
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 793-810 (2013)

793

Harnessing Cloud Computing for Dynamic Resource
Requirement by Database Workloads

CHEE-HENG TAN1 AND YING-WAH TEH2

1,2Faculty of Computer Science and Information Technology
University of Malaya

50603 Kuala Lumpur, Malaysia
E-mail: {1cheeheng@siswa; 2tehyw@}um.edu.my

In this paper we illustrate a mechanism to address a very important aspect in the

Cloud hosting strategy – resource management. We want to show how database hosting
can benefit from this technology better, together with analysis on some of the causes and
concerns of hosting databases in the Cloud. A graphical presentation is illustrated, where
input is obtained from database workloads to gauge the adequacy of the resource, and
plan for future. The essence of the proposal is based on linear regression correlation be-
tween workloads’ execution time and corresponding server load. This paper strives to
address the requirement prior to resource contention, so that underlying hardware plan-
ning in the Private Cloud can be carried out in orderly fashion and with adequate time-
line. Subsequently Fuzzy Logic concept is utilized to represent the variables’ relation-
ship in the proposal, to ease the deterministic calculation in the algorithm during devel-
opment phase. A supervisory mechanism to ensure validity of SQL response time used
as input to the algorithm is proposed, so to ensure solidarity on the input parameters. The
objective is to ensure credible transactions can run freely without hardware resource
constraint throughout the tenure of the application offering, in association with the Cloud
computing technology.

Keywords: resource planning, workload management, cloud computing, SQL perform-
ance tuning, private cloud, database hosting

1. INTRODUCTION

Traditional data hosting technology is fast being replaced by Cloud Computing. The
potential of Cloud Computing is tremendous in view of demand from today’s IT infra-
structure. Voted as Top 11 technologies of the decade [1] by IEEE Spectrum, Cloud
Computing is enabling the agility required to accelerate the time to market of new prod-
ucts and services while reducing the cost to design, build, deploy and support these
products and services, and is considered as generally best practice for Enterprise Archi-
tecture [2]. It is changing the way IT services are perceived, delivered and consumed.

There are various perceptions in defining Cloud Computing. Zhang et al. [3] defines
Cloud Computing as evolution of grid computing, and it comprises of thin clients, Grid
Computing and Utility Computing. Buyya et al. [4] differentiate between Cloud Com-
puting and Grid Computing at the virtualization level, where Cloud is defined as next-
generation data centers with nodes “virtualized” through hypervisor technologies, dy-
namically “provisioned” on demand as a personalized resource collection. The virtual-
ization provides the ease and flexible capability on resource allocation, which is the key
motivation for this paper. Foster et al. [5] compares Cloud and Grid in length; and from

Received May 7, 2012; revised August 10, 2012; accepted September 21, 2012.
Communicated by Jan-Jan Wu.

admin
打字機文字
DOI:10.1688/JISE.2013.29.5.1

CHEE-HENG TAN AND YING-WAH TEH

794

dynamic resource provisioning perspective, Cloud is deemed more flexible than Grid, as
Cloud is leveraging virtualization technologies more extensively. Zhang et al. [6] define
Cloud Computing in a more end-user-friendly way, by quoting: Cloud computing is a
model for enabling convenient, on-demand network access to a shared pool of configur-
able computing resources that can be rapidly provisioned and released with minimal
management effort or service provider interaction. It is this ease of effort in application
hosting that makes Cloud a popular and fascinating choice. The financial service firm
Merrill Lynch estimates that within the next five years, the annual global market for
Cloud Computing will surge to $95 billion. In a May 2008 report, Merrill Lynch esti-
mated that 12% of the worldwide software market would go to the Cloud in that period
[7]. Public Cloud vendors are building extremely large-scale, commodity-computer Data
Centers in low cost locations, and they uncovered factors of 5 to 7 decrease in cost of
electricity, network bandwidth, operations, software, and hardware available at these
very large economies of scale [8].

This resource management proposal on database server is planned and designed,
taking into perspective the current Cloud vendors’ services offering. At the time when
we wrote this, Microsoft has released SQL Azure [9] which takes advantages and bene-
fits of Public Cloud. IBM SmartCloud Application Services at the PaaS level [10] is one
example that enables on-premise Cloud hosting. In our discussion, we focus on on-
premise solution, due to data integrity and security reasons. It is not the problem with the
technology itself, as human always found ways to address shortcomings or challenges
technically. We think that the current perception and skepticism of Enterprises on secu-
rity and reliability will delay the Public Cloud adaptation. In this case, Private Cloud is
the easier solution. As described by Harms and Yamartino [11], the Horseless Carriage
Syndrome when automobiles were introduced in early 20th century perhaps will slow
down the embracement of SQL Azure; however the economics of the Cloud might
overwhelm the constraining factors in time to come. Amazon is taking a step forward by
introducing AWS GovCloud (US), which is hosted in Amazon Web Services [12]. Its
compliance with US International Traffic in Arms Regulations (ITAR) and Federal In-
formation Processing Standard (FIPS) Publication 140-2 is hoped to prove to the world
its robustness of data hosting in Public Cloud. Google claims its strength in data security
via ten components of Google’s multi-layered security strategy incorporated in Google
Apps [13]. Oracle through its Exalogic Elastic Cloud product provides similar offering
for Public and Private Cloud, plus Hybrid Cloud that is capable of Cloud bursting [14].

Public Cloud Computing has been widely accepted and deployed for web-based ap-
plication. However its adoption for mission critical database operations is still at early
stage. While we anticipate that Public Cloud will mature and flourish, we want to write
this paper to detail on the resource administration mainly targeting databases hosted in
on-premise Private Cloud as we expect that database hosting on Private Cloud is going to
thrive for quite a while. Another important challenge that needs to be noted when hosting
database system in Public Cloud is the data locality issue. Database operations are
mostly IO intensive. As described by Foster et al. [5], when the resource needs to be
scaled, distance of the data relative to the available computational resources also in-
creases. This posts a bottleneck in term of IO as moving data in WAN for data process-
ing is much slower compared to local disk storage. More efficient data-aware schedulers
[15] are needed than what is available today.

