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Threshold proxy signature (TPS) is a variant of proxy signature, which allows that a 

delegator may delegate his signing rights to many proxy signers. Compared with proxy 
signature, threshold proxy signature can limitedly prevent that some of proxy signers 
abuse their signing rights. In this paper, we show a traceable threshold proxy signature 
(TTPS) frame. Also, we propose a traceable (t, n) threshold proxy signature scheme, 
which is based on the Waters’ signature scheme and the Xiong et al.’s threshold signa-
ture scheme in the standard model. The proposed scheme is proved to have a security re-
duction to the CDH assumption and the threshold proxy signature unforgeability under 
an adaptive chosen message attack, and to have the threshold proxy signature traceability. 
Compared with other (t, n) threshold proxy signature schemes, the proposed scheme is 
secure in the standard model.      
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1. INTRODUCTION 
 
The concept of proxy signature was firstly proposed by Mambo et al. in [20]. In the 

proxy signature schemes [2, 20, 21, 23, 24, 39, 40], delegator (original signer) may del-
egate his signing rights to proxy signer. If proxy signer gets proper delegation, then 
proxy signer can represent delegator to exercise his signing rights. Proxy signature is an 
extension of ordinary signature. Compared with the ordinary signature schemes [3, 5, 22, 
30], the proxy signature schemes have four security properties [1], which are unforgea-
bility, non-repudiation, strong identifiability and prevention of misuse. First provable 
security model of proxy signature was proposed by Boldyreva et al. in 2003. Then many 
researchers and scholars proposed some improved security models for proxy signature 
[21, 23, 24], which are based on the Boldyreva et al.’s model [2]. In 2012, Boldyreva et 

al. summarized the related work [2, 10, 21, 23] about the provable security models of 
proxy signature in [1], and questioned how to measure adversary's ability in the different 
security models. In [1], Boldyreva et al. proposed a more complete and accurate security 
model for proxy signature. In their security model, security of a proxy signature scheme 
needs to be analyzed in four situations, and generating self-proxy signature is considered 
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as a weak secure situation [1, 23].  
Currently, many variants of proxy signature were also proposed, such as multi- 

proxy signature [4, 7, 10, 14, 16, 25, 29, 31], proxy multi-signature [6, 18, 26, 27], proxy 
blind signature [15, 19, 41] and so on. In the multi-proxy signature schemes, delegator 
may delegate his signing rights to many proxy signers. Compared with the proxy signa-
ture schemes, there are two types of collusion attacks in the multi-proxy signature 
schemes, which are collusion attack of proxy signers and collusion attack of original 
signer and partial proxy signers. Then many provable security models of multi-proxy 
signature [4, 7, 10, 14, 16, 25, 29, 31] were proposed. Because all proxy signers must 
participate in signing, the multi-proxy signature schemes are not flexible. Based on the 
multi-proxy signature schemes, the threshold proxy signature schemes [9, 11-13, 17, 33] 
were proposed. Compared with the multi-proxy signature schemes, the concept of (t, n) 
threshold [8, 28, 35, 42] is introduced into the threshold proxy signature schemes. If 
delegator delegates his signing rights to n proxy signers and the number of proxy signers 
participating in signing can meet threshold value t, then t proxy signers may compute out 
a threshold proxy signature. Thus, the threshold proxy signature schemes are more flexi-
ble. Compared with multi-proxy signature, threshold proxy signature can be more easily 
used for many applications, such as distributed systems, grid computing, mobile agent 
applications, distributed shared object systems, and so on.  

Some (t, n) threshold proxy signature schemes [9, 11-13, 17, 33, 34, 36-38] have 
been proposed. In [11], Huang et al. proposed a (t, n) threshold proxy signature scheme 
based on the Schnorr’s scheme. Compared with the existing (t, n) threshold proxy signa-
ture schemes, their scheme reduces the amount of computations and communications. 
However, their scheme has a security weakness, because it can’t resist collusion attacks. 
In [33], Yang et al. proposed an efficient threshold proxy signature scheme. However, 
their scheme is also not secure, because it can't resist frame attack and public-key substi-
tute attack [12]. In [12], Hu et al. proposed an improved threshold proxy signature 
scheme based on the Yang et al.’s scheme [33]. In [9, 13, 17, 38], some (t, n) threshold 
proxy signature schemes were also proposed, but a complete security model of (t, n) 
threshold proxy signature is still not proposed. Although the papers [9, 13, 17] claim 
their schemes are secure, their schemes still need to be further studied due to lacking 
complete security proof. Additionally, in a (t, n) threshold proxy signature scheme, del-
egator delegates his signing rights to n proxy signers, then t proxy signers of n proxy 
signers represent n proxy signers to compute a threshold proxy signature, the (t, n) 
threshold proxy signature scheme has second proxy property. So, we need to consider 
the following situation. If there is not a trusted third party of computing signatures in a (t, 
n) threshold proxy signature scheme, and some of t proxy signers participating in signing 
(include the proxy signer collecting distributed proxy signatures) deny to have partici-
pated in signing, then the signature receivers will not know who the t proxy signers par-
ticipating in signing are. Thus, a secure (t, n) threshold proxy signature scheme must 
prevent the situation. Obviously, it is very important to trace t proxy signers participating 
in signing. However, most of the existing (t, n) threshold proxy signature schemes can-
not trace t proxy signers participating in signing, the schemes are not adequately secure. 
Although the schemes of Huang et al. and Hu et al. [11, 12] also have the limited thresh-
old proxy signature traceability by adding the identities of the actual proxy signers to the 
final signature, the method still needs to be further studied due to lacking complete secu-
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rity proof. Yang et al. [34] proposed a traceable certificateless threshold proxy signature 
scheme based on bilinear pairings in the random oracle model. However, their scheme 
traces the t proxy signers participating in signing by setting an additional tag and lacks 
the security proofs. Further, the tag-added method may influence the acceptance of veri-
fiers and breaks the anonymity of t proxy signers.  

