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This article presents a new method for video representation, called trajectory based 

3D convolutional descriptor (TCD), which incorporates the advantages of both deep 
learned features and hand-crafted features. We utilize deep architectures to learn dis-
criminative convolutional feature maps, and conduct trajectory constrained pooling to 
aggregate these convolutional features into effective descriptors. Firstly, valid trajectories 
are generated by tracking the interest points within co-motion super-pixels. Secondly, we 
utilize the 3D ConvNet (C3D) to capture both motion and appearance information in the 
form of convolutional feature maps. Finally, feature maps are transformed by using two 
normalization methods, namely channel normalization and spatiotemporal normalization. 
Trajectory constrained sampling and pooling are used to aggregate deep learned features 
into descriptors. The proposed (TCD) contains high discriminative capacity compared 
with hand-crafted features and is able to boost the recognition performance. Experi-
mental results on benchmark datasets demonstrate that our pipeline obtains superior per-
formance over conventional algorithms in terms of both efficiency and accuracy. 

 
Keywords: human action recognition (HAR), deep learning, trajectory feature, hybrid 
featured, super-pixel 
 
 

1. INTRODUCTION 
 

Over the last decade, Human Action Recognition (HAR) has been one of the ena-
bling component behind video understanding and Human-Computer Interaction (HCI) 
with huge pool of potential applications. The applications include: video indexing, video 
content analysis, video surveillance, video entertainment, Ambient-Assisted Living (AAL), 
abnormal behaviors detection, and intelligent driving. Despite receiving much attention 
from the research community and achieving effective results, HAR remains as a chal-
lenging task when focusing on realistic datasets collected from web videos, TV shows 
and movies. There are so many intra-class variations caused by partial occlusion, the 
presence of background clutter, camera motion, various motion styles and viewpoint 
changes. Meanwhile, videos with low resolution and high dimensionality may restrict 
recognition problem. To address the aforementioned issues, there is immense need of 
effective visual representations.   
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We can break down the pipeline of HAR into three main steps: feature extraction, 
encoding and classification. While for the classification part, the existing techniques are 
more mature, but for feature extraction and encoding there is still a significant room for 
improvement. Currently, there are two main directions of video feature extraction: deep 
features and hand-crafted features. Deep features are learned throughout a trainable deep 
neural network, providing high discriminative power on the upper layers of the network 
and having the ability to model high level of information (objects and actions) in a much 
better way. Deep feature-based techniques represent a breakthrough in research and ob-
taining remarkable results while hand-crafted features are manually designed and usually 
contain low-level information such as appearance and edge characteristics. Calculation 
of local features in these approaches can be usually decomposed into two phrases: detector, 
which aims to discover the salient and informative regions for action understanding, and 
descriptor, whose goal is to describe the visual patterns of extracted regions. Representa-
tions of hand-crafted local features are considered very effective to deal with large varia-
tions of motion speed, background clutter, video noise and illumination changes. However, 
these approaches may lack discriminative and semantic capacity for action recognition. 
Handcrafted feature-based techniques require expert designed feature detectors, descriptors, 
and vocabulary building methods for feature extraction and representation. This feature en- 
gineering process is labor-intensive and requires expertise of the subject matter. 

With the current high availability of pre-trained off-the-shelf neural network and to 
overcome the limitations of hand-crafted techniques, current research is directed to deep 
learning-based approaches. These representations are characterized by their high level of 
sparsity and discriminative power and can be applied to several domains such as speech 
recognition, image classification and object recognition. Deep-learning-based methods 
automatically learn high level of semantic information from training data without apply-
ing any heuristic rules. However, deep-learning-based models lack consideration of tem- 
poral characteristics of video data and require huge amount of data for training, while 
most available datasets are relatively small. Meanwhile, most of the current deep-learn- 
ing-based action recognition models largely ignore the intrinsic difference between spa-
tial and temporal domain, and just treat temporal dimension as feature channels.  