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

795

Nevertheless, our presented mechanism is applicable for resource planning in Public
or Hybrid Cloud from resource management perspective. We agree with Harms and
Yamartino [11] that the full advantage of Cloud Computing can only be properly un-
locked through proper intelligent resource management, which is the essence of what we
propose in this paper. Dutreilh et al. [16] analyses and presents the challenges of the
automated resource management policies in the Cloud. We think that the automated re-
source allocation approach is suitable for scaling of resource at the application layer. We
take motivation from here, and suggest another way to suit the database hosting envi-
ronment. Due to problem with current RDBMS licensing model and the unpredictable
nature of SQL queries, we think that over-dynamic resource allocation paradigm will
take a while before it is widely adopted for database hosting in Cloud.

In the model we proposed, unless the allocated resource is provisioned specifically
for a short timeframe of surged transactions, the resource has the tendency to accumulate
and stay in the VM, via static on-demand request. At this moment, it is not easy to map
QoS requirements to low-level resource requirement such as CPU and memory require-
ments [6]. This is especially true in database hosting that has many variables in its opera-
tions. Hence dynamic resource allocation model is not presented. Nevertheless, since the
hosting utilizes virtualization paradigm in Cloud, online dynamic resource provisioning
is possible with today’s Cloud technology.

Hosting databases in this technology also makes Load Testing easier, as the same
set of hardware can be provisioned in Public Cloud or Virtual Private Cloud. This can be
accomplished as virtualization allows entire VM state to be transmitted across the net-
work from 1 data center to another. Hence there is no outage requirement to conduct
Load Testing in exiting host and still making the Load test result relevant to the actual
hosting environment. Our proposed model is designed to work during steady-state on-
going production operations, taking advantage of the ease of resource provisioning of-
fered by virtualization in the infrastructure layer [6]. The novelty of this proposal takes 2
keys parameters: The total elapsed time taken for the database operations and the server
load at the corresponding instance. The linear correlation between these 2 parameters
serves the fundamental of this proposal. By leveraging the running time history, the pro-
posed scheme obtains the trend of history and is possible to predict how much resource is
needed in the future. The focal point when resource will hit breakpoint serves the main
objective of this paper. Subsequently we present a mechanism to examine resource re-
quirement by the SQL transactions to ensure only tuned workloads are running in the
host.

We presented our research motivations, challenges and objectives in section 2. Sub-
sequently we examine the related researches in section 3. Section 4 details the algorithm
of our proposal. Subsequently section 5 shows how the proposal works by experiments.
Section 6 discussed the equilibrium needed for obtaining accurate data versus system over-
head. Then a guardian to ensure legitimacy of the input data is discussed in section 7.

2. RESEARCH MOTIVATIONS, CHALLENGES AND OBJECTIVES

In large and complex Enterprises, the cost of running businesses spans across multi-
ple domains. For each domain to forecast the exact and precise cost model needed for the
business operations is crucial for the companies to accurately predict its ROI. To remain

CHEE-HENG TAN AND YING-WAH TEH

796

competitive in today’s rapidly changing global economy, an organization needs to ensure
its operational cost is spent only adequately for the business. From IT Organization’s
perspective, this translates to the requirement for an efficient architectural design of ap-
plication services, where all detailed requirements are known in advance for monetary
planning. As application’s data manipulation is provided by running SQL from the back-
end databases, activities at this database layer are focused in this paper. To operate the
database in oversized hardware to cushion the fear of impact from lack of required proc-
essing power will not be cost effective as it incurs unnecessary wastage, and to go down
too little will be too less for the database operations. During the onset capacity planning
stage, the actual requirement of computational power and storage, whether it’s designed
during the startup or meant for subsequent growth of the database operations, will not be
entirely known. Also, subsequent scalability and performance must continue to meet the
demand of the business. As the profit of the business very much depend on the precision-
match of the planned cost of operations and the intended performance, a solution needs
to arrive quickly. For databases that support fast growing services, the surge on demand
for processing power is inevitable, and to secure adequate resources in time is a chal-
lenge. This is especially true in large and diverse IT organization. The mechanism in this
paper gives the business adequate time to plan for Capital Expenditure on the needed
hardware for database hosting. From IT management perspective, capital expenditure can
happen only during certain time in the fiscal year, hence future requirement of resource
need to be predicted accurately approximately 6 months in advance. To build an
on-premise Private Cloud infrastructure for database hosting will required quite substan-
tial amount of investment, hence the monetary planning on hardware is required. For
instance, the list price for Oracle Exadata Database Machine Quarter Rack is USD 330K
[17]. To upgrade from Quarter Rack to Half Rack will required the same amount of in-
vestment. With the mechanism proposed here, business can plan in advance the budget
allocation and ROI in precise nature.

The model is intended to work during steady state of the database operation. It de-
termines the amount of computational power to support the evolution of an application,
so that profit of providing a product or service for current and future can be harvested
optimally. To fulfill this objective, the condition of the involved SQL is scrutinized. Dur-
ing the tenure of the product or service offering, some SQL in the database are likely not
created or tuned optimally. In situation where the data structure changes, the SQL per-
formance might decline. These SQL are analyzed to ensure no wastage of resource, be-
fore the VM resource is expanded as per the model’s suggestion. In other words, the
workload needs to be kept in optimum condition.