Thus, we propose a traceable (t, n) threshold proxy signature scheme in the standard 
model, which is based on the Waters’ signature scheme [30] and the Xiong et al.’s 
threshold signature scheme [32]. The proposed scheme can be proved to have a security 
reduction to the CDH assumption and the threshold proxy signature unforgeability under 
an adaptive chosen message attack, and to have the threshold proxy signature traceability 
so as to trace t proxy signers participating in signing. 

2. A FRAME FOR TRACEABLE THRESHOLD PROXY SIGNATURE 

Definition 2.1: Traceable Threshold Proxy Signature: Let TTPS=(DS, TDelegate, 

TProxyKeyGen, TProxySign, TProxyVerify, TProxyTrace)
 
be a (t, n) threshold proxy 

signature frame, where DS=(Setup, KeyGen, Sign, Verify)
 
is an ordinary signature frame. 

In TTPS, all algorithms are described as follows: 
 
1. Setup: The randomized algorithm inputs a security parameter 1k, and then outputs all 

system parameters. 
2. KeyGen: The randomized algorithm generates user’s public/private key pair (pki, ski) with i{1, 2, …, n, n+1}, where i is the indexed number of user, pki

 
is the public key 

of user i, ski is the private key of user i.  
3. Sign: The randomized algorithm is a standard signature algorithm. Signer needs to 

sign a message M{0, 1}*. The algorithm inputs (sk, M), and then outputs a standard 
signature , where {0, 1}*{}, sk is the private key of signer and pk is the cor-
responding public key. 

4. Verify: The signature receivers verify a standard signature . The deterministic algo-
rithm inputs (M, pk, ), and then outputs the boolean value, accept or reject. 

5. TDelegate: We assume the user i is a delegator with i{1, 2, …, n, n+1}. The ran-
domized algorithm inputs (pki, PK{1, 2, …, n, n+1}/i, ski, wi), where PK{1, 2, …, n, n+1}/i

 
is a 

public key list including all users’ public keys except for that of the user i, wi{0, 1}* 
is the warrant of the user i. Then the algorithm outputs a delegation δi,j for every proxy 
signer j with j{1, 2, …, n, n+1}/i. 

6. TProxyKeyGen: The randomized algorithm generates a distributed proxy signing key. 
TProxyKeyGen run by every proxy signer

 
j
 
inputs (δi,j, pki, PK{1, 2, …, n, n+1}/i, skj), and 

then outputs (wi, pski,j), where pski,j is a distributed proxy signing key of the proxy 
signer

 
j in wi.  

7. TProxySign: We assume t proxy signers of n proxy signers need to sign a message 

M{0, 1}* on the signing delegation of the user i. Without loss of generality, we set 
the indexed numbers of t proxy signers are {1, 2, …, t}, then two following steps need 
to be finished: 
 For every proxy signer j

 
participating in signing, the algorithm run by the proxy 

signer j
 
inputs (wi, pski,j, M), and then outputs a distributed proxy signature pi,j 

with 
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j{1, 2, …, t}.  
One proxy signer p

 
collects the distributed proxy signatures of t proxy signers in-

cluding p
 
own distributed proxy signature with p{1, 2, …, t} and p j; then the 

algorithm run by the proxy signer p
 
inputs (pi,1, pi,2, …, pi,t), and outputs a thres- 

hold proxy signature (wi, pi), where pi{0, 1}*{}; if the number of proxy 
signers participating in signing are less than t, then the signing procedure will abort. 