Motivated by above analysis and inspired by the method of Wang et al. [1] which 
combined the trajectories with deep convolution features for action recognition. In this 
work, we intelligently incorporate video temporal characteristics into deep architectures 
by using strategy of trajectory-constrained sampling and pooling, and propose a new 
descriptor called trajectory-based 3D convolutional descriptor (TCD). Firstly, we use the 
combination of motion boundary detector and super-pixel to detect salient motion re-
gions then valid points are tracked within salient motion super-pixels. After that, trajec-
tories are extracted by using KLT and SIFT tracker on the salient motion points within 
super-pixels. Secondly, we use the spatio-temporal stream for 3D ConvNet (C3D) [3] to 
model temporal information and capture multi-scale feature maps. Finally, we apply tra-
jectory-based sampling and pooling over extracted feature maps to obtain our descriptors 
(TCDs). We encode the generated descriptors by vector of locally aggregated descriptors 
(VLAD) [33] encoding scheme. Our main contributions in this article are three-fold: 

(1) We efficiently integrate the reduced but valid trajectories with deep learning features 
into a descriptor, while maintaining the low computational complexity. 
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(2) We experimentally show that combination of both features provides reliable repre-
sentation with intrinsic characteristics and obtains superior and robust performance, 
as evidenced by comparison with the other state-of-the-art approaches.  

(3) Our automatically learned descriptors (TCDs) are complimentary to available hand- 
crafted features (HOF, HOG, and MBH) and contain high discriminative capacity. 
Their fusion is able to further boost the recognition accuracy. 

 
The remainder of this article is organized as follows: Section 2 reviews the related 

works. In section 3, we present the extraction of both hand-crafted and deep features 
pipeline. Section 4 explains the designing process of trajectory-based 3D convolutional 
descriptor (TCD). We demonstrate the experimental evaluation in section 5. Finally, 
conclusion is drawn in section 6.    

2. RELATED WORKS  

Hand-Crafted Based Representations  Early research efforts mainly rely on hand- 
crafted local features and have become effective representations. Most of these approa- 
ches used detectors to define informative regions, which are robust to video noise and 
background clutter. In [5], Harris3D detector has been proposed to effectively extract the 
salient regions. Hessian detector [6] is used for blob detection in images. In [2], combi-
nation of the motion boundary detector with super-pixels is presented to detect informa-
tive motion regions. LTP [7], 3-D SIFT [8] and cuboid [9] have shown effectiveness and 
robustness against noise and partial occlusion. These aforementioned approaches com-
monly focus on extracting texture and edge characteristics defined by interest points. 
However, these approaches blend together different types of motions related to human 
action within the 3D space time block, thus resulting in a loss of discriminative power. 
Meanwhile many trajectory-based feature extraction methods have been introduced to 
facilitate motion information in effective ways. SIFT matching [10], KLT-based tracker 
[11] and dense trajectory features (DTF) [12] make it possible to separate different types 
of motion information from background information but these methods do not effectively 
blend the different types of motion related to a human action. Many hand-crafted local 
descriptors such as HOG-3D [13], Extended SURF [6], histogram of oriented gradient 
(HOG) [14], histogram of optical flow (HOF) [15], trajectory shapes (TS) [16] and mo-
tion boundary histogram (MBH) [17] have shown remarkable performance. These ap-
proaches extract the 3D volume around the interest points. However, unable to capture 
the local contents and classify the complex actions. Improved DT (iDT) [18], which is 
considered as state-of-the-art method makes use of sample interest points and optical 
flow to extract dense trajectories and represents each trajectory using different de-
scriptors such as (HOG), (HOF), (MBH) and (TS). IDT method uses a human detector to 
suppress camera motion by estimating homography and is able to effectively represent 
the complex motion of human action. However, various issues such as presence of irrel-
evant and redundant trajectories and computational complexity still need to be addressed 
in a satisfactory way.    

