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In this paper we illustrate a mechanism to address a very important aspect in the 

Cloud hosting strategy – resource management. We want to show how database hosting 
can benefit from this technology better, together with analysis on some of the causes and 
concerns of hosting databases in the Cloud. A graphical presentation is illustrated, where 
input is obtained from database workloads to gauge the adequacy of the resource, and 
plan for future. The essence of the proposal is based on linear regression correlation be-
tween workloads’ execution time and corresponding server load. This paper strives to 
address the requirement prior to resource contention, so that underlying hardware plan-
ning in the Private Cloud can be carried out in orderly fashion and with adequate time-
line. Subsequently Fuzzy Logic concept is utilized to represent the variables’ relation-
ship in the proposal, to ease the deterministic calculation in the algorithm during devel-
opment phase. A supervisory mechanism to ensure validity of SQL response time used 
as input to the algorithm is proposed, so to ensure solidarity on the input parameters. The 
objective is to ensure credible transactions can run freely without hardware resource 
constraint throughout the tenure of the application offering, in association with the Cloud 
computing technology. 
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1. INTRODUCTION 
 

Traditional data hosting technology is fast being replaced by Cloud Computing. The 
potential of Cloud Computing is tremendous in view of demand from today’s IT infra-
structure. Voted as Top 11 technologies of the decade [1] by IEEE Spectrum, Cloud 
Computing is enabling the agility required to accelerate the time to market of new prod-
ucts and services while reducing the cost to design, build, deploy and support these 
products and services, and is considered as generally best practice for Enterprise Archi-
tecture [2]. It is changing the way IT services are perceived, delivered and consumed.  

There are various perceptions in defining Cloud Computing. Zhang et al. [3] defines 
Cloud Computing as evolution of grid computing, and it comprises of thin clients, Grid 
Computing and Utility Computing. Buyya et al. [4] differentiate between Cloud Com-
puting and Grid Computing at the virtualization level, where Cloud is defined as next- 
generation data centers with nodes “virtualized” through hypervisor technologies, dy-
namically “provisioned” on demand as a personalized resource collection. The virtual-
ization provides the ease and flexible capability on resource allocation, which is the key 
motivation for this paper. Foster et al. [5] compares Cloud and Grid in length; and from 
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dynamic resource provisioning perspective, Cloud is deemed more flexible than Grid, as 
Cloud is leveraging virtualization technologies more extensively. Zhang et al. [6] define 
Cloud Computing in a more end-user-friendly way, by quoting: Cloud computing is a 
model for enabling convenient, on-demand network access to a shared pool of configur-
able computing resources that can be rapidly provisioned and released with minimal 
management effort or service provider interaction. It is this ease of effort in application 
hosting that makes Cloud a popular and fascinating choice. The financial service firm 
Merrill Lynch estimates that within the next five years, the annual global market for 
Cloud Computing will surge to $95 billion. In a May 2008 report, Merrill Lynch esti-
mated that 12% of the worldwide software market would go to the Cloud in that period 
[7]. Public Cloud vendors are building extremely large-scale, commodity-computer Data 
Centers in low cost locations, and they uncovered factors of 5 to 7 decrease in cost of 
electricity, network bandwidth, operations, software, and hardware available at these 
very large economies of scale [8].  

This resource management proposal on database server is planned and designed, 
taking into perspective the current Cloud vendors’ services offering. At the time when 
we wrote this, Microsoft has released SQL Azure [9] which takes advantages and bene-
fits of Public Cloud. IBM SmartCloud Application Services at the PaaS level [10] is one 
example that enables on-premise Cloud hosting. In our discussion, we focus on on- 
premise solution, due to data integrity and security reasons. It is not the problem with the 
technology itself, as human always found ways to address shortcomings or challenges 
technically. We think that the current perception and skepticism of Enterprises on secu-
rity and reliability will delay the Public Cloud adaptation. In this case, Private Cloud is 
the easier solution. As described by Harms and Yamartino [11], the Horseless Carriage 
Syndrome when automobiles were introduced in early 20th century perhaps will slow 
down the embracement of SQL Azure; however the economics of the Cloud might 
overwhelm the constraining factors in time to come. Amazon is taking a step forward by 
introducing AWS GovCloud (US), which is hosted in Amazon Web Services [12]. Its 
compliance with US International Traffic in Arms Regulations (ITAR) and Federal In-
formation Processing Standard (FIPS) Publication 140-2 is hoped to prove to the world 
its robustness of data hosting in Public Cloud. Google claims its strength in data security 
via ten components of Google’s multi-layered security strategy incorporated in Google 
Apps [13]. Oracle through its Exalogic Elastic Cloud product provides similar offering 
for Public and Private Cloud, plus Hybrid Cloud that is capable of Cloud bursting [14].  

