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Enumerating Furthest Pairs in Ultrametric Spaces
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We prove the following results on enumerating or counting furthest pairs given an ultra-
metric space with n elements:

• There is a deterministic O(F + n logn)-time algorithm for enumerating all furthest
pairs, where F denotes the total number of furthest pairs.

• There is a Monte Carlo O(n/ε2)-time algorithm that estimates the number of furthest
pairs to within a multiplicative factor in (1−ε,1+ε), where ε > 0. Furthermore, the
time complexity of O(n/ε2) cannot be improved to o(n · f (ε)) for any f (·).

Keywords: ultrametric space, furthest pairs, combinatorial enumeration, counting, Monte
Carlo algorithm

1. INTRODUCTION

An ultrametric space is a nonempty set M endowed with d : M×M → [0,∞) such
that

• d(x,y) = 0 iff x = y (identity of indiscernibles),

• d(x,y) = d(y,x) (symmetry), and

• d(x,z)≤max{d(x,y),d(y,z)} (strong triangle inequality)

for all x, y, z ∈M. It is fundamental in mathematical analysis.
Consider the problem of enumerating/counting point pairs with the longest distance

(called the diameter) in an n-point ultrametric space. The problem can be solved trivially
in O(n2). We show the following:

• There is a deterministic O(F +n logn)-time algorithm for enumerating all furthest
pairs, where F denotes the total number of furthest pairs. (A pair (a,b) ∈ M2 is
furthest if d(a,b) is the diameter.)

• There is a Monte Carlo O(n/ε2)-time algorithm that estimates the number of fur-
thest pairs to within a multiplicative factor in (1− ε,1+ ε), where ε > 0. Further-
more, the time complexity of O(n/ε2) cannot be improved to o(n · f (ε)) for any
f (·).
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Input: Nonempty S⊆ [n]
1: Pick p ∈ S arbitrarily;
2: for all s ∈ S do
3: Query for d(p,s);
4: if d(p,s) = ∆ then
5: Print (p,s);
6: end if
7: end for
8: T ←{s ∈ S\{p} | d(p,s) = ∆};
9: Print all pairs in T × (S\ (T ∪{p}));

10: if T ̸= /0 then
11: Enum.-furthest(T );
12: end if
Fig. 1. Algorithm Enum.-furthest for enumerating all (s,s′) ∈ S2 satisfying d(s,s′) = ∆, where ∆

is obtained by Furthest-Pair during preprocessing (done only once).

Clearly, no o(F)-time algorithms can enumerate all F furthest pairs. So our first
algorithm is optimal up to an additive O(n logn). Our second algorithm takes o(n2) time;
hence it only reads an o(1) proportion of distances.

The problem of finding all furthest pairs on the Euclidean plane can be solved in
O(n logn) time [1]. Another problem is to compute, for each vertex p1 of a simple poly-
gon P, a vertex p2 of P with the maximum geodesic distance to p1, where the geodesic
distance between p1 and p2 is the minimum distance needed to go from p1 to p2 along
the boundary of P. This problem has an O(n logn)-time O(n)-space algorithm [2]. In
recent years, there are a lot researches on o(n2)-time algorithms for metric-space prob-
lems, especially in big data. Usually, we just get approximate answers. There is a lot
of algorithmic research along these lines. This includes research on approximate furthest
pairs in metric spaces [3] and an O(1/εO(1))-time (1+ ε)-approximation algorithm for
the 1-median problem in ultrametric spaces [4]. In [5], a heuristic is designed to find the
furthest neighbor of a given point. All known algorithms for finding a furthest pair among
n points in Rd require Ω(n2−1/Θ(d)) time [6].

2. ENUMERATING ALL FURTHEST PAIRS

Let ([n],d) be an ultrametric space with diameter ∆ ≡ maxx,y∈[n] d(x,y) and ε > 0,
where [n] ≡ {1,2, . . . ,n}. It is well-known that there exists a deterministic O(n)-time
algorithm, hereafter called Furthest-Pair, for finding (a,b) ∈ [n]2 satisfying d(a,b) = ∆.
Assume all pairs in [n]2 to be unordered. For example, [2]× ([n] \ [2]) contains 2(n− 2)
(rather than 4(n−2)) pairs. Define

F ≡
∣∣{(u,v) ∈ [n]2 | d(u,v) = ∆

}∣∣ (1)

to be the number of furthest pairs.

