
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 1575-1593 (2017)
DOI: 10.6688/JISE.2017.33.6.12

1575

SBML Protocol for Conquering Simultaneous Failures
with Group Dissemination Functionality*

JINHO AHN

Department of Computer Science
Kyonggi University

Suwon-si Gyeonggi-do, 16227 Korea
E-mail: jhahn@kgu.ac.kr

This paper presents a new sender based message logging (SBML) protocol to toler-

ate simultaneous failures by using the beneficial features of FIFO group communication
links effectively. The protocol can lift the inherent weakness of the original SBML by
replicating the log information of each message sent to a process group into the volatile
storages of its members. Therefore, even if only one process in a group survives at a time,
our protocol can progress the execution of the entire system without stopping and re-
starting it. Also, it needs no extra control message by piggybacking the additional infor-
mation on the control message for logging every previous protocol essentially requires.
The experimental results show our protocol can be a low cost solution for addressing the
important drawback of the original SBML based on group communication without RSN
replication functionality.

Keywords: distributed system, simultaneous failure, group communication, message log-
ging, rollback recovery

1. INTRODUCTION

As the scale and the complexity of distributed and parallel applications rapidly grow
in an unprecedented pace, the research on developing large-scale distributed computing
system platforms is gaining a big attention in various application fields such as cloud
computing, social networks, unmanned aerial systems, disaster recovery, smart power
grid, and so on [16, 17, 23, 24]. These platforms should provide the users with an opti-
mized and on-demand composition of services using highly dynamic, asynchronous, and
geographically dispersed resources in a transparent way unlike the previous ones. A
large-scale platform, that utilizes many low cost but powerful commodity computing
devices, may have a higher chance of a failure as its components are more likely to crash
than in small-scale platforms [4, 7, 10, 15, 18, 20]. Thus, fault-tolerance techniques
should be employed to reduce the wasted execution time. For this purpose, one of two
methods can be used, that is, 1) process replication, or 2) log-based rollback recovery.
But the first method may degrade the scalability of the platform significantly due to its
high overhead of synchronization among the replicated processes [11]. Thus, in this pa-
per, we focus on the second method, log-based rollback recovery, due to its low over-
head.

Among the log-based recovery techniques [1, 4, 5, 14, 19, 26], the sender-based
message logging (SBML) with checkpointing [6, 12, 16, 25] is used commonly as a
low-cost transparent rollback recovery technique in many fields such as mobile compu-

Received August 19, 2016; revised October 27, 2016; accepted January 9, 2017.
Communicated by Cho-Li Wang.
* This work was supported by Kyonggi University Research Grant 2014 (2014-011).

JINHO AHN

1576

ting, cluster and grid computing, sensor network, and so on. This popularity is due to no
need for specialized hardware and a considerably low overhead for synchronous logging
on a stable storage by using volatile logging at sender's memory [6, 12, 16, 25]. However,
every previous SBML protocol has the restriction that they can tolerate only a single
failure at one time, called sequential failures. Thus, even if the protocol has been exe-
cuted, simultaneous failures may cause the system inconsistency problem [1, 12].

As group-based computing has prevailed as a general model of current and future
generation computing, multicast communication is becoming a mandatory building block
for this computing. However, as all the existing SBML protocols have assumed reliable
FIFO point-to-point communication links, they may not effectively employ log infor-
mation of the same message to a process group its members received if they are applied
into group communication link-based distributed system platforms. This paper presents a
new sender-based message logging protocol to tolerate simultaneous failures by using
the beneficial features of group communication links effectively. In order to address the
critical weakness of the previous protocols, the proposed protocol makes every process
know the respective receive sequence number of each same message to every other live
group member by saving the number from the sender of the message onto its own vola-
tile memory. This feature enables the protocol to survive a number of simultaneous fail-
ures except the whole system failure. Also, it needs no extra control message by piggy-
backing the additional information on the control message for logging every previous
protocol essentially requires.

The remainder of the paper is structured as follows. In section 2, we describe the
distributed system model assumed and, in section 3, the limitation of the previous SBML
in detail. Section 4 introduces our SBML protocol and section 5 shows its correctness
proof. In sections 6 and 7, we analyze and evaluate our protocol over the original one
and, in section 8, conclude this paper.

2. SYSTEM MODEL

A distributed computation consists of a set P of n(n > 0) sequential processes exe-
cuted on sensor nodes in the system and there is a distributed stable storage that every
process can always access that persists beyond processor failures, thereby supporting
recovery from failure of an arbitrary number of processors [11]. Processes have no glob-
al memory and global clock. The system is asynchronous: each process is executed at its
own speed and communicates with each other only through messages at finite but arbi-
trary transmission delays. Exchanging messages may temporarily be lost but, eventually
delivered in FIFO order. We assume that the communication network is immune to parti-
tioning and sensor nodes fail according to the fail stop model where every crashed pro-
cess on them halts its computation with losing all contents of its volatile memory [21].
Events of processes occurring in a failure-free execution are ordered using Lamport’s
happened before relation [13], → hb, defined by the following three conditions. Let p, q
and r be three processes P and ek

p be the kth event of p(k > 0):

 If ep
i and eq

j occur, p=q and i<j, then ep
i → hb eq

j.
 If ep

i is the event that p sends a message to q, eq
j is the event that q receives the mes-

sage from p and then delivers it to the application, and p q, then ep
i → hbeq

j.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1577

 If ep
i → hb eq

j and eq
j → hb er

k, then ep
i → hb er

k.