We take initiative from workload management proposal by Mateen et al. [18]. We
agree that characterizing the dynamic workload in a complex application is a challenge
that needs to be addressed via autonomous strategies. Workload characterization involves
accurate planning during the initial configuration stage, as well as future prediction of the
evolved workload. The fast adoption of tools for Autonomic Computing is hence should
be of utmost priority for reliable budgetary planning of its IT infrastructure. The autonomic
workload management proposed by the authors needs to have self-optimization, self-con-
figuration, self-inspection, self-prediction, self-organization and self-adoption features.
We build this model with these criteria for Autonomic Computing sets in perspective.

Our focus is on single-tenant, multiple database instances on-premise Private Cloud

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

797

solution. However the proposed resource planning mechanism also works for multi-ten-
ants Cloud offering. The key parameters in this proposal are based on total SQL Elapsed
time and the VM’s loads. In this case, SQL Elapsed time in the databases serving multi-
tenants can be pooled to provide the required input to the system.

With the current and future resource state known in prior, the development team can
be made sensitive to the amount of resource utilized by their application, thus measuring
the success and profitability of their products or services offering by assessing the re-
source utilization against the generated revenue. Cloud Computing incorporates Utility
Computing in larger view, and this metering mechanism is Utility Computing in micro
perspective. This gives the enterprises an option to know what, why and how they spend.

The workload fed into the model is allowed to vary in size and timeframe. Assume
all n databases in the VM are already running in steady state condition. The n numbers of
databases are running 7 days/week, 24 hours/month. One week of continuous data cap-
ture for active database is believed to be long enough to capture all SQL running for the
application, yet short enough that performance data from the beginning of the timeframe
is still relevant. However there are applications that active only during certain time of the
year, for instance the Employee Performance Management software that is active only
2-3 times a year, or the Annual Enrolment utility for employees living in United States.
This model can be adjusted to run the data capturing mechanism selectively, only to take
into consideration the top SQL run during these peak timeframes.

Amid the consequence of incurred overhead, the data collection’s frequency, dura-
tion and time windows can be adjusted. It is imperative for some background processes
to run in the host, for instance backup operations and audit tracing. Data collection can
avoid these maintenance timeframes to preserve the accuracy of the model.

Another assumption and important criteria to this model is that the entire application
and its architecture are assumed to be optimally structured, and codes are properly writ-
ten and compiled during the infancy stage of the product. This preferred strategy is de-
tailed by Del Rosso [19], where it is employed by Nokia Research Center to develop and
tune its software product family. It is to consider the performance starting from the re-
quirement gathering phase of the application development life cycle, and let the model to
work on gradual dynamic change in the system. The typical architectural configuration
for a new database is to allocate the VM with a set of resource, and arrive at the initial
hardware set via load testing, i.e. utilizing HP LoadRunner software [20] to characterize
the desired workload. The test is simulated on a set of transactions and the expected
concurrent loads. During steady state operation mode, sporadic addition of new transac-
tions often does not warrant another load testing setup. However these can accumula-
tively consume all the allocated resource until the capacity breakpoint is exceeded, espe-
cially when the load is added gradually over time, in contrast to significant surge in
amount of transactions which is noticeable. If the transaction volume is expected to in-
crease in tandem with the predicted future business grow, it is imperative to estimate
accurately how much more resource to be provisioned to the initial instance.

3. RELATED WORKS

In the context of resource management and allocation, we highlight some of the sig-
nificant contributions by researchers.

CHEE-HENG TAN AND YING-WAH TEH

798

Comellas et al. [21] shows how Cloud elasticity advantage can be harnessed by
typical web hosting application, by presenting Cloud Hosting Provider (CHP). This elas-
tic web hosting provider can properly react to the dynamic load received by web applica-
tions and achieve revenue maximization of the provider by performing an SLA-aware
resource management. CHP Considers not only the response time of the web transactions,
but also price, penalty & cost associated with the web offering. The proposed architec-
ture focuses on web applications, not scrutinizing on database SQL as discussed in this
paper. However it portrays the ultimate goal of what we want to achieve for database
transactions.

Iqbal et al. [22] utilizes Eucalyptus-based test bed cloud to offer multi-tier Web ap-
plication owners maximum response time guarantees while minimizing resource utiliza-
tion. The approach taken is similar to what we proposed, where the initial set of resource
is identified, and subsequent resource is dynamically altered to satisfy the dynamic work-
load needs. This paper takes the focal point where each tier (web, application and data-
base) hits the resource bottleneck before reacting to have resource provisioned in order to
meet SLA requirement on response time.

Curino et al. [23] introduces Relational Cloud a transactional ‘database-as-a-ser-
vice’ Cloud infrastructure, which has the objective to improve on existing approaches, in
term of hosting for multi-tenancy database, scaling out for complex workloads and en-
hancing security of database hosting in Public Cloud. The component of particular rele-
vant to our topic is the workload-aware approach, where the workloads are partitioned
and replicated at a much fine-grained level than existing techniques. The proposed model
is named Schism [24] using graph representation to depict the database and workload.
The graph-partitioned-based algorithm divides a task into several sub-tasks, assigned to
different machines to achieve near-linear elastic scale-out. This approach minimizes the
required number of machines while meeting the query performance requirement.

In regulating the supply and demand of computing resources at market equilibrium,
Buyya et al. [4] proposes architecture for market-oriented allocation of resources within
Clouds, and presented a vision for the creation of global Cloud exchange for trading ser-
vices. The latter is similar to transactions in stocks or commodities exchanges, where the
supply and demand determines the providers’ and buyers’ prices. The objectives to meet
during the negotiation strategy between the providers and users are to secure appropriate
level of QoS to establish SLAs, and then utilizing appropriate mechanisms and algo-
rithms for allocation of VM resources to meet SLAs. Then there is also discussion on
risks management associated with violation of the agreed SLAs. An et al. [25] employ
the same approach, and introduce agent-based automatic negotiation model, where the
agents make contracts for resource leases from the Cloud Infrastructure, and at the same
time calculate a decommitment monetary penalty to break out from the committed con-
tact. Negotiation strategies of multiple buyers and providers to buy and sell Cloud re-
sources are presented, taking initiative from real world stocks exchanges.

