy of key evolving signatures and a

characterization of proxy signatures,” Advances in Cryptology-EuroCrypt, Vol. 3027,
2004, pp. 306-322.

22. K. G. Paterson and J. C. N. Schuldt, “Efficient identity-based signatures secure in
the standard model,” in Proceedings of the 11th Australasian Conference on In-

formation Security and Privacy, LNCS, Vol. 4058, 2006, pp. 207-222.
23. J. C. N. Schuldt, K. Matsuura, and K. G. Paterson, “Proxy signatures secure against

proxy key exposure,” Public Key Cryptography, Vol. 4939, 2008, pp. 141-161.
24. Y. Sun, C. X. Xu, and Y. Yu, “Strongly unforgeable proxy signature scheme secure in

the standard model,” Journal of Systems and Software, Vol. 84, 2011, pp. 1471-1479.
25. Y. Sun, C. X. Xu, H. Wang, and C. X. Fu, “Improved multi-proxy signature scheme

without random oracles,” Chinese Journal of Electronics, Vol. 20, 2011, pp. 200-206.
26. Y. Sun, C. X. Xu, Y. Yu, and B. Yang, “Improvement of a proxy multi-signature

scheme without random oracles,” Computer Communications, Vol. 34, 2011, pp.
257-263.

27. Z. H. Shao, “Improvement of identity-based proxy multi-signature scheme,” Journal

of Systems and Software, Vol. 82, 2009, pp. 794-800.
28. A. Shamir, “How to share a secret,” Communications of the ACM, Vol. 22, 1979, pp.

612-613.
29. Q. Wang, Z. F. Cao, and S. B. Wang, “Formalized security mModel of multi-proxy

signature schemes,” in Proceedings of the 5th International Conference on Compu-

ter and Information Technology, 2005, pp. 668-672.

 KE GU, YONG WANG AND SHENG WEN

78

30. B. Waters, “Efficient identity-based encryption without random oracles,” Advances

in Cryptology-EuroCrypt, Vol. 3494, 2005, pp. 114-127.
31. H. Xiong, J. B. Hu, Z. Chen, and F. G. Li, “On the security of an identity based

multi-proxy signature scheme,” Computers and Electrical Engineering, Vol. 37,
2011, pp. 129-135.

32. H. Xiong, F. G. Li, and Z. G. Qin, “Certificateless threshold signature secure in the
standard model,” Information Sciences, Vol. 237, 2013, pp. 73-81.

33. C. H. Yang, S. F. Tzeng, and M. S. Hwang, “On the efficiency of non-repudiable
threshold proxy signature scheme with known signers,” Journal of Systems and Soft-

ware, Vol. 73, 2004, pp. 507-514.
34. T. Yang, H. Xiong, J. B. Hu, Y. G. Wang, Y. Deng, B. Xiao, and Z. Chen, “A

traceable certificateless threshold proxy signature scheme from bilinear pairings,”
Web Technologies and Applications, LNCS, Vol. 6612, 2011, pp. 376-381.

35. L. Harn and F. Wang, “Threshold signature scheme without using polynomial inter-
polation,” International Journal of Network Security, Vol. 18, 2016, pp. 710-717.

36. S. J. Aboud, S. Yousef, and M. Cole, “Undeniable threshold proxy signature
scheme,” https://www.researchgate.net/publication/261242449.

37. S. Mashhadi, “A novel non-repudiable threshold proxy signature scheme with known
signers,” International Journal of Network Security, Vol. 15, 2013, pp. 274-279.

38. G. Hu, X. Yang, and C. Wang, “An unidirectional threshold proxy resignature sche-
me,” Journal of Convergence Information Technology, Vol. 8, 2013, pp. 731-736.

39. C. C. Lee, T. C. Lin, S. F. Tzeng, and M. S. Hwang, “Generalization of proxy
signature based on factorization,” International Journal of Innovative Computing,
Information and Control, Vol. 7, 2011, pp. 1039-1054.

40. C. I. T. Chen, M. H. Chang, and Y. S. Yeh, “Design of proxy signature in the digital
signature algorithm (DSA),” Journal of Information Science and Engineering, Vol.
22, 2006, pp. 965-973.

41. C. C. Lee, M. S. Hwang, and W. P. Yang, “Untraceable blind signature schemes based
on discrete logarithm problem,” Fundamenta Informaticae, Vol. 55, 2003, pp. 307-320.

42. N. Y. Lee, T. Hwang, and C. M. Li, “(t, n) threshold untraceable signatures,”
Journal of Information Science and Engineering, Vol. 16, 2000, pp. 835-846.

Ke Gu () received his Ph.D. degree in School of Infor-
mation Science and Engineering from Central South University
in 2012. He is currently a Lecturer at Changsha University of
Science and Technology. His research interests include cryptog-
raphy, network and information security.

TRACEABLE THRESHOLD PROXY SIGNATURE 79

Yong Wang () received his Ph.D. degree in School of
Information Science and Engineering from Central South Uni-
versity in 2011. He is currently an Associate Professor at Central
South University. His research interests include information the-
ory and computational intelligence.

Sheng Wen () received his Ph.D. degree in School of
Information Science and Engineering from Central South Univer-
sity in 2012. He is currently a Lecturer at Deakin University. Her
research interests include social media, network security and
modelling.