Lemma 1. In Algorithm Enum.-furthest (line 9, in Fig. 1), each (s,s′) ∈ T ×
(S\ (T ∪{p})) satisfies d(s,s′) = ∆.
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Fig. 2. An illustration of p (the leftmost circle), T (the upper rectangle), S \ (T ∪{p}) (the lower
rectangle), a pair in B (the dashed rounded rectangle) and a pair in C (the double rounded rectangle).

Proof. Take any s ∈ T and s′ ∈ S\ (T ∪{p}). By the strong triangle inequality, d(p,s)≤
max{d(p,s′),d(s′,s)}. By line 8, d(p,s) = ∆ and d(p,s′)< ∆. So d(s,s′) = ∆.

Lemma 2. In Algorithm Enum.-furthest (in Fig. 1), each (t, t ′) ∈ (S\ (T ∪{p}))2 satis-
fies d(t, t ′)< ∆.

Proof. By the strong triangle inequality, d(t, t ′) ≤ max{d(p, t),d(p, t ′)}. As t, t ′ ∈ S \
(T ∪{p}), we have d(p, t), d(p, t ′)< ∆ by line 8.

Lemma 3. Algorithm Enum.-furthest (in Fig. 1) enumerates all (s,s′) ∈ S2 satisfying
d(s,s′) = ∆ (and nothing else).

Proof. The lemma is trivial when |S| ≤ 1. Assume as induction hypothesis that the re-
cursive call in line 11 outputs all (s,s′) ∈ T 2 satisfying d(s,s′) = ∆ (and nothing else).
Clearly, lines 2–7 output all pairs in {p}× S with distance ∆. The set of pairs in S2 but
not in {p}×S is exactly

(S\{p})2 = T 2∪B∪C, (2)

where

B = T × (S\ (T ∪{p})) ,

C = (S\ (T ∪{p}))2 .

See Fig. 2 for an illustration.1 The induction hypothesis says that all pairs in T 2 with
distance ∆ are printed by the recursive call in line 11. By Lemma 1, all pairs in B have
distance ∆ – These are exactly the outputs of line 9. By Lemma 2, each pair in C has a
distance less than ∆. Clearly, no pairs in C are printed.

Enum.-furthest([n]) makes several levels of recursive calls.2 We say that a recursive
call is bad if |T |< |S|/2 (where T is as in line 8) and good otherwise.

1Recall that pairs are unordered by default in this paper.
2Enum.-furthest([n]) denotes Enum.-furthest with the whole ground-set [n] as input.
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Lemma 4. There are at most lgn bad recursive calls.

Proof. A bad recursive call at least halves the size of the argument to Enum.-furthest
(from S to T in line 11, where |T |< |S|/2 by badness).

Lemma 5. In a good recursive call, lines 1-9 take time at most proportional to the number
of pairs printed.

Proof. Clearly, lines 2-7 and 9 print exactly |T | and |T × (S \ (T ∪{p}))| pairs, respec-
tively. So the number of pairs printed is |T |+ |T ×(S\(T ∪{p}))|. Clearly, lines 1-9 take
time O(|S|+ |T × (S\ (T ∪{p}))|). By goodness, |T | ≥ |S|/2. I.e., |S| ≤ 2|T |.

Lemma 6. In a bad recursive call, lines 1-9 take time O(|S|) plus a quantity at most
proportional to the number of pairs printed.

Proof. Clearly, lines 1-8 and 9 take time O(|S|) and O(|T×(S\(T ∪{p}))|), respectively.
Line 9 alone prints |T × (S\ (T ∪{p}))| pairs.

Recall that F is the number of furthest pairs. We now prove that Enum.-furthest([n])
enumerates furthest pairs in O(F+n logn) time. Clearly, writing down all F furthest pairs
takes time Ω(F). So our algorithm is optimal up to an additive O(n logn).

Theorem 7. Enum.-furthest([n]) takes O(F + n logn) time and enumerates all pairs
(s,s′) ∈ [n]2 satisfying d(s,s′) = ∆.