Das et al. [26] provide an insight of how scalability can be achieved in multitenant
database from another perspective. This paper addresses elasticity, the ability to vary
load by controlling the amount of resources, through the database migration technique.
The authors conducted experiment in ElasTraS, a database system designed for support-
ing multitenant cloud applications. Data for a tenant is migrated out from the multitenant
database without incurring significant downtime, hence moving data out from existing

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

799

VM to remote VM for resource re-organization purpose. The live migration approach is
similar to the scalability product offered by EMC Symmetrix VMAX Enhanced Virtual
LUN Technology on Oracle database [27]. This technique provides a different view
compared to what we have suggested here, where the database is moved out all together
to another more properly scaled VM.

Ganapathi et al. [28] uses KCCA algorithm [29] in a statistical model to predict the
response time of queries, then utilizes the result to predict the resource requirements for
Cloud computing applications. The authors experimented their approach on MapReduce
jobs, which are jobs modeled by Google [30], parallelized and distributed across many
machines to achieve reasonable response time. The proposed model estimates the execu-
tion time of these jobs with claimed high prediction accuracy. It uses correlation between
the real and estimated execution time to evaluate the effectiveness of their method.
Workload prediction is not discussed in our approach, but it is an interesting topic worth
exploring in our subsequent works.

4. THE ALGORITHM

In this section, firstly we describe how the hardware resource usage is tracked and
monitored, and determine the trigger point when the threshold is breached. Secondly, the
accuracy of mechanism is guarded by a policy to ensure only valid and tuned SQL are
allowed to be included for the calculation of the resource threshold values.

4.1 Resource Usage Tracking

We define 1 minute as interval to aggregate the total SQL Elapsed time from all da-
tabases in the host. 1 minute is deemed appropriate timeframe as the Server Load is only
accurate with the snapshot duration is small.

The captured data is stored in an array, A, which is a multi-dimensional in nature.
Depending how long the data capture and aggregation will run, there will be p snapshots
in the A array, and A is A = [t1, t2, …, ti, tp]. Each array element in A is an array, ti corre-
sponds to the 1-minute snapshot. It is represented by ti = [Ci, Si, Si], where

Ci = the Server Load in the VM averaged in 1-minute interval
Si = total Elapsed Time of all SQL in the 1-minute interval

corresponds to Ci. This variable denotes time needed to run all iterations for all SQL in
the interval. It considers all variables affecting the SQL’s runtime, i.e. time required by
database engine, server condition, network latency, disk IO etc. The elapsed time data can
be sourced from stored database repository, i.e. Automatic Workload Repository [31]
from Oracle RDBMS.

Si = total DB time of all SQL in the 1-minute interval corresponds to Ci. This vari-
able represents the duration needed by the database to process all SQL including all their
iterations in the same snapshots interval used to define Si. DB time denotes the time
needed only by the database engine to process the queries. These values are expected to
be obtained from standard database repository too.

Let’s take 1 snapshot, t1 = [C1, S1, S1]. These 3 values are adequate to depict the re-

CHEE-HENG TAN AND YING-WAH TEH

800

source planning mechanism which is shown in section 5. When all the values from t1 to tp
are obtained, the graphical representation of S and S versus C can be depicted by linear
plots, as presented in section 5 too.

Fig. 1. Position of new parameters – 70th &

80th Percentile Response Time.
Fig. 2. Parameters obtained from Initial Load

Testing.

It is appropriate to explain now, the method to obtain the value of CT, the threshold
value where resource in the host is deemed hitting the maximum utilization. This value is
illustrated in Fig. 1. To arrive at CT, we are taking the minimum Server Load value for
each set of transaction to abide with the Service Level Agreement, incorporating a safety
factor. For particular set of transaction, the 90th percentile response time [32] is typically
recorded in SLA. Hence this is the limit which needs to be complied. During load testing,
the ramping up of the load can be used to determine the corresponding Server Load, CT-i
when the 90th percentile response time for particular set of transaction is reached. The
same is done for all transaction sets, and these values are passed into an array, C =
[CT-1, CT-2, …, CT-i, …, CT-r]. With this, CT = min(array C).We define a new pa-
rameter, the 80th percentile response time as depicted in Fig. 1, and corresponding Server
Load, CT-i for each transaction set. So C = [CT-1, CT-2, CT-i, …, CT-r], and CT = min(array
C). We choose CT as the Server Load threshold, so that there is still time to react for
hardware planning and provisioning. Then we define 70th percentile response time in
similar fashion, and obtained CT = min(array C). We define that when 5% of tran-
sactions accumulate between CT & CT, resource provisioning mechanism is triggered,
and another block of hardware needs to be added to the VM. This is shown in Fig. 2. This
5% zone is adjustable, as explained in a bit. Any tuned transactions that go beyond CT is
almost not in compliance with the SLA and emergency action is needed to investigate the
state of the host, and if there is no abnormality found, the hosting hardware needs to be
enlarged immediately.