The main goal of log-based rollback recovery is to bring the system to a failure-free

state when inconsistences occur due to failures. The execution of each process is piece-
wise deterministic [7, 22]: at any point during the execution, a state interval of the pro-
cess is determined by a non-deterministic event, which is delivering a received message
to the appropriate application. The kth state interval of process p, denoted by sik

p(k > 0),
is started by the delivery event of the kth message m of p, denoted by devk

p(m). Therefore,
given p’s initial state, si0

p, and the non-deterministic events, [dev1
p, dev2

p, ..., devi
p], its

corresponding state si
p is uniquely determined. Let p’s state, si

p = [si0
p, si1

p, ..., sii
p], rep-

resent the sequence of all state intervals up to sii
p. s

i
p and sj

q(p q) are mutually con-
sistent if all messages from q that p has delivered to the application in si

p were sent to p
by q in sj

q, and vice versa [8]. A set of states, consisting of only one state for every pro-
cess in the system, is a globally consistent state if any pair of the states is mutually con-
sistent.

To understand these definitions precisely, Fig. 1 shows two examples of global
states, which are shown by broken arrows. In Fig. 1 (a), states si

p and sj
q are mutually

consistent because they reflect sending and receiving message m1 respectively. Message
m2 has been sent in state sj

q but not yet received in state sk
r. The states sj

q and sk
r are also

mutually consistent because the situation where the message m2 has been in transit could
have occurred in a failure-free and correct execution. We call such a message an
in-transit message. Therefore, the global state in this figure, consisting of si

p, s
j
q and sk

r,
is consistent. However, in Fig. 1 (b), states si

p and sj
q are mutually inconsistent because

though message m1 has not been left in the state si
p, the state sj

q has reflected receiving
the message. Such a message like m1 is named orphan message. Here, orphan message
means the message received from a process though there is no record that it was sent
from the process due to process failures. Message m1 may make the state of q, sj

q, incon-
sistent with those of the other live processes after recovery. At this time, the receiver of
m1, q, is called orphan process. Thus, the states, si

p, s
j
q and sk

r, in this figure compose a
globally inconsistent state.

 (a) An example of a globally consistent state. (b) An example of a globally inconsistent state.

Fig. 1. Examples illustrating how to decide whether the state is globally consistent.

JINHO AHN

1578

3. BACKGROUND

Before introducing our proposed SBML protocol to be capable of overcoming the

limitations of the previous SBML, let us identify the exact reasons why the latter has its
incapability against tolerating simultaneous failures based on both unicast and group
communication links using some examples. Originally, sender-based message logging
[12] is designed to have the positive feature of receiver-based pessimistic message log-
ging [19, 26], no roll-back property, in case of sequential failures. Also, it may signifi-
cantly reduce the high failure-free overhead resulting from the disadvantageous feature
of the latter, i.e., synchronous logging on stable storage as soon as each message is re-
ceived or before any message, generated after the received message, is sent to another
process. To satisfy these requirements, this technique allows each received message to be
logged on the volatile storage of its sender, called semi-synchronous logging. Also, to
ensure system consistency in case a process crashes at a time, the log information of each
message received by the process is forced to save into its sender's volatile storage before
sending another process any message generated after the receipt of the former message.

Let us closely examine how sender-based message logging can have the feature
mentioned above using Fig. 2. In the figure, three processes, p0, p1, and p2, execute their
respective computation together by exchanging messages with each other. Processes p0
and p2 send messages m1 and m2 to process p1 respectively. In this operation, each send-
er records the partial log information of the corresponding sent message on its own vola-
tile memory. At this point, the log information of a message m is denoted by SLog(m),
which is composed of four elements, the send sequence number (SSN), the receive se-
quence number (RSN), the receiver’s id (RID) and data of the message [1, 12, 22, 25].
Here, partially logged means the RSN of the message has not been recorded on SLog(m)
yet. Then, p1 first receives message m1 from p0, increments its RSN, RSN1, by one, and
assigns the value of RSN1 (=) to the message. Next, p1 sends sender p0 an acknowl-
edgment message including m1’s RSN. Similarly, when p1 receives m2 from p2, it per-
forms the same procedure, where the assigned value of m2’s RSN is (+1) in this exam-
ple. When each sender, e.g., p0 or p2, obtains an acknowledgment message for its sent
message m, e.g., m1 or m2, from the corresponding receiver, it saves m’s RSN attached to
the acknowledgment into m’s log information, SLog(m). At this time, m is called fully
logged, meaning every element in SLog(m) is filled with its actual value for m’s recovery.
Then, the sender notifies p1 of the fact that it safely holds the full log information on its
own volatile memory. So, even if p1 fails afterwards, it can get the full log information
for m1 and m2 from the two senders respectively and replay them in the same order like
in the pre-failure state. Therefore, even though there have been any messages sent from
p1 after m1 and m2 in this case, they would not become orphan messages.

Let us consider what happens when several processes fail at the same time using Fig.
3. This figure shows an execution similar to the one in Fig. 2 except that p3 joins the
execution and sends the third message m3 to p1. After all the logging procedures for the
three messages have been completed, p1 transmits message m4 to p2. Then, suppose the
three processes p0, p1 and p3 crash simultaneously. In this case, as p0 and p3 lost the
values of the RSNs of messages m1 and m3 on their respective volatile memories due to
the failures, they cannot provide the RSN values for p1 during recovery.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1579

Fig. 2. An illustration showing how the original SBML to address sequential failures.