8. TProxyVerify: The signature receivers verify a threshold proxy signature(wi, pi)
 
on 

M{0, 1}*. The deterministic algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi, i
p ), and 

then outputs the boolean value, accept or reject. 
9. TProxyTrace: The trusted authority traces the t proxy signers participating in signing 

by the traceable threshold proxy signature (wi, i
p )

 
on M{0, 1}*. The deterministic 

algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi, i
p ), and then outputs the public keys of 

the t proxy signers participating in signing.  

3. PRELIMINARIES 

3.1 Bilinear Maps 

 
Let G1 and G2 be groups of prime order q and g be a generator of G1. We say G2 has 

an admissible bilinear map, e: G1G1G2 if the following two conditions hold. The map 
is bilinear; for all a, b, we have e(ga, gb)=e(g, g)ab. The map is non-degenerate; we must 
have that e(g, g)1. 
 

3.2 Computational Diffie-Hellman Assumption 

 

Definition 3.1: Computational Diffie-Hellman (CDH) Problem: Let G1
 
be a group of 

prime order q
 
and g be a generator of G1; for all (g, ga, gb)G1, with a, bZq, the CDH 

problem is to compute gab. 
 

Definition 3.2: The (h, )-CDH assumption holds if no h-time algorithm can solve the 
CDH problem with probability at least . 

4. TRACEABLE THRESHOLD PROXY SIGNATURE SCHEME 

Let TTPS=(Setup, KeyGen, Sign, Verify, TDelegate, TProxyKeyGen, TProxySign, 

TProxyVerify, TProxyTrace)
 
be a traceable (t, n)

 
threshold proxy signature scheme. In 

TTPS, all algorithms are described as follows: 
 

TTPS.Setup: The algorithm run by the authority system inputs a security parameter 1k. 
Additionally, let G1 and G2 be groups of prime order q and g be a generator of G1, and let 
e: G1G1G2 denote the bilinear map. The size of the group is determined by the secu-
rity parameter. A hash function, H:{0, 1}*Z1kq can be defined and used to generate any 
integer value in Z1kq (where 1k represents the corresponding decimal number). And all 
messages will be represented as bit strings of length nm, then a collision-resistant hash 
function, H1:{0, 1}*{0, 1}nm can be defined and used to create messages of the desired 
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length. Then the system parameters are generated as follows. One group element  G1 
and a (n+1)-length vector =(gi) are randomly chosen, with giG1 and i{1, 2, …, n, 
n+1}. Additionally, the system chooses a random G1 and a random nm-length vector 
=(i), whose elements are randomly chosen from G1. Finally, the system outputs the 
public parameters, (G1, G2, e, g, , , , , t, n).  
 

TTPS.KeyGen: Private Key Generator (PKG) generates all users’ public/private key 
pairs. PKG randomly chooses skiZq 

as the private key of user i, and computes and out-
puts the corresponding public key, pki = gski with i{1, 2,…, n, n+1}, where i is the in-
dexed number of user. Then PKG respectively sends the private key to the corresponding 
user by a secure channel. 
 

TTPS.Sign: Let M be the bit string of length nm representing a message, and let {1, 
2, …, nm} be the set of index d such that M[d]=1, where M[d] is the d-th bit of M. The  
algorithm run by signer chooses a random vZq, and computes Q1=g1

sk

 
(

d M

d)v and  
Q2=gv, and then outputs a signature  =(Q1, Q2). 
 

TTPS.Verify: The algorithm run by verifier verifies the signature  =(Q1, Q2) by the  
equation, e(Q1, g)=e(g1, pk)e(

d M

d, Q2).. 
 

TTPS.TDelegate: We assume the user i is a delegator with i{1, 2, …, n, n+1}. The 
algorithm run by the user i inputs (pki, PK{1, 2, …, n, n+1}/i, ski, wi), where PK{1, 2, …, n, n+1}/i 

is 
a public key list including all users’ public keys except for that of the

 
user i, and wi is the 

warrant of the user i. Then the algorithm chooses a random riZq, and computes 
i=g

isk

n 
 

 {1, 2, ..., , 1}, , i i n n i ir H pk PK w

n



 and Ri=gri. Finally, the algorithm outputs a delegation 
i,j=(Ri, i, wi) for every proxy signer j with j{1, 2, …, n, n+1}/i, and sends i,j to the 
proxy signer j by a secure channel. 
 

TTPS.TProxyKeyGen: The algorithm run by every proxy signer j generates a distributed 
proxy signing key with j{1, 2, …, n, n+1}/i. In the algorithm, the following steps need 
to be finished:

 1. The algorithm run by every proxy signer j verifies the delegation, i,j=(Ri, i, wi)
 
by 

the equation e(i
n, g)=e(gi, pki)(, Ri)H(pki, PK(1, 2, …, n, n+1)/i, wi 

); if the above equation is not 
correct, then the proxy signer j may require the user i resends the delegation i,j.  