As experimented by Ferrari and Zhou [33] and Gunther [34], the correlation be-
tween Server Load and server processing time is linear in nature, provided that the server
is not running into resource constraint. Hence to arrive at the 2 lines mathematically, we
employed the Linear Regression methodology [35]. Take Elapsed Time as example, for
each data point, it is defined as Si = xCi + b + i. However in our case, value b is as-

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

801

sumed 0 as observed from the actual host itself that even with multiple background dae-
mons running, the server load is close to 0 and these variables is negligible. We can
safely assume this value as in our case, as the server resources are abundant. However if
the hardware resource in the server or VM is restricted, for instance if there is only a sin-
gle CPU and 1 GB of physical memory, value of b could be 1 or 2 as a result of the sys-
tem overhead, and it needs to be acknowledged in the formula. In this case CT is sensi-
tive to the constantly-running overhead processes in the server or VM. Nevertheless, this
will only complicate the formulation in the algorithm, without achieving significant de-
sired result. The explained model will work properly in the environment with larger re-
source, to curtail the system overhead; however if the overhead is large and unavoidable,
a workload pre-check mechanism can be incorporated, to ensure a robust workload con-
trol plan is in place. The objective of mechanism is to avoid and disregard timeframe
when the system is running non-database related overheads before inputting the work-
load data into the model. In defining the legitimate workloads for input to the model, we
assume IT organization has a well-designed maintenance window to cater for unavoid-
able system overhead, especially the backup operations, where business transactions
during this timeframe are kept to minimum.

To explain our case, Si = xCi + i. The linearly fitted value,

Si is the value fitted ex-

actly on the regression line, and is denoted as

Si = xCi. Hence, the residuals, i = Si –

Si,

are the differences between the actual and fitted values of Elapsed Time. This variable is
not elaborated for our discussion in this paper, but will serve as a critical component for
our subsequent work in developing an adaptive system to reduce the noises in the system.
We need only to calculate the value of x to fulfill our requirement here. Using Least
Squares Derivation method, with N number of data points, the value of x is obtained as

1 1
1

2
2 1

1

.
()

N N
N i ii i

i ii

N
N ii

ii

C S
C S

Nx
C

C
N

 (1)

With this, the regression line is plotted using

S = xC, and similarly for DB time,

S

= yC. To measure the representability of the regression lines to the data points, we use
the correlation coefficient (r), defined as

2 2

()()

() ()

N

i ii

N N

i ii i

C C S S

Nr
S S C C

N N

. (2)

r is confined to value between 0 and 1 in our case. 1 denotes that there is a perfect
linear correlation between C and

S, while 0 shows no correlation. Intermediate values

show partial correlations. We will use value of r in section 5 to gauge the accuracy of our
experiment.

We also define another parameter ∆S = (

S

S)/S *100. ∆S corresponds to CT. This

delta of

S &

S can be used to gauge if the host condition is still viable for optimal data-

base transactions. During steady state database operations, if

S = xC becomes steeper, ∆S

CHEE-HENG TAN AND YING-WAH TEH

802

is then reached for Server Load < CT. The reason could due to the fact that the physical
reads or logical reads in the database are not efficient. This directly points to either the
IO subsystem is not functioning optimally or the database cache is not sufficient. The
noises from the operating system can also contribute to this, for instance new auditing
daemon is running on the host, additional host monitoring utility is running etc. The
noises ideally are undesired, for a mission critical application running stead-state opera-
tions. However in real live environment, system overhead is inevitable. For instance, the
VM and database backups will cause significant overhead and these cannot be ignored. In
this case a maintenance window is defined, and the workload input will avoid this time-
frame when feeding into the algorithm, to preserve the model accuracy.

The new ∆S needs to be shrunk by taking appropriate measures, i.e. fixing the host
environment or increase database cache. If all has been done but value of x is still steeper
than before, a new CT will need to be defined. In this case CT is the Server Load value
corresponds to ∆S. It is to note that CT & CT stay as constant, hence the CT & CT gap is
enlarged. When this happens, the probability of transactions to fall into the 5% zone
increases. The 5% zone is a hypothesis figure, and it should be adjusted appropriately
based on particular application’s SLA.

When block of new hardware is added to existing VM, Load Testing is conducted
again to find out values of x, y, CT, CT & CT, and subsequently ∆S. With these values,
this resource tracking model is reconfigured to watch for subsequent need of hardware
provisioning. In this case, as the base VM is already running stead-state production, the
scrambled data can be pushed to Public Cloud with the same hardware configuration so
that Load Testing can be conducted without jeopardizing the SLA requirement of exist-
ing databases. The advantage of hosting the databases in the VM in this case, is that the
same configuration of hardware can be provisioned easily in the Public Cloud, hence
making the Load Testing relevant.

4.2 SQL Tracking

During the tenure of the database life cycle, it is imperative to keep the DB time of
all transactions as close as possible to the initial Load Testing. In other words, the line

S

= yC as in Fig. 2 should not change ideally. To do this we need to ensure that the SQL
are running as optimally as possible during the initial load test. To explain this SQL veri-
fication mechanism, define another array, B, which has 30-minute interval in each of its
element. Depending on how long the data capture operation is going to run to properly
represent all potential SQL in the databases, there is q samples in B, B = [u1, u2, …, ui, …,
uq]. Then there are n numbers of databases running in the host, DB = [db1, db2, …, dbj, …,
dbn]. Take 1 30-minute snapshot, u1 to represent activity in other snapshots, and define s1
= collection of SQL elapsed time of top m number of SQL in all n databases, running in
u1. The top m SQL is ranked in descending order by total elapsed time. s1 is a collection
of SQL ID.

Hence, s1 is s1 = [ss1, ss2, ss3, …, ssk, …, ssm], where ssk = SQL elapsed time on a
SQL k that runs in database dbj with y iterations in the 30-minute interval, defined as

1
() ,

y y
ki

 where k = mean elapsed time of the SQL.

Top m SQL is defined as SQL that exceeds x duration of runtime including all its
iteration in u1. Top m SQL are dominant resource consumer in the host.