Public Cloud Computing has been widely accepted and deployed for web-based ap-
plication. However its adoption for mission critical database operations is still at early 
stage. While we anticipate that Public Cloud will mature and flourish, we want to write 
this paper to detail on the resource administration mainly targeting databases hosted in 
on-premise Private Cloud as we expect that database hosting on Private Cloud is going to 
thrive for quite a while. Another important challenge that needs to be noted when hosting 
database system in Public Cloud is the data locality issue. Database operations are 
mostly IO intensive. As described by Foster et al. [5], when the resource needs to be 
scaled, distance of the data relative to the available computational resources also in-
creases. This posts a bottleneck in term of IO as moving data in WAN for data process-
ing is much slower compared to local disk storage. More efficient data-aware schedulers 
[15] are needed than what is available today.  
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Nevertheless, our presented mechanism is applicable for resource planning in Public 
or Hybrid Cloud from resource management perspective. We agree with Harms and 
Yamartino [11] that the full advantage of Cloud Computing can only be properly un- 
locked through proper intelligent resource management, which is the essence of what we 
propose in this paper. Dutreilh et al. [16] analyses and presents the challenges of the 
automated resource management policies in the Cloud. We think that the automated re-
source allocation approach is suitable for scaling of resource at the application layer. We 
take motivation from here, and suggest another way to suit the database hosting envi-
ronment. Due to problem with current RDBMS licensing model and the unpredictable 
nature of SQL queries, we think that over-dynamic resource allocation paradigm will 
take a while before it is widely adopted for database hosting in Cloud.  

In the model we proposed, unless the allocated resource is provisioned specifically 
for a short timeframe of surged transactions, the resource has the tendency to accumulate 
and stay in the VM, via static on-demand request. At this moment, it is not easy to map 
QoS requirements to low-level resource requirement such as CPU and memory require-
ments [6]. This is especially true in database hosting that has many variables in its opera-
tions. Hence dynamic resource allocation model is not presented. Nevertheless, since the 
hosting utilizes virtualization paradigm in Cloud, online dynamic resource provisioning 
is possible with today’s Cloud technology. 

Hosting databases in this technology also makes Load Testing easier, as the same 
set of hardware can be provisioned in Public Cloud or Virtual Private Cloud. This can be 
accomplished as virtualization allows entire VM state to be transmitted across the net-
work from 1 data center to another. Hence there is no outage requirement to conduct 
Load Testing in exiting host and still making the Load test result relevant to the actual 
hosting environment. Our proposed model is designed to work during steady-state on- 
going production operations, taking advantage of the ease of resource provisioning of-
fered by virtualization in the infrastructure layer [6]. The novelty of this proposal takes 2 
keys parameters: The total elapsed time taken for the database operations and the server 
load at the corresponding instance. The linear correlation between these 2 parameters 
serves the fundamental of this proposal. By leveraging the running time history, the pro-
posed scheme obtains the trend of history and is possible to predict how much resource is 
needed in the future. The focal point when resource will hit breakpoint serves the main 
objective of this paper. Subsequently we present a mechanism to examine resource re-
quirement by the SQL transactions to ensure only tuned workloads are running in the 
host. 

We presented our research motivations, challenges and objectives in section 2. Sub-
sequently we examine the related researches in section 3. Section 4 details the algorithm 
of our proposal. Subsequently section 5 shows how the proposal works by experiments. 
Section 6 discussed the equilibrium needed for obtaining accurate data versus system over- 
head. Then a guardian to ensure legitimacy of the input data is discussed in section 7. 

2. RESEARCH MOTIVATIONS, CHALLENGES AND OBJECTIVES 

In large and complex Enterprises, the cost of running businesses spans across multi-
ple domains. For each domain to forecast the exact and precise cost model needed for the 
business operations is crucial for the companies to accurately predict its ROI. To remain 
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competitive in today’s rapidly changing global economy, an organization needs to ensure 
its operational cost is spent only adequately for the business. From IT Organization’s 
perspective, this translates to the requirement for an efficient architectural design of ap-
plication services, where all detailed requirements are known in advance for monetary 
planning. As application’s data manipulation is provided by running SQL from the back- 
end databases, activities at this database layer are focused in this paper. To operate the 
database in oversized hardware to cushion the fear of impact from lack of required proc-
essing power will not be cost effective as it incurs unnecessary wastage, and to go down 
too little will be too less for the database operations. During the onset capacity planning 
stage, the actual requirement of computational power and storage, whether it’s designed 
during the startup or meant for subsequent growth of the database operations, will not be 
entirely known. Also, subsequent scalability and performance must continue to meet the 
demand of the business. As the profit of the business very much depend on the precision- 
match of the planned cost of operations and the intended performance, a solution needs 
to arrive quickly. For databases that support fast growing services, the surge on demand 
for processing power is inevitable, and to secure adequate resources in time is a chal-
lenge. This is especially true in large and diverse IT organization. The mechanism in this 
paper gives the business adequate time to plan for Capital Expenditure on the needed 
hardware for database hosting. From IT management perspective, capital expenditure can 
happen only during certain time in the fiscal year, hence future requirement of resource 
need to be predicted accurately approximately 6 months in advance. To build an 
on-premise Private Cloud infrastructure for database hosting will required quite substan-
tial amount of investment, hence the monetary planning on hardware is required. For 
instance, the list price for Oracle Exadata Database Machine Quarter Rack is USD 330K 
[17]. To upgrade from Quarter Rack to Half Rack will required the same amount of in-
vestment. With the mechanism proposed here, business can plan in advance the budget 
allocation and ROI in precise nature. 