2. The algorithm run by every proxy signer j computes 
 

 

,

{1, 2, ..., , 1}, , 

i j

i i n n i ii

j j

r H pk PK wsk
sk sk n n
j i j iosk g g g 



    . 
 

3. The algorithm run by every proxy signer j randomly chooses one polynomial: 
 

2 1
, , ,1 , ,2 , , 1( ) ... t

i j i j i j i j tf x a x a x a x 

      , ai,j,dZq, d{1, …, t1}. 
 

Then the algorithm sets Fi,j(x)=oski,j 
fi, j(x), and computes Ai,j,d =e(, g)ai, j,d. Finally, the 

algorithm broadcasts Ai,j,d. 

http://www.iciba.com/key/
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4. The algorithm run by every proxy signer j computes si,j,p=Fi,j(p) for every proxy signer 
p with p{1,…, n, n+1}/i, and if jp, then the algorithm sends si,j,p to the correspond-
ing proxy signer p by a secure channel. 

5. After every proxy signer p receives si,j,p 
from other proxy signer j, the algorithm run 

by every proxy signer p verifies it by the equation e(si,j,p, g)=e(gj, pkj)e(i, g)
1

1

t

d






 
 

(Ai,j,d)pd; if the equation is correct, then the whole procedure continues, otherwise the 
proxy signer p may require that the corresponding proxy signer j resends si,j,p; then 
thealgorithm run by every proxy signer p respectively computes averifying data, Bi,j= 

1

1,

n

p p i



 

 (e(gl, pkl)e(i, g)
 

1

1

t

d





 
 
(Ai,l,d) j

d) for each distributed proxy signature computed by 
other proxy signer j. 

6. Finally, the algorithm run by every proxy signer j computes and outputs a distributed  
proxy signing key pski,j=

1

1,

n

p p i



 

 si,p,j according to si,j,p. 
 

TTPS.TProxySign: We assume t proxy signers of n proxy signers need to sign a message 
M on the signing delegation of the user i. Let M be the bit string of length nm representing a 
message, and let {1, 2, …, nm} be the set of index d such that M[d]=1, where M[d] is 
the d-th bit of M. Additionally, without loss of generality, we set the indexed numbers of t 
proxy signers are {1, 2, …, t}, then the following steps need to be finished: 
1. For every proxy signer j participating in signing with j{1, 2, …, t}, the algorithm run 

by the proxy signer j computes Qi,j,1=pksi,j(',, ,1 '
j

i j

r

i j d
d M

pskQ  


 
 
 
 

  d)rjand Qi,j,2=grj, and then outputs a  
distributed proxy signature pi,j=( Qi,j,1, Qi,j,2). 

2. One proxy signer p collects the distributed proxy signatures of t proxy signers includ-
ing p own distributed proxy signature with p{1, 2, …, t} and pj. Then the following 
two steps are finished. Firstly, the algorithm run by the proxy signer p verifies each 
distributed proxy signature pi,j

 
by the equation, Bi,j=e(Qi,j,2, g)e(Qi,j,2, 

d M

 d)1 for  
every proxy signer j; if the equation is correct, then the whole procedure continues, 
otherwise the result indicates the proxy signer j is not honest, the procedure may abort. 
Secondly, the algorithm run by the proxy signer p computes Qi,1=  ,1 , ,1

1

j

p

Lt
sk

pi i j
j

Q Q g




 (Qi,j,1)Ljgp
skp and 

Qi,2=  ,2 , ,2
1

jLt

i i j

j

Q Q


 (Qi,j,2)Lj, and sets Qi,3=gri, where Lj =
1,

j

d d j

t d
L

d j 






 
is the corresponding Lagrange 

interpolation coefficient, then the algorithm outputs a traceable threshold proxy signa-
ture (wi, pi=( Qi,1, Qi,2, Qi,3)) on M. Additionally, if the number of proxy signers par-
ticipating in signing are less than t, the procedure aborts.  

 

TTPS.TProxyVerify: A signature receiver verifies the traceable threshold proxy signa-
ture (wi, pi=( Qi,1, Qi,2, Qi,3)) on M. The algorithm inputs (M, pki, PK{1, 2, …, n, n+1}/i, wi, 
pi), and then computes the equation 
 

   {1, 2, .., , 1}

1 1 , ,
,1 ,2 , 3

1

, ( , ) , ' ( , ) ( , ) ,i in n i
n

H pk PK w

i p p i d j j i

d M j

e Q g e g pk e Q e g pk e Q   




 

 
     

 
 

 

 
where pkp 

is the public key of the proxy signer p collecting distributed proxy signatures. 
If the equation is correct, then the algorithm outputs the boolean value accept, otherwise 
the algorithm outputs the boolean value reject. 
 