Also, p2 has only the value of m2’s RSN. This log information deficiency causes the
following ambiguous situation: p1 cannot determine in which order m1, m2 and m3 should
be replayed. Thus, p1 may not reconstruct message m4 during recovery, which makes p2
orphan process. Due to this incapability, every previous sender-based message logging
may not make sure the entire system consistency on simultaneous failure occurrences.
However, if unicast-only communication links are assumed in the system model, this
technique would be unavoidably destined to this limitation without the help of any other
compensating methods [1, 12].

Fig. 3. An illustration showing why the original SBML cannot address simultaneous failures.

Suppose group dissemination functionality is the basic communication feature of
the system. With this assumption, we could naively anticipate p1 can get m1’s RSN from
p2 even if both p0 and p1 crash simultaneously in Fig. 2 because p2 also received m1
sent to the group consisting of p0, p1 and p2. Let us identify that the original SBML can
satisfy this expectation using Fig. 4. In reality, actual process group size may vary de-
pending on application types, but for the sake of simplicity of explanation, we assume a
very small group in the examples used later. In the figure, there are three processes, pg

0,
pg

1 and pg
2, composing a process group g, and there are three messages, mg

1, mg
2 and mg

3,

JINHO AHN

1580

sent to group g from senders S1, S2 and S3 respectively. Here, assume each sender may
also be a member of group g. In this example, suppose the RSNs of pg

0, pg
1 and pg

2 be
(1), (1), (1) () in order before sending out the three messages. Here, all
three messages will eventually be delivered to every process member through reliable
FIFO group communication links, but the RSNs of each message assigned by all three
processes may all be different due to delivery order asynchrony of messages sent to a
group from different senders. In this example, pg

0, pg
1 and pg

2 receive m1, m2 and m3, m2,
m3 and m1, and m3, m1 and m2 in order, respectively. In this case, the RSNs they have
assigned to m1 could be , +2 and +1 like in this figure. Thus, if the sender of m1, S1,
and pg

0 crash at the same time, m1 may not be replayed with its pre-failure RSN value, ,
at pg

0 during recovery.
For example, Fig. 5 shows the case that the senders of the three messages are pg

0,
pg

1 and pg
2, respectively. Here, pg

0 receives m1, m2 and then m3 whose RSNs become each

Fig. 4. Limitation of the original SBML based on reliable FIFO group communication links.

Fig. 5. An execution case showing the inconsistency problem the original SBML based on group

dissemination links may incur in case of simultaneous failures.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1581

, (+1) and (+2). Similarly, pg
1 assigns , (+1) and (+2) as RSN to m2, m3 and m1

and pg
2, , (+1) and (+2), m3, m1 and m2. Afterwards, every message receipt event on

each process in this figure triggers the semi-synchronous logging procedure for the cor-
responding message like in Fig. 2. Hereafter, suppose pg

0 and pg
1 crash at the same time.

During recovery, they can get the values of m3’s RSNs from pg
2, (+2), (+1) and , as-

signed by each process, but no information about the values of m1’s and m2’s RSNs they
allocated in the pre-failure state. Thus, neither pg

0 nor pg
1 can decide in which order the

three messages should be replayed. If there were any messages either pg
0 or pg

1, or both
sent to pg

2 after the completion of logging m1, m2 and m3 before their failures, pg
2 might

be an orphan process after performing the recovery procedure of the original SBML.

4. NOVEL SBML PROTOCOL

From the observation, it is found out that as the original sender-based message log-
ging has been developed assuming reliable FIFO unicast communication functionality, it
could not utilize the advantageous features of the group communication functionality,
which may potentially make a breakthrough to overcome its annoying constraint. Thus,
our SBML protocol is designed to have the following beneficial features to address it;

 Replicate the RSN information of a message sent to a group, separately assigned by

each member, into volatile storages of other group members.
 Force the state made after each message multicast to a group to be unable to be visible

to any other process until the replication has been completed.

With these features, the protocol can tolerate simultaneous failures while it attempts

to minimize additional inter-process communication cost required for no rollback of live
processes by piggybacking the additional information on the control message for logging
every previous protocol essentially needs. For this purpose, the data structures each
group member should maintain in our protocol are following;

 SSNg

i: the send sequence number of the latest message sent by pg
i.

 RSNg
i: the receive sequence number of the latest message delivered to pg

i.
 SSNVtg

i: a vector where SSNVtg
i[q] is the SSN of the last message that was delivered to

pg
i from a process pg

q.
 XSLogg

i: a set saving e(gid, ssn, rsnlist, data) of each message sent by pg
i. Here, e is the

log information of a message and the first two fields and the last field are the identifier
of the process group, the send sequence number and data of the message respectively.
The third field is the list of receive sequence numbers of the message which all receiv-
ers of the message assigned to it. Its element consists of a pair of (pid, rsn), where pid
is one of the receivers and rsn is the RSN of the message pid assigns to it.

 XRLogg
i: a set which maintains e(sid, ssn, rsnlist) of each message received by pg

i.
Here, e is the log information of the message and the first two fields are the sender's id
and the send sequence number of the message respectively. The last field is a set of
elements whose form is (pid, rsn) where pid is one of group members including pg

i that
has assigned rsn as RSN to the message on its receipt. This set can help other crashed

JINHO AHN

1582

group members perform replaying the message in their pre-failure orders with its cor-
responding RSN.

 stableRSNg
i: the receive sequence number of the latest message which has been deliv-

ered to pg
i and replicated on the volatile storage of every member or checkpointed on

the stable storage. It is used for indicating until which messages pg
i can send to other

processes.