The model is intended to work during steady state of the database operation. It de-
termines the amount of computational power to support the evolution of an application, 
so that profit of providing a product or service for current and future can be harvested 
optimally. To fulfill this objective, the condition of the involved SQL is scrutinized. Dur-
ing the tenure of the product or service offering, some SQL in the database are likely not 
created or tuned optimally. In situation where the data structure changes, the SQL per-
formance might decline. These SQL are analyzed to ensure no wastage of resource, be-
fore the VM resource is expanded as per the model’s suggestion. In other words, the 
workload needs to be kept in optimum condition.  

We take initiative from workload management proposal by Mateen et al. [18]. We 
agree that characterizing the dynamic workload in a complex application is a challenge 
that needs to be addressed via autonomous strategies. Workload characterization involves 
accurate planning during the initial configuration stage, as well as future prediction of the 
evolved workload. The fast adoption of tools for Autonomic Computing is hence should 
be of utmost priority for reliable budgetary planning of its IT infrastructure. The autonomic 
workload management proposed by the authors needs to have self-optimization, self-con- 
figuration, self-inspection, self-prediction, self-organization and self-adoption features. 
We build this model with these criteria for Autonomic Computing sets in perspective.  

Our focus is on single-tenant, multiple database instances on-premise Private Cloud 
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solution. However the proposed resource planning mechanism also works for multi-ten- 
ants Cloud offering. The key parameters in this proposal are based on total SQL Elapsed 
time and the VM’s loads. In this case, SQL Elapsed time in the databases serving multi- 
tenants can be pooled to provide the required input to the system. 

With the current and future resource state known in prior, the development team can 
be made sensitive to the amount of resource utilized by their application, thus measuring 
the success and profitability of their products or services offering by assessing the re-
source utilization against the generated revenue. Cloud Computing incorporates Utility 
Computing in larger view, and this metering mechanism is Utility Computing in micro 
perspective. This gives the enterprises an option to know what, why and how they spend. 

The workload fed into the model is allowed to vary in size and timeframe. Assume 
all n databases in the VM are already running in steady state condition. The n numbers of 
databases are running 7 days/week, 24 hours/month. One week of continuous data cap-
ture for active database is believed to be long enough to capture all SQL running for the 
application, yet short enough that performance data from the beginning of the timeframe 
is still relevant. However there are applications that active only during certain time of the 
year, for instance the Employee Performance Management software that is active only 
2-3 times a year, or the Annual Enrolment utility for employees living in United States. 
This model can be adjusted to run the data capturing mechanism selectively, only to take 
into consideration the top SQL run during these peak timeframes.  

Amid the consequence of incurred overhead, the data collection’s frequency, dura-
tion and time windows can be adjusted. It is imperative for some background processes 
to run in the host, for instance backup operations and audit tracing. Data collection can 
avoid these maintenance timeframes to preserve the accuracy of the model. 

Another assumption and important criteria to this model is that the entire application 
and its architecture are assumed to be optimally structured, and codes are properly writ-
ten and compiled during the infancy stage of the product. This preferred strategy is de-
tailed by Del Rosso [19], where it is employed by Nokia Research Center to develop and 
tune its software product family. It is to consider the performance starting from the re-
quirement gathering phase of the application development life cycle, and let the model to 
work on gradual dynamic change in the system. The typical architectural configuration 
for a new database is to allocate the VM with a set of resource, and arrive at the initial 
hardware set via load testing, i.e. utilizing HP LoadRunner software [20] to characterize 
the desired workload. The test is simulated on a set of transactions and the expected 
concurrent loads. During steady state operation mode, sporadic addition of new transac-
tions often does not warrant another load testing setup. However these can accumula-
tively consume all the allocated resource until the capacity breakpoint is exceeded, espe-
cially when the load is added gradually over time, in contrast to significant surge in 
amount of transactions which is noticeable. If the transaction volume is expected to in-
crease in tandem with the predicted future business grow, it is imperative to estimate 
accurately how much more resource to be provisioned to the initial instance.  