http://www.iciba.com/key/
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TTPS.TProxyTrace: The trusted authority traces the t proxy signers participating in sig- 
ning by the traceable threshold proxy signature (wi, pi) on M. Then the following steps 
are finished: 
1. For the public key of the potential proxy signer p collecting the distributed proxy sig-

natures (p{1, 2, …, t}), the algorithm computes the following equation:  
 

 

 

{1, 2, ..., , 1}
1 , ,

,3
1

1

,1 ,2

( , ) ( , )
( , ) ,

, , '

i in n i
n

H pk PK w

j j i

j

p p

i i d

d M

e g pk e Q

e g pk

e Q g e Q



 













 

  
 





 

 
If the above equation is correct, then the algorithm outputs the public key of the proxy 
signer p collecting the distributed proxy signatures and runs into the next step, other-
wise the algorithm outputs ⊥. 

2. By the proxy signer p collecting the distributed proxy signatures of other t−1 proxy 
signers, the algorithm gets all distributed proxy signatures pi,j=( Qi,j,1, Qi,j,2) of t proxy 
signers ( j{1, 2, …, t}). And the following two steps are finished: 

(a) The algorithm computes Qi,1=  ,1 , ,1
1

'
jLt

i i j
j

Q Q


(Qi,j,1)Lj and Qi,2=
1

t

j

 (Qi,j,1)Lj, where Lj=
1,

j

d d j

t d
L

d j 




  is  
the corresponding lagrange interpolation coefficient, and then checks the two equations 
e(Qi,1, g)= e(Qi,1, g)e(gp, pkp) and Qi,2=Qi,2. If the above two equations are correct, 
then the algorithm continues, otherwise the results indicate the real proxy signer p is not 
honest, the procedure may abort and the algorithm outputs . 

(b) The algorithm verifies each distributed proxy signature pi,j by the equation, 
Bi,j=e(Qi,j,2, g)e(Qi,j,2, 

d M

 d)1 for every real proxy signer j, then the indexed 
numbers of other t−1 proxy signers participating in signing may be confirmed, where 
the algorithm gets Bi,j by the proxy signer p or, one or several of other n−1 proxy 
signers in this scheme. If the above equation is correct, then the algorithm outputs the 
corresponding public key of of the real proxy signer participating in signing; If the 
number of outputting the indexed number are less than t−1, the result still indicates the 
real proxy signer p is not honest, the algorithm outputs . 

5. ANALYSIS OF THE PROPOSED SCHEME 

5.1 Correctness 

 
Claim 5.1: In the algorithm TTPS.TProxyVerify, the signature receivers may verify a 
traceable threshold proxy signature (wi, pi=( Qi,1, Qi,2, Qi,3)) on M by the equation 

 

   {1, 2,..., , 1}

1 1 , ,
,1 ,2 ,3

1

, ( , ) , ' ( , ) ( , ) .i in n i
n

H pk PK w

i p p i d j j i

d M j

e Q g e g pk e Q e g pk e Q   




 

 
     

 
   

Proof: Firstly, in TTPS.TProxyKeyGen, If we set Y=
1

,
1,

n

i j

j j i

osk


 

 oski,j, then we may compute  

Y=  ,
1

j

i j

t
L

j

Y psk


(pski,j)Lj 
 

according to the Shamir’s sharing scheme [28] and the Xiong et al.’s 

threshold signature scheme [32], where pski,j=,

1

, ,
1,

i j

n

i p j

p p i

psk s

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d
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d j . Then we may  
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get the equation e((  ,
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Secondly, the following computation may be made in TTPS.TProxyVerify: 
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Thus, the claim follows. 

 

5.2 Efficiency 

 

In this paper, we compare the proposed scheme (the scheme of Section 4) with the 
threshold proxy signature scheme proposed by Huang et al. [11], the traceable certifi-
cateless threshold proxy signature scheme proposed by Yang et al. [34], the threshold 
proxy signature scheme proposed by Hu et al. [12] and the unidirectional threshold 
proxy re-signature scheme proposed by Hu et al. [38] by Table 1. From the description 
of Table 1, we may know that the signature length of our proposed scheme is shorter 
than those of three of the other four schemes, and although our proposed scheme in-
creases some computation costs, our proposed scheme is constructed in the standard 
model and has the full threshold proxy signature traceability. 

 
Table 1. Comparison of five schemes. 