In order to satisfy the requirements mentioned above, our protocol is performed as

follows. For this purpose, let us closely look at an example showing the detail of execu-
tion of the protocol. This example is the same as that of Fig. 5. In Fig. 6, processes pg

0,
pg

1 and pg
2, multicast three messages, m1, m2 and m3, to every member of group g in-

cluding itself respectively. Here, pg
0 receives m1, m2 and then m3 whose RSN values be-

come , (+1) and (+2) in order. When pg
1 receives m2, m3 and m1 in order, it assigns ,

(+1) and (+2) as RSN to them respectively. Similarly, after pg
2 has received m3, m1 and

m2 in order, their RSNs become , (+1) and (+2) respectively. All the three processes
execute the proposed protocol like in Fig. 7. For simplicity, this figure only shows the
case pg

0 disseminates m1 to every group member including itself. First, after sending m1,
pg

0 saves the partial log element (tagg
1, , datam1) into XSLogg

0 in procedure Module
G-SEND(datam1, g) in Fig. 8. When having received m1, pg

0, pg
1 and pg

2 add their re-
spective receiver log elements, (tagg

1, {(pg
0,)}), (tagg

1, {(pg
1, +2)}) and (tagg

1, {(pg
2,

+1)}), to XRLogg
0, XRLogg

1 and XRLogg
2 in Module G-RECV(tagg

1, datam1). Then,
they send each an acknowledgment, rsn-return(tagg

1,), rsn-return(tagg
1, +2) and

rsn-return(tagg
1, +1), to m1’s sender pg

0. When pg
0 receives the three return messages in

a particular order, it inserts their RSN elements, (pg
0,), (pg

1, +2) and (pg
2, +1), into

XSLogg
0 in Module RCV-RSN(tagg

1, RSNm1). When pg
0 has collected each an ac-

knowledgment from every live group member, it multicasts a control message including
the value of the RSN of m1 assigned by the member, e.g., {(pg

0,), (pg
1, +1), (pg

2,)},
to the group. When the control message has arrived, pg

0, pg
1 and pg

2 update their receiver
logs, XRLogg

0, XRLogg
1 and XRLogg

2, with the list of RSNs piggybacked on the message
in Module RCV-ACK(tagg

1, RSNSm1). In Fig. 6, m2 and m3 also experience the same

Fig. 6. Illustration showing how our SBML protocol can effectively address simultaneous failures.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1583

Fig. 7. An illustration showing the detail of our SBML protocol based on group dissemination

links with message m1 multicast to group g from process pg
0.

logging procedures as those of Fig. 7. In this way, after our protocol has been completed
with the three messages, every group member can maintain the values of all the RSNs
assigned to each message by the member, e.g., (tagg

1, {(pg
0,), (pg

1, +2), (pg
2, +1)}),

(tagg
2, {(pg

0, +1), (pg
1,), (pg

2, +2)}) and (tagg
3, {(pg

0, +2), (pg
1, +1), (pg

2,)}), on
its volatile memory.

Thanks to this log information replication, even though pg
0 and pg

1 fail at the same
time in Fig. 6, they trigger Module RECOVERY() in Fig. 8 to be able to obtain their
own RSN values for every received message from Module RCV-RQTRCVY(pg

i) of pg
2

during recovery. Then, pg
0 can deterministically replay m1, m2 and m3 in order, and pg

1,
m2, m3 and m1 like before failure. Therefore, even if pg

0 or pg
1 transmitted any message to

pg
2 after m1, m2 and m3 in its pre-failure state, pg

2 would not be orphan process after re-
covery.

The algorithmic description of message logging and recovery procedures of our
protocol is shown in Figs. 8 and 9.

5. CORRECTNESS PROOF

This section proves our proposed SBML protocol ensures system consistency in
case of concurrent failures using one lemma and one theorem.

Lemma 1: After our protocol has been completed, no crashed process Pg
i in group g

makes the state of any other surviving one in group g inconsistent.

Proof: Suppose the sequence of all the messages fully logged whose receiver was Pg

i in
its pre-failure state, denoted by SEQ-FLMSGsg

i. The proof proceeds by induction on the
number of all the messages in SEQ-FLMSGsg

i, denoted by NUMOF(SEQ-FLMSGsg
i).

JINHO AHN

1584

[Base case] In this case, Pg
i received only one fully logged message m to group g in its

pre-failure state and two cases should be considered.

Case 1: m’s sender Pg

s is alive.
In this case, Pg

i can trivially obtain all RSNs of m from XSLogg
s of Pg

s all the other
processes in group g including Pg

i have assigned to m before. Thus, Pg
i can record them

into XRLogg
i and then, replay m in its original order like before failure. Therefore, no

live process having received any message whose sender is Pg
i after m’s receipt becomes

orphan.
Case 2: m’s sender Pg

s is a crashed process.
In this case, two sub-cases should be considered.

Case 2.1: No live process in group g exists
In this case, Pg

i replaying m in an order different from before failure doesn’t
make the global system state inconsistent because there is no orphan state on
which m’s receive event occurrence before its failure has any impact.

Case 2.2: At least one live process Pg
j in group g exists.

In this case, as message m has been fully logged, all live processes including
Pg

j already obtained all RSNs of m from XSLogg
s of Pg

s all the other processes
in group g including Pg

i had assigned to m before failure. Thus, Pg
i can get the

RSNs from XRLogg
j of Pg

j and record them into XRLogg
i. Then, recovered Pg

s
provides m’s data for Pg

i, which can replay m in its original order like before
failure. Therefore, no live process having received any message whose sender
is Pg

i after m’s receipt becomes orphan.