3. RELATED WORKS 

In the context of resource management and allocation, we highlight some of the sig-
nificant contributions by researchers.  
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Comellas et al. [21] shows how Cloud elasticity advantage can be harnessed by 
typical web hosting application, by presenting Cloud Hosting Provider (CHP). This elas-
tic web hosting provider can properly react to the dynamic load received by web applica-
tions and achieve revenue maximization of the provider by performing an SLA-aware 
resource management. CHP Considers not only the response time of the web transactions, 
but also price, penalty & cost associated with the web offering. The proposed architec-
ture focuses on web applications, not scrutinizing on database SQL as discussed in this 
paper. However it portrays the ultimate goal of what we want to achieve for database 
transactions. 

Iqbal et al. [22] utilizes Eucalyptus-based test bed cloud to offer multi-tier Web ap-
plication owners maximum response time guarantees while minimizing resource utiliza-
tion. The approach taken is similar to what we proposed, where the initial set of resource 
is identified, and subsequent resource is dynamically altered to satisfy the dynamic work-
load needs. This paper takes the focal point where each tier (web, application and data-
base) hits the resource bottleneck before reacting to have resource provisioned in order to 
meet SLA requirement on response time. 

Curino et al. [23] introduces Relational Cloud  a transactional ‘database-as-a-ser- 
vice’ Cloud infrastructure, which has the objective to improve on existing approaches, in 
term of hosting for multi-tenancy database, scaling out for complex workloads and en-
hancing security of database hosting in Public Cloud. The component of particular rele-
vant to our topic is the workload-aware approach, where the workloads are partitioned 
and replicated at a much fine-grained level than existing techniques. The proposed model 
is named Schism [24] using graph representation to depict the database and workload. 
The graph-partitioned-based algorithm divides a task into several sub-tasks, assigned to 
different machines to achieve near-linear elastic scale-out. This approach minimizes the 
required number of machines while meeting the query performance requirement.  

In regulating the supply and demand of computing resources at market equilibrium, 
Buyya et al. [4] proposes architecture for market-oriented allocation of resources within 
Clouds, and presented a vision for the creation of global Cloud exchange for trading ser-
vices. The latter is similar to transactions in stocks or commodities exchanges, where the 
supply and demand determines the providers’ and buyers’ prices. The objectives to meet 
during the negotiation strategy between the providers and users are to secure appropriate 
level of QoS to establish SLAs, and then utilizing appropriate mechanisms and algo-
rithms for allocation of VM resources to meet SLAs. Then there is also discussion on 
risks management associated with violation of the agreed SLAs. An et al. [25] employ 
the same approach, and introduce agent-based automatic negotiation model, where the 
agents make contracts for resource leases from the Cloud Infrastructure, and at the same 
time calculate a decommitment monetary penalty to break out from the committed con-
tact. Negotiation strategies of multiple buyers and providers to buy and sell Cloud re-
sources are presented, taking initiative from real world stocks exchanges. 

Das et al. [26] provide an insight of how scalability can be achieved in multitenant 
database from another perspective. This paper addresses elasticity, the ability to vary 
load by controlling the amount of resources, through the database migration technique. 
The authors conducted experiment in ElasTraS, a database system designed for support-
ing multitenant cloud applications. Data for a tenant is migrated out from the multitenant 
database without incurring significant downtime, hence moving data out from existing 
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VM to remote VM for resource re-organization purpose. The live migration approach is 
similar to the scalability product offered by EMC Symmetrix VMAX Enhanced Virtual 
LUN Technology on Oracle database [27]. This technique provides a different view 
compared to what we have suggested here, where the database is moved out all together 
to another more properly scaled VM.  

Ganapathi et al. [28] uses KCCA algorithm [29] in a statistical model to predict the 
response time of queries, then utilizes the result to predict the resource requirements for 
Cloud computing applications. The authors experimented their approach on MapReduce 
jobs, which are jobs modeled by Google [30], parallelized and distributed across many 
machines to achieve reasonable response time. The proposed model estimates the execu-
tion time of these jobs with claimed high prediction accuracy. It uses correlation between 
the real and estimated execution time to evaluate the effectiveness of their method. 
Workload prediction is not discussed in our approach, but it is an interesting topic worth 
exploring in our subsequent works.     

4. THE ALGORITHM 

In this section, firstly we describe how the hardware resource usage is tracked and 
monitored, and determine the trigger point when the threshold is breached. Secondly, the 
accuracy of mechanism is guarded by a policy to ensure only valid and tuned SQL are 
allowed to be included for the calculation of the resource threshold values.   
 
4.1 Resource Usage Tracking 
 

We define 1 minute as interval to aggregate the total SQL Elapsed time from all da-
tabases in the host. 1 minute is deemed appropriate timeframe as the Server Load is only 
accurate with the snapshot duration is small.  