Proof. By Lemma 3, Enum.-furthest([n]) enumerates all F furthest pairs (and nothing
else). By Lemma 5, the time taken by the good recursive calls is at most proportional to
the total number of pairs printed, or F . By Lemma 6, bad recursive calls take a total of

O

(
k

∑
i=1
|Si|

)
+O(F) (3)

time, where k denotes the number of bad recursive calls and Si the argument to the ith bad
recursive call. By Lemma 4, there are at most lgn bad recursive calls, i.e., k ≤ lgn. So
∑

k
i=1 |Si|= O(n logn).

3. RANDOMIZED COUNTING

Theorem 8 ([7]). (Chernoff’s Bounds). Let X = ∑
n
i=1 Xi, where Xi = 1 with probability p

and Xi = 0 with probability 1− p, and all Xi are independent. Let µ = E(X) = np. Then

Pr [X ≥ (1+δ )µ]≤ e−
δ2

2+δ
µ ,

Pr [X ≤ (1−δ )µ]≤ e−µδ 2/2

for all 0 < δ < 1.

Lemma 9. F ≥ n.
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Proof. Let a, b ∈ [n] be such that d(a,b) = ∆. By the strong triangle inequality, either
d(a,x) or d(b,x) (or both) equals ∆ for each x ∈ [n].

By convention, a Monte Carlo algorithm is allowed to err with probability 1/3 (or
any small constant).

Theorem 10. There exists a Monte Carlo O(n/ε2)-time algorithm estimating F to within
a multiplicative factor in (1− ε,1+ ε), for all ε > 0.

Proof. Take m independent and uniformly random pairs, {(ai,bi) ∈ [n]2}m
i=1, for m to

be determined later. So ai and bi are uniformly random elements of an ultrametric
space ([n],d) for all 1 ≤ i ≤ m. In expectation, {(ai,bi)}m

i=1 contains mF/
(n

2

)
furthest

pairs. By Chernoff’s bound, {(ai,bi)}m
i=1 contains more than (1+ ε)mF/

(n
2

)
or fewer

than (1− ε)mF/
(n

2

)
furthest pairs with probability exp(−Ω(ε2mF/

(n
2

)
)). By Lemma 9,

exp(−Ω(ε2mF/
(n

2

)
))≤ exp(−Ω(ε2m/n). Taking m =Cn/ε2 for a sufficiently large con-

stant C > 0 drives the error probability below 1/3.

An immediate question is: Can the time complexity in Theorem 10 be improved to
o(n · f (ε)) for some f (·)? The answer is negative.

Theorem 11. There does not exist a Monte Carlo o(n)-time algorithm estimating F to
within a multiplicative factor in [1/C,C], for any constant C > 1.

Proof. Consider ultrametric spaces ([n],d) such that there exists a set S ⊆ [n] satisfying
(1) d(s,x) = ∆≫ 1 for all s ∈ S and x ∈ [n] \ {s}, and (2) d(x,y) = 1 for all distinct x,
y ∈ [n] \ S. Let B > C100 be any large constant. Then pick u1, u2, . . ., uB independently
and uniformly at random from [n]. Consider the following cases:

Case 1: S = {u1,u2, . . . ,uB}. So about Bn distances are furthest.

Case 2: S = {u1}. So about n distances are furthest.

With o(n) queries, the probability of obtaining a non-1 distance is o(1) in both cases. So
with probability 1− o(1), it will be information-theoretically impossible to distinguish
between the two cases. If F can be approximated to within a multiplicative factor in
[1/C,C], then we should be able to distinguish between the two cases, a contradiction.

4. CONCLUSION

Consider the problem of enumerating/counting point pairs with the longest dis-
tance (called the diameter) in an n-point ultrametric space. We give a deterministic
O(F + n logn)-time algorithm for enumerating all furthest pairs, where F denotes the
total number of furthest pairs. Then we give a Monte Carlo O(n/ε2)-time algorithm es-
timating F to within a multiplicative factor in (1− ε,1+ ε), for all ε > 0. Finally, we
prove the non-existence of a Monte Carlo o(n)-time algorithm estimating F to within a
multiplicative factor in [1/C,C], for any constant C > 1.
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