//When process pgid
i attempts to multicast a message m including data to every

member of group gid.//
Module G-SEND(data, gid) AT pgid

i
SSNgid

i ← SSNgid
i +1; multicast m(pgid

i, SSNgid
i, data) to group gid;

XSLoggid
i ← XSLoggid

i {(gid, SSNgid
i, , data)};

//When process pgid

i receives a message m from message sender m.sndr.//
Module G-RECV(m(sndr, ssn, data)) AT pgid

i
if(SsnVtgid

i[m.sndr] < m.ssn) then
 RSNgid

i ← RSNgid
i +1;

SsnVtgid
i[m.sndr] ← m.ssn;

send rsn-return(pgid
i, m.ssn, RSNgid

i) to m.sndr;
XRLoggid

i ← XRLoggid
i {(m.sndr, m.ssn, {(pgid

i, RSNgid
i)})};

delay all the send message operations generated after having received m;
deliver m.data to its corresponding application;

else
find e XRLoggid

i st ((e.sndr = m.sndr) ^ (e.ssn = m.ssn));
find o e.rsnlist st (o.rcvr = pgid

i);
send rsn-return(pgid

i, m.ssn, o.rsn) to m.sndr;

//When message sender pgid

i receives a message rsn-return from the receiver rsn-
return.rcvr of a message whose RSN value is rsn-return.rsn.//

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1585

Module RCV-RSN(rsn-return(rvcr, ssn, rsn)) AT pgid
i

find e XSLoggid
i st ((rsn-return.rcvr e.gid) ^ (e.ssn = rsn-return.ssn)) ;

if((o e.rsnlist st (rsn-return.rcvr = o.rcvr))) then
e.rsnlist ← e.rsnlist {(rsn-return.rcvr, rsn-return.rsn)};
if(pgid

i has received each a RSN from every other live member pgid
ke.gid) then

multicast ack(pgid
i, ssn, e.rsnlist) to e.gid;

else if(pgid
i has received each a RSN from every other live member pgid

ke.gid)
then

send ack(pgid
i, ssn, e.rsnlist) to rsn-return.rcvr;

//When message receiver pgid

i receives an acknowledgement ack from message
sender ack.sndr indicating the latter has fully logged the corresponding message
in its volatile storage and collected the list of RSNs all other live group members
have each assigned for the message.//
Module RCV-ACK(ack(sndr, ssn, rsnlist)) AT pgid

i
find e ack.rsnlist st (e.rcvr = pgid

i);
if(stableRSNgid

i < e.rsn) then
find o XRLoggid

i st ((o.sndr = ack.sndr) ^ (o.ssn = ack.ssn));
o.rsnlist ← ack.rsnlist;
allow all the send message operations delayed before receiving the message whose

RSN value is (e.rsn +1) to begin executing;
stableRSNgid

i ← e.rsn;

//When process pgid

i takes its local checkpoint on the stable storage.//
Module TAKE-CHECKPOINT() AT pgid

i
take its local checkpoint with (RSNgid

i, SSNgid
i, SsnVtgid

i, XSLoggid
i) on

the stable storage;
allow all the send message operations delayed before this checkpoint to

begin executing;
stableRSNgid

i ← RSNgid
i;

Fig. 8. Our group-based SBML procedures during failure-free operation.

//When process pgid
i attempts to recover after failure. //

Module RECOVERY() AT Recovering Process pgid
i

restore a latest checkpointed state with (RSNgid
i, SSNgid

i, SsnVtgid
i, XSLoggid

i)
from stable storage;

multicast each a recovery request rqt-rcvy(pgid
i) to group gid;

//pgid

i collects all recovery information of fully or partially logged messages
from the other live processes.//
while recovery replies aren’t received from all other group members do

put fully logged messages for pgid
i piggybacked on each reply rpy-rcvy into

floggid
i in RSN order;

put partially logged messages for pgid
i piggybacked on each reply rpy-rcvy into

ploggid
i in FIFO order;

JINHO AHN

1586

//pgid
i replays every fully logged message in floggid

i in its RSN order like in pgid
i’s

pre-failure state.//
for all e floggid

i st (o e.rsnlist: (o.rcvr = pgid
i) ^ (o.rsn = RSNgid

i+1)) do
RSNgid

i ← RSNgid
i +1;

SsnVtgid
i[e.sndr] ← e.ssn;

XRLoggid
i ← XRLoggid

i {(e.sndr, e.ssn, e.rsnlist);
deliver e.data to its corresponding application;
floggid

i ← floggid
i
 {e};

stableRSNgid
i ← RSNgid

i;
//pgid

i replays every partially logged message in ploggid
i in FIFO order like in

pgid
i’s pre-failure state.//

while ploggid
i is a non-empty set do

randomly select e in ploggid
i st (e.ssn = SsnVtgid

i[e.sndr]+1);
call Module G-RECV(e.sndr, e.ssn, e.data) at pgid

i;
ploggid

i ← ploggid
i –{e};

//When a surviving process pgid

i receives a recovery message rqt-rcvy from anoth-
er process rqt-rcvy.rcvr requesting the log information for recovery of every pro-
cess including the latter from pgid

i’s volatile storage.//
Module RCV-RQTRCVY(rqt-rcvy(rcvr)) AT Live Process pgid

i
put fully and partially logged messages for rqt-rcvy.rcvr in XSLoggid

i and XRLoggid
i

into a reply rpy-rcvy;
send rpy-rcvy to rqt-rcvy.rcvr;

Fig. 9. Recovery and its assisting procedures.