 The length of signature Model Assumptions Traceability 
Scheme [11] 2  |Zq|+t  |ID|+|w| / DLP and OWHF partial 
Scheme [34] (2  t +4)  |G1|+|w| random oracle model CDH and CHF full 
Scheme [12] 2  |G1|+|Zq|+t  |ID|+|w| / DLP and OWHF partial 
Scheme [38] 3  |G1| standard model CDH and CHF no 
Our Scheme 3  |G1|+|w| standard model CDH and CHF full 

 
 
 
5.3 Unforgeability 

 
Theorem 5.1: The scheme of Section 4 is (j, , qe, qs)-secure, assuming that the (h,  )- 
CDH assumption holds in G1, where: 

Caption: |Zq| represents the length of element in Zq, |ID| represents the length of identity,|w| represents the 
length of warrant, |G1| represents the length of element in G1, DLP represents discrete logarithm problem, 
OWHF represents one way hash function, CHF represents cryptographic hash function. 
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and qe is the maximal number of proxy signing key queries, qs is the maximal number of 
signature queries, nm is the length of message represented as bit strings, |U| is the size of 
U which is the set of no corrupted users, Cmul

 
and Cexp

 
are respectively the time for a 

multiplication and an exponentiation in G1. 
 

Proof: Let TTPS be a traceable (t, n) threshold proxy signature scheme on n+1 users. 
Additionally, let  be an (h, , qe, qs)-adversary attacking TTPS. From the adversary , 
we construct an algorithm , for (g, ga, gb)G1, the algorithm  is able to use  to 
compute gab. Thus, we assume the algorithm  can solve the CDH with probability at 
least  and in time at most h, contradicting the (h,  )-CDH assumption. Based on the 
Boldyreva et al.’s work [1], such a simulation may be created in the following way: 
 

Setup: The algorithm  inputs a security parameter 1k. And the algorithm  sets lm=4qs, 
and randomly chooses kmZlm, with 0kmnm. We will assume that lm(nm+1) q and 
qe4(nm+1) qs for the given values of qe, qs, nm. Then the algorithm  chooses x Zlm 
and a vector X=(xi) of length nm, with xi Zlm for all i, and chooses yZq 

and a vector 
Y=(yi) of length nm, with yiZq 

for all i. And let {1, 2,…, nm} be the set of in-
dex  such that M[]=1, where M[] is the -th bit of M. To make the notation easier to 
follow, the following two functions are defined for a message M:F(M)=  
x+( ) ' m m

M

F x x l k


   M , J(M)=y+
M

y



 . Also, to make our description simpler, we assume 
that the indexed numbers of all no corrupted users are {1, 2, …, |U|}, and the indexed 
numbers of all corrupted users are {|U|+1, |U|+2, …, ||}, so we have that the no cor-
rupted user ui

*U with i{1, 2, …, |U|}, and the corrupted user diD with
 
i{|U|+1, 

|U|+2, …, ||}, where  is a set which includes n+1 users, the user ui with i{1, 
2, …, n, n+1}; D is a set which includes all corrupted users with D  ; U is a set which 
includes all no corrupted users with U  ; ||=n+1 and |||U|=|D|=t. Additionally, to 
make our proof easier to understand, we set u1

*U as a challenger in the security game. 
Then the algorithm  constructs the public parameters by making the following as-

signments. The algorithm  sets g1=gb and bZq( doesn’t know b), and randomly 
chooses iZq for all i with i{2, 3, …, |U|}, sets gi=g1

i for all i with i{2, 3, …, |U|}, 
and randomly chooses gjG1 with j{|U|+1, |U|+2, …, n+1}, and then generates a 
(n+1)-length vector =(gi) with

 
i{1, 2, …, n+1}. And then  chooses 0Zq and sets 

=g1
0g, and computes =g1

lmkm+xgy, =g1
xgy,  , with 1nm. Then all public pa-  

rameters (G1, G2, e, g, , ,, (), t, n) are outputted to the adversary , where'
M

  

=gF(M) gJ(M). And the algorithm  sets pk1=ga as the public key of u1
* with aZq ( 

doesn’t know a), and sets pki= gski

 
= gai

 
as the public key of no corrupted user ui

* for all i 
with i{2, 3,…, |U|}, and runs the algorithm KeyGen to generate all corrupted users’ 
public/private key pairs, (pkj=gskj, skjZq)  KeyGen(parameters), with j{|U|+1, 
|U|+2, …, n+1}. Lastly, all corrupted users’ public/private key pairs, the public keys of 
all no corrupted users are passed to the adversary . 
 

http://www.iciba.com/key/
http://www.iciba.com/key/
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Queries: When running the adversary , both proxy signing key queries and signature 
queries can occur. The algorithm  answers these in the following way: 
 ProxyKey Queries:  

(I) A no corrupted user u1
* is a delegator and is also simulated as n proxy signers, so the 

simulator simulating as u1
* needs to delegate his signing rights to n oneself and generate 

a proxy signing key (u1
* is also one proxy signer collecting distributed proxy signatures). 