The captured data is stored in an array, A, which is a multi-dimensional in nature. 
Depending how long the data capture and aggregation will run, there will be p snapshots 
in the A array, and A is A = [t1, t2, …, ti, tp]. Each array element in A is an array, ti corre-
sponds to the 1-minute snapshot. It is represented by ti = [Ci, Si, Si], where    

 
Ci = the Server Load in the VM averaged in 1-minute interval 
Si = total Elapsed Time of all SQL in the 1-minute interval  

 
corresponds to Ci. This variable denotes time needed to run all iterations for all SQL in 
the interval. It considers all variables affecting the SQL’s runtime, i.e. time required by 
database engine, server condition, network latency, disk IO etc. The elapsed time data can 
be sourced from stored database repository, i.e. Automatic Workload Repository [31] 
from Oracle RDBMS.  

Si = total DB time of all SQL in the 1-minute interval corresponds to Ci. This vari-
able represents the duration needed by the database to process all SQL including all their 
iterations in the same snapshots interval used to define Si. DB time denotes the time 
needed only by the database engine to process the queries. These values are expected to 
be obtained from standard database repository too.     

Let’s take 1 snapshot, t1 = [C1, S1, S1]. These 3 values are adequate to depict the re-
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source planning mechanism which is shown in section 5. When all the values from t1 to tp 
are obtained, the graphical representation of S and S versus C can be depicted by linear 
plots, as presented in section 5 too.    

 

  
Fig. 1. Position of new parameters – 70th & 

80th Percentile Response Time.   
Fig. 2. Parameters obtained from Initial Load 

Testing.  

 

It is appropriate to explain now, the method to obtain the value of CT, the threshold 
value where resource in the host is deemed hitting the maximum utilization. This value is 
illustrated in Fig. 1. To arrive at CT, we are taking the minimum Server Load value for 
each set of transaction to abide with the Service Level Agreement, incorporating a safety 
factor. For particular set of transaction, the 90th percentile response time [32] is typically 
recorded in SLA. Hence this is the limit which needs to be complied. During load testing, 
the ramping up of the load can be used to determine the corresponding Server Load, CT-i 
when the 90th percentile response time for particular set of transaction is reached. The 
same is done for all transaction sets, and these values are passed into an array, C = 
[CT-1, CT-2, …, CT-i, …, CT-r]. With this, CT = min(array C).We define a new pa-
rameter, the 80th percentile response time as depicted in Fig. 1, and corresponding Server 
Load, CT-i for each transaction set. So C = [CT-1, CT-2, CT-i, …, CT-r], and CT = min(array 
C). We choose CT as the Server Load threshold, so that there is still time to react for 
hardware planning and provisioning. Then we define 70th percentile response time in 
similar fashion, and obtained CT = min(array C). We define that when 5% of tran- 
sactions accumulate between CT & CT, resource provisioning mechanism is triggered, 
and another block of hardware needs to be added to the VM. This is shown in Fig. 2. This 
5% zone is adjustable, as explained in a bit. Any tuned transactions that go beyond CT is 
almost not in compliance with the SLA and emergency action is needed to investigate the 
state of the host, and if there is no abnormality found, the hosting hardware needs to be 
enlarged immediately.  

As experimented by Ferrari and Zhou [33] and Gunther [34], the correlation be-
tween Server Load and server processing time is linear in nature, provided that the server 
is not running into resource constraint. Hence to arrive at the 2 lines mathematically, we 
employed the Linear Regression methodology [35]. Take Elapsed Time as example, for 
each data point, it is defined as Si = xCi + b + i. However in our case, value b is as-
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sumed 0 as observed from the actual host itself that even with multiple background dae-
mons running, the server load is close to 0 and these variables is negligible. We can 
safely assume this value as in our case, as the server resources are abundant. However if 
the hardware resource in the server or VM is restricted, for instance if there is only a sin-
gle CPU and 1 GB of physical memory, value of b could be 1 or 2 as a result of the sys-
tem overhead, and it needs to be acknowledged in the formula. In this case CT is sensi-
tive to the constantly-running overhead processes in the server or VM. Nevertheless, this 
will only complicate the formulation in the algorithm, without achieving significant de-
sired result. The explained model will work properly in the environment with larger re-
source, to curtail the system overhead; however if the overhead is large and unavoidable, 
a workload pre-check mechanism can be incorporated, to ensure a robust workload con-
trol plan is in place. The objective of mechanism is to avoid and disregard timeframe 
when the system is running non-database related overheads before inputting the work-
load data into the model. In defining the legitimate workloads for input to the model, we 
assume IT organization has a well-designed maintenance window to cater for unavoid-
able system overhead, especially the backup operations, where business transactions 
during this timeframe are kept to minimum.    