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

803

The accurate way to gauge the effectiveness of a SQL is to compare its actual
with the benchmarked value, in this case the minimum of found in all the legitimate
data points in Fig. 1. So for ssk, we label the minimum of as k-min. For each SQL ID in
si, the minimum is stored in an array, U = [1-min, 2-min, 3-min, …, k-min, …, m-min].
Hence, data in U is to be benchmarked when SQL tuning is taking place.

5. EXPERIMENTAL RESULTS

We do not have the liberty to a mission-critical application with enough SQL trans-
actions that is hosted on Cloud instance for illustration. We show the concept of our
model base on a single server, which can be proliferated to application on Cloud VM
without much variation. The data for the experiment is gathered from a Sun Solaris
server, powered by 4 Sun Solaris SPARC64-VII CPU with 4-core architecture, 64GB
RAM and external SAN running on ZFS File system. The application runs on SAP ERP
software, on ECC6 HRM Module. The application is OLTP in nature, servicing Human
Resource Management System for a large organization.

The backend is running on a single instance Oracle 11g database. In this scenario, a
week of data on actual transactions is collected, with Server Load taken as average in 1-
minute interval. SQL Elapsed and DB time are collected in tandem with the 1-minute
interval timeframe. In this case we simplify the model by having only 1 database running
in the host.

Fig. 3. Experimental results that show relationship between

Si,

Si and Ci.

All 3 variables – Server Load (C), Elapsed time (

S) and DB time (

S) are quantita-

tive. When the data points of these 3 values are mapped, a scatter graph is generated as in
Fig. 1. As the correlation between C and

S, as well as C and

S are linear as explained in

section 4.1, regression lines are drawn mathematically. They are interpolated on the clus-
ter of scatter plot data, to statistically describe the trend of the SQL Elapsed and DB time.
As mentioned in section 4.1, the slope of the regression line can be obtained from Eq. (1).

CHEE-HENG TAN AND YING-WAH TEH

804

There are a total of 10621 samples (collection of the data points in Fig. 3) gathered in the
1 week period for each set of Elapsed Time,

S and DB time,

S As mentioned the rela-

tionship are

S = xC and

S = yC respectively, and calculated using the data points’ values

we have got x = 67.25 and y = 43.77. Hence as seen in Fig. 3, 2 strong positive regression
lines are drawn. There are outliers in the graph, and they are understandably to be caused
by noises in the server outside the control of the RDBMS. These can possibly cause by
the auditing processes in the Operating System which spike occasionally while the ap-
plication transactions are running, File System backup that incurs IO contention and
monitoring daemon to name a few. To gauge the accuracy of the regression lines, we use
the correlation coefficient, r, as defined in section 4.1. Using Eq. (2), we obtain r = 0.72
for the regression line on Elapsed Time, and r = 0.78 for the regression line on DB Time.
We think that these 2 values show that the fit of the 2 linear models is fairly acceptable.
In other words we can assume that these noises are not affecting the correlations too
much. For more accurate plots, these noises will need to be investigated and fixed at OS
level, or if ever desired, the outliers in Fig. 3 can be excluded to increase the accuracy of
the regression lines. With these equations, the limit when the server is hitting resource
constraint can be further derived.

2 values from initial Load testing during pre-cutover are to be noted, before the da-
tabase goes into steady-state production mode. They are CT & ∆S. The initial CT is set at
13 and ∆S = 55% respectively. After about a year running into steady-state production
mode, the CT value reduced to 12 with ∆S stays at 55%, as depicted in Fig. 3.

To represent these 2 properties properly, Fuzzy Logic is employed, as illustrated
below:

Step 1: Determine when to examine the host environment and adjust CT, using Fuzzy
Computing with Words [36]:

If SQL elapsed time is very much higher than SQL DB time, the host environment is

near suboptimal condition.
With Fuzzy Implication method [37]:

Fig. 4. Membership Function for ∆S, A(u). Fig. 5. Membership Function for C, B(v).

Fig. 4 shows membership function for ∆S, A(u). A(u) is

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

805

1 if 55

() if 0 55.
55
0 if otherwise

u

u
A u u

 (3)

With u = 55, corresponding Server Load limit, CT is obtained, as in Fig. 2.
Fig. 5 shows membership function for Server Load, B(v) in the server. B(v) is

1 if 12

() if 0 12 .
12
0 if otherwise

v

v
B v v

 (4)

Subsequently, the constraining relation, R = A(u) B(v).

Step 2: Determine if database transactions need additional hardware:

If more data points fall between CT & CT, trigger point for hardware planning and
provisioning is near.

Fig. 6. Membership Function for , C(w).

Fig. 6 shows membership function for density of data points, , between CT & CT.

1 if 5

() if 0 5 .
5
0 if otherwise

w

w
C w w

 (5)

The membership function A(u) is obtained from initial Load Testing as when ∆S is
defined. Subsequently from the limit of A(u), B(v) is determined during steady-state op-
erations. Using limit of B(v), C(w) is derived.

6. MODEL ACCURACY AND SYSTEM OVERHEAD

The snapshot interval to obtain the data points is set to 1 minute in the experiment.
It is worthy to note that the smaller the interval, the more accurate the data is. Caution

CHEE-HENG TAN AND YING-WAH TEH

806

Fig. 7. Runtime variation of particular SQL in 1 week.

needs to be taken here on the workload to collect

S,

S and C values, as these data com-

putation in the database should not incur too much overhead. In system with not as pow-
erful hardware, 1-minute interval could incur high overhead to the host environment. In
contrast when there is more resource available in the host, sampling interval can be small.
This can be represented by Fuzzy rule in the form of:

R: If <x is P>, then <y is Q>. This is translated to If <Server load is low>, then <samp-
ling granularity is small>

Then with Fuzzy predicates P & Q as Fuzzy sets on U = domain of x, V = domain

of y, define

P(x) for ‘x is P’ and Q(y) for ‘y is Q’, and define,
T(R) = T[P(x) Q(y)] for every x in U and every y in V.
Using Mamdani implication [38] which is appropriate in this case,
T[P(x) Q(y)[= min[P(x), Q(y)]

With this, the appropriate overhead values of P (Server Load) and Q (sampling

granularity) can be coded.