[Induction hypothesis] We assume that the theorem is true for Pg
i in case that NUMOF

(SEQFLMSGsg
i)=k.

[Induction step] By induction hypothesis, Pg

i can obtain all the log information of k
fully logged messages it has received before its failure. Therefore, if Pg

i may get the full
log information of the (k+1)th message during recovery, the theorem is true for Pg

i in
case NUMOF (SEQFLMSGsg

i)=k+1. The following case is similar to the base case
stated above.

By the induction, even if there are one or more crashed processes in group g, the
proposed protocol can always keep the state of any other surviving one in its group con-
sistent.

Theorem 1: The proposed protocol enables the global system state to be kept consistent
despite simultaneous failures.

Proof: We prove this theorem by contradiction. Assume that the protocol may not ensure
to successfully complete tolerating k simultaneous failures. Suppose the set of all crashed
processes in group g is denoted by CRASHEDg and the set of all live processes in group
g, LIVEg. Two cases should be considered as follows:

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1587

Case 1: every process in group g crashes.
In this case, even if the process replays each received message in any particular
order different from before failure, the global system state is always consistent.

Case 2: At least one process in group g is alive.
In this case, there may be one or more orphan state intervals having direct or in-
direct impact on their current states. Two sorts of orphan state intervals are fol-
lowing: direct state intervals starting with each message any crashed process has
transmitted, DIRECT-INTERVALsg, and indirect state intervals created by each
message sent by any other live one, INDIRECT-INTERVALsg.
In this case, two sub-cases should be considered:

Case 2.1: Any state interval si DIRECT-INTERVALsg starts with receiveg(m).
In this case, suppose si is created by receiveg

i(m) at Pg
i LIVEg and depends on

the receive events of all the messages Pg
i has received until generating si includ-

ing receiveg
i(m). Even though all the senders of the received messages, denoted

by DSENDPROCsg(si), would be a subset of CRASHEDg, by Lemma 1, si never
becomes an orphan state because the proposed protocol forces no crashed pro-
cess DSENDPROCsg(si) to make Pg

i be an orphan process.
Case 2.2: Any state interval si INDIRECT-INTERVALsg starts with receiveg(m).

In this case, if si depends transitively on any state interval si’ DIRECT-IN-
TERVALsg, it may be an orphan state if si’ could not be restored even after hav-
ing completed the recovery procedure. However, this situation cannot occur ac-
cording to case 2.1.

Therefore, the globally consistent system state can always be kept consistent in case

of simultaneous failures. This contradicts the hypothesis.

6. ANALYSIS

This section presents some numerical analysis results to compare our proposed
SBML protocol (OURS) to the original one with RSN replication functionality for ensur-
ing no rollback of surviving processes (ORIGIN-REP) [6, 12, 16, 25] regarding control
message exchange overhead during failure-free operation. Here, as ORIGIN-REP is de-
signed based on unicast communication links for enabling RSN replication, if a group
size is k, it requires that k individual control messages from each message sender should
be sent to all group members.

For this purpose, several parameters used are defined as follows:

 Nproc: the total number of processes in a group.
 Nappmsg: the total number of application messages generated in a group.
 Cmulti: the cost of sending a multicast message to every member in a group.
 Cuni: the cost of sending a unicast message to an individual process.

In this evaluation, we assume a computer cluster of Nproc processes or nodes with

two different one-way message costs, Cuni and Cmulti. With this assumed model, the total
control message costs of ORIGIN-REP and OURS occurring during failure-free opera-

JINHO AHN

1588

tions, denoted by ORIGIN-REPmsg-cost and OURSmsg-cost, can be expressed as Eqs. (1) and
(2) respectively.

ORIGIN-REPmsg-cost = 2 Cuni (Nproc 1) Nappmsg (1)

OURSmsg-cost = (Cuni (Nproc 1) + Cmult) Nappmsg (2)

The difference of control message costs of ORIGIN-REP and OURS, ∆DIFFmsg-cost(= Eq.
(1) − Eq. (2), is Eq. (3).

DIFFmsg-cost = (Cuni (Nproc 1) Nappmsg (3)

From Eq. (3), we can see that ∆DIFFmsg-cost may linearly become larger as the number of
messages generated increases and the difference between Cmult and Cuni decreases. In
general, a multicast sending(Cmult) is highly more efficient than achieving an equivalent
job using unicast only send primitive(Cuni∗(Nproc1)) in most LAN or WAN-based mul-
ticast protocols developed in network or application layers. Thus, as Nproc increases,
∆DIFFmsg-cost may also be higher.

Fig. 10. Ratemsg-cost with varying values of Nproc and .

Let us clarify how much OURS may reduce the control message overhead of the en-
tire system during failure-free operation compared with ORIGIN-REP using Figs. 10 and
11. The two figures show the variation of reduction rate, Ratemsg-cost, of OURSmsg-cost,
against ORIGIN-REPmsg-cost with varying Nproc ranging from 10 to 50 in case (=Cmult /
Cuni) is 1.0 through 4.5 at 0.5 intervals. The reduction rate is expressed as ∆DIFFmsg-cost /
ORIGIN-REPmsg-cost. In these figures, as Nproc becomes bigger, their Ratemsg-costs appear to
be converging very close to 0.5. Especially, as becomes close to 1, i.e., the difference
between two one-way communication costs, Cmult and Cuni, is smaller, the Ratemsg-cost be-
gins from much higher value. This outcome arises from the reason that the increase of
the number of processes in a group and the decrease of allows OURS to enormously
lower the number of control messages between processes in a group during failure-free
operation compared with ORIGIN-REP. In particular, if most of the physical network
types used in a cluster are broadcast, OURS can reduce very close to 50% of the total
control message cost of ORIGIN-REP.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1589

Fig. 11. Ratemsg-cost with varying values of Nproc and (continued).