To explain our case, Si = xCi + i. The linearly fitted value, 

Si is the value fitted ex-

actly on the regression line, and is denoted as 

Si = xCi. Hence, the residuals, i = Si – 


Si, 

are the differences between the actual and fitted values of Elapsed Time. This variable is 
not elaborated for our discussion in this paper, but will serve as a critical component for 
our subsequent work in developing an adaptive system to reduce the noises in the system. 
We need only to calculate the value of x to fulfill our requirement here. Using Least 
Squares Derivation method, with N number of data points, the value of x is obtained as 
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With this, the regression line is plotted using 

S = xC, and similarly for DB time, 


S 

= yC. To measure the representability of the regression lines to the data points, we use 
the correlation coefficient (r), defined as 
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r is confined to value between 0 and 1 in our case. 1 denotes that there is a perfect 
linear correlation between C and 


S, while 0 shows no correlation. Intermediate values 

show partial correlations. We will use value of r in section 5 to gauge the accuracy of our 
experiment. 

We also define another parameter ∆S = (

S  


S)/S *100. ∆S corresponds to CT. This 

delta of 

S & 


S can be used to gauge if the host condition is still viable for optimal data-

base transactions. During steady state database operations, if 

S = xC becomes steeper, ∆S 
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is then reached for Server Load < CT. The reason could due to the fact that the physical 
reads or logical reads in the database are not efficient. This directly points to either the 
IO subsystem is not functioning optimally or the database cache is not sufficient. The 
noises from the operating system can also contribute to this, for instance new auditing 
daemon is running on the host, additional host monitoring utility is running etc. The 
noises ideally are undesired, for a mission critical application running stead-state opera-
tions. However in real live environment, system overhead is inevitable. For instance, the 
VM and database backups will cause significant overhead and these cannot be ignored. In 
this case a maintenance window is defined, and the workload input will avoid this time-
frame when feeding into the algorithm, to preserve the model accuracy. 

The new ∆S needs to be shrunk by taking appropriate measures, i.e. fixing the host 
environment or increase database cache. If all has been done but value of x is still steeper 
than before, a new CT will need to be defined. In this case CT is the Server Load value 
corresponds to ∆S. It is to note that CT & CT stay as constant, hence the CT & CT gap is 
enlarged. When this happens, the probability of transactions to fall into the 5% zone 
increases. The 5% zone is a hypothesis figure, and it should be adjusted appropriately 
based on particular application’s SLA. 

When block of new hardware is added to existing VM, Load Testing is conducted 
again to find out values of x, y, CT, CT & CT, and subsequently ∆S. With these values, 
this resource tracking model is reconfigured to watch for subsequent need of hardware 
provisioning. In this case, as the base VM is already running stead-state production, the 
scrambled data can be pushed to Public Cloud with the same hardware configuration so 
that Load Testing can be conducted without jeopardizing the SLA requirement of exist-
ing databases. The advantage of hosting the databases in the VM in this case, is that the 
same configuration of hardware can be provisioned easily in the Public Cloud, hence 
making the Load Testing relevant. 
 
4.2 SQL Tracking 
 

During the tenure of the database life cycle, it is imperative to keep the DB time of 
all transactions as close as possible to the initial Load Testing. In other words, the line 


S 

= yC as in Fig. 2 should not change ideally. To do this we need to ensure that the SQL 
are running as optimally as possible during the initial load test. To explain this SQL veri-
fication mechanism, define another array, B, which has 30-minute interval in each of its 
element. Depending on how long the data capture operation is going to run to properly 
represent all potential SQL in the databases, there is q samples in B, B = [u1, u2, …, ui, …, 
uq]. Then there are n numbers of databases running in the host, DB = [db1, db2, …, dbj, …, 
dbn]. Take 1 30-minute snapshot, u1 to represent activity in other snapshots, and define s1 
= collection of SQL elapsed time of top m number of SQL in all n databases, running in 
u1. The top m SQL is ranked in descending order by total elapsed time. s1 is a collection 
of SQL ID. 

Hence, s1 is s1 = [ss1, ss2, ss3, …, ssk, …, ssm], where ssk = SQL elapsed time on a 
SQL k that runs in database dbj with y iterations in the 30-minute interval, defined as  

1
( ) ,

y y
ki


  where k = mean elapsed time of the SQL. 

Top m SQL is defined as SQL that exceeds x duration of runtime including all its 
iteration in u1. Top m SQL are dominant resource consumer in the host. 
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The accurate way to gauge the effectiveness of a SQL is to compare its actual  
with the benchmarked value, in this case the minimum of  found in all the legitimate 
data points in Fig. 1. So for ssk, we label the minimum of  as k-min. For each SQL ID in 
si, the minimum  is stored in an array, U = [1-min, 2-min, 3-min, …, k-min, …, m-min]. 
Hence, data in U is to be benchmarked when SQL tuning is taking place.   