7. SQL OPTIMIZATION

In real situation, there are un-optimized transactions that disguise the actual need of
computational power. SQL must not be allowed to run wildly. Following explains situa-
tions on the behavior of these SQL.

For the same SQL which runs multiple iterations, either via bind variables or literal
values, its , which is the average execution elapsed time, may change but the execution
plan stays the same. Few scenarios could lead to this, for instance if the data involved in
the SQL increased significantly and statistic has not been gathered in time, or if there is
skewed histogram in the data resulted from data change. Another situation that can lead
to this is when there is high resource contention in the VM going beyond Server Load
Threshold. These are represented in Fig. 7.

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

807

Fig. 7 shows Elapsed Time of a SQL executed in each 30-minute segment in B array.
There are 10 occurrences of the SQL execution in 1 week. SQL A was the original stat-
ment, optimally tuned, and there is no hardware contention in the server. To explain this
further, there are few key aspects to define optimally tuned statement in this case. During
end users acceptance test, the buy-off transaction response time could be set as bench-
mark. Then when the database is running in steady-state production mode, the RDBMS
engine can self-tune the SQL, as with Oracle 11g Automatic SQL Tuning [39] which is a
refinement from SQL Tuning Advisor [40]. There is also case where particular SQL is
intentionally forced to run on particular execution path to maintain desired response time.

A is a result of data being added to the tables involved, and it goes undetected by
the RDBMS. A illustrates the scenario when data is added significantly to the tables
used by the queries before tables’ statistic is gathered, or necessary indexes have not
been considered and worked on with new data. In another scenario there can be resource
contention in the VM resulted in A. Another scenario which is not shown in Fig. 7 is that
SQL A changes its execution plan, as a result of accidental drop of an index in a table or
sudden surge of cache memory consumption due to sudden increment of table data.
These adversely result in excessive physical reads and the μ diverges significantly.

Above are a few situations that affect the accuracy of the model. These SQL need to
be tuned before resource capacity tracking model can report the resource utilization state
accurately. As defined earlier, U = [1-min, 2-min, 3-min, …, k-min, …, m-min]. The data in
this array is used for the purpose of benchmarking and tuning the involved SQL as de-
scribed in section 4.2.

8. SUMMARY

Cloud Computing is inevitably going to be the hosting trend for the future. At this
juncture, we think on-premise Private Cloud will dominate database hosting for most
Enterprises in the near future. The proposed resource management model is useful and
important for this type of Cloud Instance, where computing resource allocation needs to
be planned in advance. It provides a visibility to plan, procure and allocate the needed
resource, along with the activities that happen in the host itself. The scrutiny on the SQL
ensures the model correctly delivers its promise. The introduced Fuzzy functions are
hoped to aid in coding stage of the model. As the model is constructed from detailed col-
lection of SQL execution time versus server loads, the data points are able to accurately
depict the real processing scenario in the host.

9. FUTURE WORKS

As information of the SQL is stored in a repository as proposed in the model, we
want to take this advantage to evaluate and investigate if these SQL can be good candi-
date for further tuning and enhancement. We will look at potential materialization of the
SQL, so that the physical or logical reads on tables or views can be reduced. Another
objective is to increase the chance for execution plan reuse in the database as materiali-
zation can reduce queries’ footprint in database cache. Along the way researching on
materials for this paper, we also realize that Artificial Neural Network could be an inter-

CHEE-HENG TAN AND YING-WAH TEH

808

esting area to venture into, utilizing the learning mechanism to reduce noises in the sys-
tem.

REFERENCES

1. S. Upson, “Cloud computing It’s always sunny in the cloud,” IEEE, http://spec-
trum.ieee.org/static/special-report-top-11-technologies-of-the-decade, 2011.

2. M. Glas and P. Andres, Achieving the Cloud Computing Vision, Oracle Corporation,
2011.

3. S. Zhang, S. F. Zhang, X. B. Chen, and X. Z. Huo, “The comparison between cloud
computing and grid computing,” Computer Application and System Modeling, In-
ternational Conference on Computer Application and System Modeling, Vol. 11,
2010, pp. 72-75.

4. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as the
5th utility,” Journal of Future Generation Computer Systems, Vol. 25, 2009, pp.
599-616.

5. I. Foster, Y. Zhao, I. Raicu, and S. Y. Lu, “Cloud computing and grid computing
360-degree compared,” in Proceedings of Grid Computing Environments Workshop,
2008, pp. 1-10.

6. Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-
search challenges,” Journal of Internet Services and Applications, Vol. 1, 2010, pp.
7-18.

7. R. King, Bloomberg BusinessWeek, http://www.businessweek.com/technology/con-
tent/aug2008/tc2008082_445669.htm, 2008.

8. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds A
Berkeley view of cloud computing,” UC Berkeley Reliable Adaptive Distributed
Systems Laboratory, 2009.

9. Microsoft, “SQL azure Moving business intelligence to the cloud,” Wipro Tech-
nologies, 2011.

10. Saugatuck Technology, Platform-as-a-Service: What ISVs Need for World-Class
Cloud Offerings, IBM, 2011.

11. R. Harms and M. Yamartino, The Economics of the Cloud, Microsoft, 2010.
12. Amazon, Amazon Web Services: Risk and Compliance, Amazon.com Inc., 2012.
13. Google, Security Whitepaper: Google Apps Messaging and Collaboration Products,

Google Inc., 2010.
14. Oracle – Exalogic, Oracle Exalogic Elastic Cloud: A Brief Introduction, Oracle Cor-

poration, 2011.
15. I. Raicu, Y. Zhao, I. Foster, and A. Szalay, “Accelerating largescale data exploration

through data diffusion,” in Proceedings of International Workshop on Data-Aware
Distributed Computing, 2008, pp. 9-18.