Because the algorithm  does not know the private key of u1
*, the algorithm randomly  

chooses rZq, and computes psk =pk1 0

n


r, R=( pk1 0

n


gr)  1 {1}

1
, ,H pk PK w , where  gets the  

warrant w
 

by the query of , PK{1} is a public key list including n public 
keys of u1

*. Setting r=(r
0

n a )  0 1 {1}

1
'

, ,
n a

r r
H pk PK w


  
 
 
 

, psk =g1
na 

rH(pk1, PK{1}, w) and R=gr. So psk is 
a valid proxy signing key for threshold self-proxy signature of u1

*.
 
If 0H(pk1, PK{1}, 

w)=0 mod q, then the above computation cannot be performed and the simulator will 
abort; otherwise a valid proxy signing key psk and the information R are passed to the 
adversary . 
(II) A corrupted user di is a delegator with i{|U|+1, |U|+2, …, n+1}, so a corrupted 
user di needs to delegate his signing rights to other n true users and generate a proxy 
signing key(we assume another corrupted user dp is one proxy signer collecting dis-
tributed proxy signatures with pi and p{|U|+1, |U|+2,…, n+1}). The algorithm  
does not know the private keys

 
of all no corrupted user uj

* with j{1, 2,…, |U|}, but 
know the private keys

 
of all corrupted users and can get the warrant w

 
by the query of 

, so  randomly chooses rZq, and then computes  
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where PK{1, 2,…, n, n+1}/i is a public key list including n proxy signers’ public keys.  
Similarly, setting r'=(ra(

0

1 +  
2

| |

2 0

U
j

j
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, ,
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

, we can get that psk=  
1

1,

n

j j p


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 (gj
skj) 

rH(pk1, PK{1, 2, …, n, n+1}/i, w) and R=gr'. So psk is a valid proxy signing key for  
threshold proxy signature of di, where we assume dp is one proxy signer collecting 
distributed proxy signatures. If 0H(pki, PK{1, 2,…, n, n+1}, w)=0 mod q, then the above 
computation cannot be performed and the simulator will abort; otherwise a valid 
proxy signing key psk and the information R are passed to the adversary . 
(III) A no corrupted user u1

* is a delegator, so the simulator simulating as u1 needs to 
delegate his signing rights to other n true users and generate a proxy signing key(we 
assume one corrupted user dp is one proxy signer collecting distributed proxy signa-
tures with p{|U|+1, |U|+2, …, n+1}). The algorithm  does not know the private 
keys

 
of all no corrupted user, but know the private keys

 
of all corrupted users and can 

get the warrant w
 
by the query of , so  randomly chooses rZq, and then computes  
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where PK{2, …, n, n+1} is a public key list including n proxy signers’ public keys. Simi-
larly, psk is a valid proxy signing key for threshold proxy signature of u1

*, where we 
assume dp is one proxy signer collecting distributed proxy signatures. If 0H(pk1, 
PK{2,……, n, n+1}, w)=0 mod q, then the above computation cannot be performed and the 
simulator will abort; otherwise a valid proxy signing key psk and the information R are 
passed to the adversary . 

 Signature Queries: 

(I) Consider a query for a threshold self-proxy signature of u1
* on M and

 
w. If F(M) 0 

mod q, then the simulation continues and u1
* is simulated as n proxy signers. The al-

gorithm  randomly chooses r, vZq, and computes and outputs a threshold self-proxy 
signature (w, p(Q1, Q2, Q3)) of u1

* (u1
* is also one proxy signer collecting distributed 

proxy signatures), where: 
 

 1 {1}
( )

, ,( )
1 1 '

vn J
r H pk PK wF

M

Q pk 


  


 



 
  
 

   
M

M , ( )
2 1

n

F vQ pk g


 M  and Q3=gr. 

 
If we set 

( )
n a

v
F




 
M

, then 

 

p(Q1, Q2, Q3)
 1 {1}, ,

1 ' ,  ,  r H pk PK wn a r

M

g g g









  





  
    
   

 . 

 
And (w, p(Q1, Q2, Q3)) is passed to the adversary . The adversary  can verify it. 
To the adversary , all threshold self-proxy signatures computed by the algorithm  
will be indistinguishable from the signatures generated by a true challenger (or the us-
er u1

*). As [22], F(M)0 mod lm, will ensure that a threshold self-proxy signature can 
be constructed. 
(II) Consider a query for a threshold proxy signature of di on M and

 
w, with i{|U|+1, 

|U|+2, …, n+1}. If F(M)0 mod q, then the simulation continues. Thus, the algorithm  
randomly chooses r, vZq, and then computes and outputs a threshold proxy signature (w, 
p(Q1, Q2, Q3)) of di (we assume that one corrupted user dp is one proxy signer collecting 
distributed proxy signatures with pi and p{|U|+1, |U|+2, …, n+1}), where  
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and Q3=gr. 
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, then (w, p=(Q1, Q2, Q3)) is a valid threshold 

proxy signature. To the adversary , all threshold proxy signatures computed by 
the algorithm  will be indistinguishable from the signatures generated by the 
true proxy signers. Similarly, F(M) 0 mod lm, will ensure that a threshold proxy 
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signature can be constructed. 
(III) Consider a query for a threshold proxy signature of u1