5. EXPERIMENTAL RESULTS 

We do not have the liberty to a mission-critical application with enough SQL trans-
actions that is hosted on Cloud instance for illustration. We show the concept of our 
model base on a single server, which can be proliferated to application on Cloud VM 
without much variation. The data for the experiment is gathered from a Sun Solaris 
server, powered by 4 Sun Solaris SPARC64-VII CPU with 4-core architecture, 64GB 
RAM and external SAN running on ZFS File system. The application runs on SAP ERP 
software, on ECC6 HRM Module. The application is OLTP in nature, servicing Human 
Resource Management System for a large organization.    

The backend is running on a single instance Oracle 11g database. In this scenario, a 
week of data on actual transactions is collected, with Server Load taken as average in 1- 
minute interval. SQL Elapsed and DB time are collected in tandem with the 1-minute 
interval timeframe. In this case we simplify the model by having only 1 database running 
in the host. 

 

 

 
Fig. 3. Experimental results that show relationship between 


Si, 


Si and Ci. 

All 3 variables – Server Load (C), Elapsed time (

S) and DB time (


S) are quantita-

tive. When the data points of these 3 values are mapped, a scatter graph is generated as in 
Fig. 1. As the correlation between C and 


S, as well as C and 


S are linear as explained in 

section 4.1, regression lines are drawn mathematically. They are interpolated on the clus-
ter of scatter plot data, to statistically describe the trend of the SQL Elapsed and DB time. 
As mentioned in section 4.1, the slope of the regression line can be obtained from Eq. (1). 
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There are a total of 10621 samples (collection of the data points in Fig. 3) gathered in the 
1 week period for each set of Elapsed Time, 


S and DB time, 


S As mentioned the rela-

tionship are 

S = xC and 


S = yC respectively, and calculated using the data points’ values 

we have got x = 67.25 and y = 43.77. Hence as seen in Fig. 3, 2 strong positive regression 
lines are drawn. There are outliers in the graph, and they are understandably to be caused 
by noises in the server outside the control of the RDBMS. These can possibly cause by 
the auditing processes in the Operating System which spike occasionally while the ap-
plication transactions are running, File System backup that incurs IO contention and 
monitoring daemon to name a few. To gauge the accuracy of the regression lines, we use 
the correlation coefficient, r, as defined in section 4.1. Using Eq. (2), we obtain r = 0.72 
for the regression line on Elapsed Time, and r = 0.78 for the regression line on DB Time. 
We think that these 2 values show that the fit of the 2 linear models is fairly acceptable. 
In other words we can assume that these noises are not affecting the correlations too 
much. For more accurate plots, these noises will need to be investigated and fixed at OS 
level, or if ever desired, the outliers in Fig. 3 can be excluded to increase the accuracy of 
the regression lines. With these equations, the limit when the server is hitting resource 
constraint can be further derived. 

2 values from initial Load testing during pre-cutover are to be noted, before the da-
tabase goes into steady-state production mode. They are CT & ∆S. The initial CT is set at 
13 and ∆S = 55% respectively. After about a year running into steady-state production 
mode, the CT value reduced to 12 with ∆S stays at 55%, as depicted in Fig. 3. 

To represent these 2 properties properly, Fuzzy Logic is employed, as illustrated 
below: 
 
Step 1: Determine when to examine the host environment and adjust CT, using Fuzzy 
Computing with Words [36]: 

 
If SQL elapsed time is very much higher than SQL DB time, the host environment is 

near suboptimal condition. 
With Fuzzy Implication method [37]:  
 

 

     
Fig. 4. Membership Function for ∆S, A(u).     Fig. 5. Membership Function for C, B(v). 

 
Fig. 4 shows membership function for ∆S, A(u). A(u) is 
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1          if 55

( )        if 0 55.
55
0          if otherwise

u

u
A u u


  



    (3) 

With u = 55, corresponding Server Load limit, CT is obtained, as in Fig. 2.  
Fig. 5 shows membership function for Server Load, B(v) in the server. B(v) is  
 

1          if 12

( )        if 0 12 .
12
0          if otherwise

v

v
B v v


  



    (4) 

Subsequently, the constraining relation, R = A(u)  B(v). 
 
Step 2: Determine if database transactions need additional hardware: 

If more data points fall between CT & CT, trigger point for hardware planning and 
provisioning is near. 

 
Fig. 6. Membership Function for , C(w). 

 
Fig. 6 shows membership function for density of data points, , between CT & CT. 

 

1          if 5

( )         if 0 5 .
5
0          if otherwise

w

w
C w w


  



    (5) 

The membership function A(u) is obtained from initial Load Testing as when ∆S is 
defined. Subsequently from the limit of A(u), B(v) is determined during steady-state op-
erations. Using limit of B(v), C(w) is derived.  