In conclusion, these results show that our SBML protocol using the beneficial fea-
tures of FIFO broadcast links remarkably lowers the cost of additional inter-process
communication of the original SBML required for ensuring no rollback of surviving
processes while being capable of tolerating concurrent failures without any inconsistency
problem.

7. EVALUATION

In this section, we perform extensive simulations to measure the RSN replication
overhead of our proposed SBML protocol (OURS) against the original one based on
group communication without RSN replication functionality (ORIGIN-GC-NOREP) us-
ing a discrete-event simulation language [3]. Two performance indicators are used for
comparison; the elapsed time until the same distributed execution has been completed
(Tcomplete), and the increasing rate of the performance overhead of the two protocols for
simultaneous failures against the original SBML, ORIGIN, for only tolerating a single
failure at a time (IncreaseOverhead). A system with N nodes connected through a general
network is simulated. Each node has one process executing on it and, for simplicity, the
processes are assumed to be initiated and completed together. Each process group con-
sists of three processes and the number of process groups (NOG) is 10, 15, 20, 25, 30
and 35 (N=30, 45, 60, 75, 90, 105). Here, the degree of RSN redundancy of OURS, k, is
configured to 3. The target of each message sent from a process is always a process
group. Thus, IP multicast is used for multicasting a message to a group of processes. The
message transmission capacity of a link in the network is 100Mbps and its propagation
delay is 1ms. Every process has a 128MB buffer space for storing its message log. The
message size ranges from 1KB to 1MB. Normal checkpointing is initiated at each pro-
cess with an interval following an exponential distribution with a mean Tnc=300 seconds.
In addition, a message to a process group is sent from a randomly chosen process with an
interval following an exponential distribution with a mean of Tms=3 seconds. All experi-
mental results shown in this simulation are all averages over a number of trials.

Distributed applications used for the simulation exhibit the following four commu-
nication patterns, respectively [2].

JINHO AHN

1590

Fig. 12. Comparisons of Tcomplete of the two protocols with varying values of NOG: (a) Serial pat-
tern; (b) Circular pattern; (c) Hierarchical pattern; (d) Irregular pattern.

 Serial pattern: All process groups are organized in a serial manner and transfer mes-
sages for one way. When a process group, except the first and the last ones, receives a
message from its predecessor, it sends a message to its successor, and vice versa. The
first process group communicates with only its successor and the last one communi-
cates with its predecessor only.

 Circular pattern: A logical ring is structured for communication among process groups
in this pattern. Every process group communicates with only two directly connected
neighbors.

 Hierarchical pattern: A logical tree is structured for communication among process
groups in this pattern. Every process group, except one root group, communicates with
only one parent process group and k child process groups (k 0). The root group com-
municates with its child group only.

 Irregular pattern: The communication among process groups follows no special com-
munication pattern. Here, a message to a process group is sent from a randomly chosen
process group.

In Fig. 12, Tcomplete is indicated for the two protocols, OURS and ORIGIN-GC-

NOREP, for each application interaction pattern when the number of process group

 (a) (b)

Fig. 12. Comparisons of Tcomplete of the two protocols with varying values of NOG: (a)

 (c) (d)

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1591

Fig. 13. Comparisons of IncreaseOverhead of the two protocols with varying values of NOG.

(NOG) changes from 10 to 35 whose size is 3. As NOG becomes bigger, Tcomplete of the
two protocols rise up accordingly because their inter-group communication costs are
higher. Also, Tcomplete of OURS is larger than Tcomplete of ORIGIN-GC-NOREP because the
RSN delivery time of the first may be longer during its RSN replication procedure com-
pared with the latter. However, this simulation results indicate the difference between
Tcompletes of the two protocols ranges only from 3.2% through 7.9% of the latter irrespec-
tive of application interaction patterns.

8. CONCLUSIONS

In group communication link-based distributed systems, the presented protocol can
overcome the constraint on simultaneous failures by enabling every process to maintain
the respective RSN of each same message assigned by every other live group member
onto its own volatile memory. With this beneficial feature, it allows the system to survive
a number of simultaneous failures except the whole system failure. Also, achieving the
feature causes no extra control message by piggybacking the additional information on
the control message for logging every previous protocol essentially needs. However, this
feature may cause the time, which has elapsed until releasing the stalled messages, to be
a little longer. But, the control message including the different RSNs of each message
needs to be multi-casted to a group at once in our protocol whereas if the group size is k,
the original SBML with RSN replication functionality requires that k individual control
messages from its sender should be sent to all group members. The analysis and simula-
tion results show that the proposed protocol can be a lightweight fault-tolerance tech-
nique for addressing the critical limitation of the original one based on group communi-
cation without RSN replication functionality, i.e., capable of masking sequential failure
only.

REFERENCES

1. L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic, causal, and
optimal,” IEEE Transactions on Software Engineering, Vol. 24, 1998, pp. 149-159.

2. G. R. Andrews, “Paradigms for process interaction in distributed programs,” ACM
Computing Surveys, Vol. 23, 1991, pp. 49-90.

JINHO AHN

1592

3. R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and H. Y. Song,
“Parsec: a parallel simulation environments for complex systems,” IEEE Computer,
Vol. 31, 1998, pp. 77-85.