*

 on M and
 
w. If F(M)0 

mod q, then the simulation continues. Thus, the algorithm  randomly chooses r, 
vZq, and then computes and outputs a threshold proxy signature(w, p=(Q1, Q2, 
Q3))of u1

*(we assume that one corrupted user dp is one proxy signer collecting distrib-
uted proxy signatures with p{|U|+1, |U|+2, …, n+1}), where: 
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Similarly, (w, p=(Q1, Q2, Q3)) 

can be verified by the adversary . To the adversary 

, all threshold proxy signatures computed by the algorithm  will be indistinguisha-
ble from the signatures generated by the true proxy signers. Similarly, F(M)0 mod lm, 
will ensure that a threshold proxy signature can be constructed.

  

Forgery: If the algorithm  does not abort as a consequence of one of the queries above, 
the adversary  will, with probability at least , return a forgery according to the fol-
lowing situation. 

(I) The adversary  returns a no corrupted user u1
*, a message M*, and a valid thresh-

old self-proxy signature forgery, (w*, p*=(Q1
*, Q2

*, Q3
*))

 
with 
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If 0H(pk1, PK{1},w*)0 mod q or F(M*)0 mod q, then the algorithm  will 

abort. If 0H(pk1, PK{1},w*)0 mod q and F(M*)=0 mod q, then the algorithm  
computes and outputs 
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which is the solution to the given CDH problem. 
(II) The adversary  returns a corrupted user di with i{|U|+1, |U|+2……n+1}, a mes-
sage M*, and a valid threshold proxy signature forgery,
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where we assume that one corrupted user dp is one proxy signer collecting distributed 
proxy signatures with pi and p{|U|+1, |U|+2,……, n+1}. Similarly, we can know 

p*is the solution to the given CDH problem.  
(III) The adversary  returns a no corrupted user u1

*, a message M*, and a valid 
threshold proxy signature forgery, (w*, p*=(Q1

*, Q2
*, Q3

*))
 
with 
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where we assume that one corrupted user dp is one proxy signer collecting distributed 
proxy signatures with p{|U|+1, |U|+2, …, n+1}. Similarly, we can know p* is the 
solution to the given CDH problem. 

Now, we analyze the probability of the algorithm  not aborting. To make the 
analysis simpler, we will define the events Ei, E*, j, 

* as Ei: 0H(*, *, wi)0 mod q, 
with i=1, 2, …, qe, where qe is the number of proxy signing key queries; E*: 0H(*, *, 
wi)0 mod q; j: F(Mj)0 mod lm, with j=1, 2, …, qs, where qs is the number of signa-
ture queries; *: F(M*)=0 mod q. 

So the probability of  not aborting is 
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. The time complexity of the algoithm 

 is h=h+O(qe(6Cmul+9Cmul+)+qs[(4nm+4U+9)Cmul+(4U+18 Cexp)]). 
 
5.4 Traceability 
 

Theorem 5.2: The scheme of Section 4 has the threshold proxy signature traceability so 
as to trace t proxy signers participating in signing when it is unforgeable (Theorem 5.1 
holds). 
 
Proof: The scheme of Section 4 has been proved to have the threshold proxy signature 
unforgeability in Section 5.3. So, in the algorithm TTPS.TProxyTrace, the trusted au-
thority may certainly uncover out the proxy signer p collecting distributed proxy signa-
tures from the equation, 
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Therefore, the proxy signer p cannot deny to have participated in signing. Additionally, 
the proxy signer p can verify each distributed proxy signature pi,j by the equation,  
Bi,j=e(Qi,j,1, g)e(Qi,j,2, 

d M

 d)1 respectively for other t−1 proxy signers participated in  
signing. Thus, other t−1 proxy signers participated in signing cannot deny to have par-
ticipated in signing. 

6. CONCLUSIONS 

In this paper, we propose a traceable (t, n) threshold proxy signature scheme in the 
standard model, which is based on the Waters’ signature scheme and the Xiong et al.’s 
threshold signature scheme. In our proposed scheme, there is not a trusted third party of 
computing signature, then computing a threshold proxy signature is more flexible. Also, 
we show the complete analysis for security of the proposed scheme. Compared with oth-
er types of proxy signature schemes, constructing a secure and efficient traceable (t, n) 
threshold proxy signature scheme is very challenging [1, 9, 11-13, 17]. Thus, the work 
about threshold proxy signature still needs to be further progressed. 
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