6. MODEL ACCURACY AND SYSTEM OVERHEAD 

The snapshot interval to obtain the data points is set to 1 minute in the experiment. 
It is worthy to note that the smaller the interval, the more accurate the data is. Caution 
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Fig. 7. Runtime variation of particular SQL in 1 week. 

needs to be taken here on the workload to collect 

S, 

S and C values, as these data com-

putation in the database should not incur too much overhead. In system with not as pow-
erful hardware, 1-minute interval could incur high overhead to the host environment. In 
contrast when there is more resource available in the host, sampling interval can be small. 
This can be represented by Fuzzy rule in the form of: 

 
R: If <x is P>, then <y is Q>. This is translated to If <Server load is low>, then <samp- 
ling granularity is small> 

 
Then with Fuzzy predicates P & Q as Fuzzy sets on U = domain of x, V = domain 

of y, define 
 
P(x) for ‘x is P’ and Q(y) for ‘y is Q’, and define, 
T(R) = T[P(x)  Q(y)] for every x in U and every y in V.  
Using Mamdani implication [38] which is appropriate in this case,  
T[P(x)  Q(y)[ = min[P(x), Q(y)] 
 
With this, the appropriate overhead values of P (Server Load) and Q (sampling 

granularity) can be coded. 

7. SQL OPTIMIZATION 

In real situation, there are un-optimized transactions that disguise the actual need of 
computational power. SQL must not be allowed to run wildly. Following explains situa-
tions on the behavior of these SQL. 

For the same SQL which runs multiple iterations, either via bind variables or literal 
values, its , which is the average execution elapsed time, may change but the execution 
plan stays the same. Few scenarios could lead to this, for instance if the data involved in 
the SQL increased significantly and statistic has not been gathered in time, or if there is 
skewed histogram in the data resulted from data change. Another situation that can lead 
to this is when there is high resource contention in the VM going beyond Server Load 
Threshold. These are represented in Fig. 7. 
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Fig. 7 shows Elapsed Time of a SQL executed in each 30-minute segment in B array. 
There are 10 occurrences of the SQL execution in 1 week. SQL A was the original stat-
ment, optimally tuned, and there is no hardware contention in the server. To explain this 
further, there are few key aspects to define optimally tuned statement in this case. During 
end users acceptance test, the buy-off transaction response time could be set as bench-
mark. Then when the database is running in steady-state production mode, the RDBMS 
engine can self-tune the SQL, as with Oracle 11g Automatic SQL Tuning [39] which is a 
refinement from SQL Tuning Advisor [40]. There is also case where particular SQL is 
intentionally forced to run on particular execution path to maintain desired response time.  

A is a result of data being added to the tables involved, and it goes undetected by 
the RDBMS. A illustrates the scenario when data is added significantly to the tables 
used by the queries before tables’ statistic is gathered, or necessary indexes have not 
been considered and worked on with new data. In another scenario there can be resource 
contention in the VM resulted in A. Another scenario which is not shown in Fig. 7 is that 
SQL A changes its execution plan, as a result of accidental drop of an index in a table or 
sudden surge of cache memory consumption due to sudden increment of table data. 
These adversely result in excessive physical reads and the μ diverges significantly.  

Above are a few situations that affect the accuracy of the model. These SQL need to 
be tuned before resource capacity tracking model can report the resource utilization state 
accurately. As defined earlier, U = [1-min, 2-min, 3-min, …, k-min, …, m-min]. The data in 
this array is used for the purpose of benchmarking and tuning the involved SQL as de-
scribed in section 4.2. 

8. SUMMARY 

Cloud Computing is inevitably going to be the hosting trend for the future. At this 
juncture, we think on-premise Private Cloud will dominate database hosting for most 
Enterprises in the near future. The proposed resource management model is useful and 
important for this type of Cloud Instance, where computing resource allocation needs to 
be planned in advance. It provides a visibility to plan, procure and allocate the needed 
resource, along with the activities that happen in the host itself. The scrutiny on the SQL 
ensures the model correctly delivers its promise. The introduced Fuzzy functions are 
hoped to aid in coding stage of the model. As the model is constructed from detailed col-
lection of SQL execution time versus server loads, the data points are able to accurately 
depict the real processing scenario in the host. 

9. FUTURE WORKS 

As information of the SQL is stored in a repository as proposed in the model, we 
want to take this advantage to evaluate and investigate if these SQL can be good candi-
date for further tuning and enhancement. We will look at potential materialization of the 
SQL, so that the physical or logical reads on tables or views can be reduced. Another 
objective is to increase the chance for execution plan reuse in the database as materiali-
zation can reduce queries’ footprint in database cache. Along the way researching on 
materials for this paper, we also realize that Artificial Neural Network could be an inter-
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esting area to venture into, utilizing the learning mechanism to reduce noises in the sys-
tem. 
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