16. X. Dutreilh, N. Rivierre, A. Moreau, and J. Malenfant, “From data center resource
allocation to control theory and back,” in Proceedings of the IEEE 3rd International
Conference on Cloud Computing, 2010, pp. 410-417.

HARNESSING CLOUD COMPUTING FOR DYNAMIC RESOURCE REQUIREMENT

809

17. Oracle – Price, Oracle Engineered Systems Price List, Oracle Corporation, 2012.
18. A. Mateen, B. Raza, M. Sher, M. M. Awais, and N. Mustapha, “Workload manage-

ment: A technology perspective with respect to self characteristics,” International
Journal of Physical Sciences, Vol. 7, 2011, pp. 1482-1492.

19. C. D. Rosso, “The process of and the lessons learned from performance tuning of a
product family software architecture for mobile phones,” in Proceedings of the 8th
Euromicro Working Conference on Software Maintenance and Reengineering, 2004,
pp. 270.

20. HP, Application Performance Testing in VMware Environments Identify and Con-
trol Performance and Capacity Risks, Hewlett-Packard Development Company, 2007.

21. J. O. F. Comellas, I. G. Presa, and J. G. Fernández, “SLA-driven elastic cloud host-
ing provider,” in Proceedings of the 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing, 2010, pp. 111-118.

22. W. Iqbal, M. N. Dailey, and D. Carrera, “SLA-driven dynamic resource management
for multi-tier web applications in a cloud,” in Proceedings of the 10th IEEE/ACM In-
ternational Conference on Cluster, Cloud and Grid Computing, 2010, pp. 832-837.

23. C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan,
and N. Zeldovich, “Relational cloud: A database-as-a-service for the cloud,” in Pro-
ceedings of the 5th Biennial Conference on Innovative Data Systems Research, 2011,
pp. 235-240.

24. C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload driven ap-
proach to database replication and partitioning,” Journal of VLDB Endowment, Vol.
3, 2010, pp. 48-57.

25. B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with decommit-
ment for dynamic resource allocation in cloud computing,” in Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems, Vol. 1,
2010, pp. 981-988.

26. S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi, “Live database migration for
elasticity in a multitenant database for cloud platforms,” UCSB Computer Science,
Technical Report No. 2010-09, 2010.

27. “EMC symmetrix VMAX using EMC SRDF/timefinder and oracle database 10g/11g,”
EMC, 2011.

28. A. Ganapathi, Y. P. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven
workload modeling for the cloud,” in Proceedings of International Conference on
Data Engineering Workshop, 2010, pp. 87-92.

29. A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson,
“Predicting multiple performance metrics for queries: Better decisions enabled by
machine learning,” in Proceedings of IEEE International Conference on Data Engi-
neering, 2009, pp. 592-603.

30. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-
ters,” Communications of the ACM, Vol. 51, 2008, pp. 107-113.

31. B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin, “Automatic
SQL tuning in oracle 10g,” in Proceedings of the 30th International Conference on
Very Large Databases, Vol. 30, 2004, pp. 1098-1109.

32. TPC BENCHMARK™ C, “Standard specification,” Revision 5.11, 2010.
33. D. Ferrari and S. N. Zhou, “An empirical investigation of load indices for load bal-

CHEE-HENG TAN AND YING-WAH TEH

810

ancing applications,” in Proceedings of the 12th IFIP WG 7.3 International Sympo-
sium on Computer Performance Modelling, Measurement and Evaluation, 1987, pp.
515-528.

34. N. J. Gunther, UNIX Load Average Part 1, TeamQuest Corporation, 2010.
35. J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive Systems,

John Wiley & Sons, Inc., NY, 2000, pp. 7-17.
36. L. A. Zadeh, “Fuzzy logic and computing with words,” IEEE Transactions on Fuzzy

Systems, Vol. 4, 1996, pp. 103-111.
37. C. R. Alavala, Fuzzy Logic and Neural Networks, New Age International (P) Ltd.,

New Delhi, India, 2008, pp. 30-33.
38. M. Ganesh, Introduction to Fuzzy Sets and Fuzzy Logic, Prentice Hall Inc., Upper

Saddle River, NJ, 2008, pp. 151-156.
39. P. Belknap, B. Dageville, K. Dias, and K. Yagoub, “Self-tuning for SQL perform-

ance in oracle database 11g,” in Proceedings of IEEE International Conference on
Data Engineering, 2009, pp. 1694-1700.

40. D. D. Li, L. Han, and Y. Ding, “SQL query optimization methods of relational data-
base system,” in Proceedings of the 2nd International Conference on Computer En-
gineering and Applications, Vol. 1, 2010, pp. 557-560.

Chee-Heng Tan received his B.Eng. and M.Sc. from Uni-
versity Science of Malaysia. Currently he is a Ph.D. student at
Faculty of Computer Science and Information Technology, Uni-
versity of Malaya, Malaysia. His current research interests in-
clude database automation and performance, cloud computing,
fuzzy logic and statistical regression analysis.

Ying-Wah Teh received his B.Sc. and M.Sc. from Oklahoma
City University and Ph.D. from University of Malaya. He is cur-
rently a Senior Lecturer at Information Science Department, fa-
culty of Computer Science and Information Technology, Univer-
sity of Malaya. His research interests include data mining, text
mining and document mining.