4. L. Bautista-Gomez, T. Ropars, N. Maruyama, and S. Matsuoka, “Hierarchical clus-
tering strategies for fault tolerance in large scale HPC systems,” in Proceedings of
IEEE International Conference on Cluster Computing, 2012, pp. 355-363.

5. W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra, “Post-failure re-
covery of MPI communication capability: design and rationale,” The International
Journal of High Performance Computing Applications, Vol. 27, 2013, pp. 244-254.

6. A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P. Lemarinier, and F. Magniette,
“MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic sender
based message logging,” in Proceedings of International Conference on High Per-
formance Networking and Computing, 2003, pp. 1-17.

7. D. Buntinasd, C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodri-
guez, and F. Cappello, “Blocking vs. non-blocking coordinated checkpointing for
large-scale fault tolerant MPI protocols,” Future Generation Computer Systems, Vol.
24, 2008, pp. 73-84.

8. K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of
distributed systems,” ACM Transactions on Computer Systems, Vol. 3, 1985, pp. 63-
75.

9. F. Cappello, A. Guermouche, and M. Snir, “On communication determinism in par-
allel HPC applications,” in Proceedings of the 19th International Conference on
Computer Communications and Networks, 2010, pp. 1-8.

10. S. Di, L. Bautista-Gomez, and F. Cappello, “Optimization of multi-level checkpoint
model with uncertain execution scales,” in Proceedings of International Conference
for High Performance Computing, Networking, Storage, and Analysis, 2014, pp.
907-918.

11. E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson, “A survey of rollback-recovery
protocols in message-passing systems,” ACM Computing Surveys, Vol. 34, 2002, pp
375-408.

12. D. Johnson and W. Zwaenpoel, “Sender-based message logging,” in Proceedings of
the 7th International Symposium on Fault-Tolerant Computing, 1987, pp. 14-19.

13. L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Communications of the ACM, Vol. 21, 1978, pp. 558-565.

14. T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: an MPI library for
execution of parallel applications on volatile nodes,” Lecture Notes in Computer
Science, Vol. 5759, 2009, pp. 124-133.

15. H. F. Li, Z. Wei, and D. Goswami, “Quasi-atomic recovery for distributed agents,”
Parallel Computing, Vol. 32, 2009, pp. 733-758.

16. B. Gupta, R. Nikolaev, and R. Chirra, “A recovery scheme for cluster federations
using sender-based message logging,” Journal of Computing and Information Tech-
nology, Vol. 19, 2011, pp. 127-139.

17. P. Jaggi and A. Singh, “Log based recovery with low overhead for large mobile
computing systems,” Journal of Information Science and Engineering, Vol. 29,
2013, pp. 969-984.

SBML PROTOCOL FOR CONQUERING SIMULTANEOUS FAILURES WITH GROUP DISSEMINATION 1593

18. Y. Luo and D. Manivannan, “FINE: a fully informed and efficient communication-
induced checkpointing protocol for distributed systems,” Journal of Parallel and
Distributed Computing, Vol. 69, 2009, pp. 153-167.

19. M. Powell and D. Presotto, “Publishing: a reliable broadcast communication mecha-
nism,” in Proceedings of the 9th International Symposium on Operating System
Principles, 1983, pp. 100-109.

20. T. Ropars and C. Morin, “Active optimistic and distributed message logging for
message-passing applications,” Concurrency and Computation: Practice and Expe-
rience, Vol. 23, 2011, pp. 2167-2178.

21. R. D. Schlichting and F. B. Schneider, “Fail-stop processors: an approach to design-
ing fault-tolerant distributed computing systems,” ACM Transactions on Computer
Systems, Vol. 1, 1985, pp. 222-238.

22. R. E. Strom and S. A. Yemeni, “Optimistic recovery in distributed systems,” ACM
Transactions on Computer Systems, Vol. 3, 1985, pp. 204-226.

23. G. Theodoropoulos, Y. Zhang, D. Chen, R. Minson, S. J. Turner, W. Cai, Y. Xie,
and B. Logan, “Large scale distributed simulation on the grid,” in Proceedings of the
6th IEEE International Symposium on Cluster Computing and the Grid, Vol. 2,
2006, p. 63.

24. T. T. Dinh, M. Lees, G. Theodoropoulos, and R. Minson, “Large scale distributed
simulation of p2p networks,” in Proceedings of the 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processing, 2008, pp. 499-507.

25. J. Xu, R. B. Netzer, and M. Mackey, “Sender-based message logging for reducing
roll-back propagation,” in Proceedings of the 7th International Symposium on Par-
allel and Distributed Processing, 1995, pp. 602-609.

26. B. Yao, K. Ssu, and W. Fuchs, “Message logging in mobile computing,” in Pro-
ceedings of the 29th International Symposium on Fault-Tolerant Computing, 1999,
pp. 14-19.

Jinho Ahn received his B.S., M.S. and Ph.D. degrees in Com-
puter Science and Engineering from Korea University, Korea, in
1997, 1999 and 2003, respectively. He has been a Full Professor in
Department of Computer Science, Kyonggi University since 2003.
He has published more than 70 papers in refereed journals and
conference proceedings and served as program or organizing com-
mittee member or session chair in several domestic/international
conferences and editor-in-chief of journal of Korean Institute of
Information Technology and editorial board member of journal of

Korean Society for Internet Information. His research interests include distributed com-
puting, fault tolerance, sensor networks and mobile agent systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