Mid and High-Level Video Representations  To overcome these aforementioned lim-
itations, several mid-high-level video representations scheme have been developed such 
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as Motionlets [19], DynamicPoselets [20], Actons [21], Actions Bank [22] and Motion 
Atoms and Phrases [23]. These approaches utilized some heuristic mining methods to 
extract discriminative visual points from feature units. But these methods are not fully 
able to address the complex issues related to human action recognition.  
 
Deep Learning-Based Representations  Due to the remarkable success of deep-CNNs, 
recent research is directed to deep-neural networks for action recognition. CNNs are 
widely used to learn spatial and temporal features and have been successfully applied to 
several domains such as speech recognition, object recognition, image classification, and 
human action recognition. Most of the early methods are based on convolution neural 
networks (CNNs) to learn deep video representations. Ji et al. [24] extended 2D Conv- 
Net to video domain for action recognition on relatively small datasets, and recently 
Karpathy et al. [25] tested ConvNets with deep structures on a large dataset, called 
Sports-1M. Two-stream ConNet designed by Simonyan et al. [26] is probably the most 
successful architecture at present. It is composed of two neural networks, namely spatial 
nets and temporal nets. Spatial nets mainly capture the discriminative appearance fea-
tures for action understanding, while temporal nets aim to learn the effective motion fea-
tures. There have been a number of other prominent attempts such as Convolution RBMs 
[27], 3D ConNets [24], Deep ConNets [25] and learning spatio-temporal with 3D Con-
Nets (C3D) [3] have achieved competitive recognition results. In these types of ap-
proaches, all features engineering processes are not very labor-intensive and the semantic 
representation is learned automatically from raw video data. We can characterize the 
deep features by their high discriminative capacity. Despite prominent contributions of 
these deep-learning-based approaches, there are some limitations as well. CNN-based 
networks only capture temporal dynamics and ignore the intrinsic difference between 
spatial and temporal domain. Another problem associated with these models is that they 
highly relied on large training datasets, while most of current available datasets are rela-
tively small. 

To address these issues, we propose a new method by incorporating the spatial and 
temporal characteristic of both hand-crafted and deep-learning features. The proposed 
descriptor can be applied to any small-size dataset for action recognition. 

3. EXTRACTION OF HAND-CRAFTED AND DEEP FEATURES 

In this section, we explain the methods for extracting hand-crafted and deep fea-
tures. Section 3.1 details the extraction of hand-crafted features and relevant trajectories 
by tracking the interest points. In section 3.2, we present the process of extracting deep- 
learning features by using spatio-temporal stream of 3D ConNet [3]. Fig. 1 illustrates the 
complete overview of our framework. 

3.1 Extraction of Hand-Crafted Features (Relevant Trajectories) 

Despite the promising level of performance achieved by existing trajectory-based 
methods, a number of weaknesses still need to be addressed, such as computational com- 
plexity, presence of irrelevant changes and lack of robustness to camera motion. IDT [18] 
can be considered as the most effective trajectory-based representation and can efficient- 
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ly address aforementioned issues. However, IDT still suffers from some weaknesses, 
such as presence of substantial amount of redundant trajectories. In this section, we pre-
sent an effective way to extract compact but valid and relevant trajectories at minimal 
computing cost, which can efficiently satisfy the current HAR requirements. 

 

 
 
 
 
 
  
 
 
 
 
  
 

Fig. 1. Detailed description of the proposed framework. 

 
Under the constrained environment, the changes of consecutive frames that are 

caused by motioning objects are only in local regions. Therefore, we select salient mo-
tion boundaries then define the super-pixels which contain salient information as change 
regions. Recently, motion boundary detector provides the most appealing way to sup-
press the camera constant motion and extraction of motion features by utilizing optical 
flow gradients. Motivated by the [2], we introduce a method in which salient motion 
features are detected by using motion boundary detector and then adaptive threshold 
method is used to define motion boundaries. The super-pixels that contain salient key 
points are defined as relative motion regions. Finally, SIFT matching [10] and KLT- 
based tracker [11] are used to generate the trajectories within super-pixels. The process 
of extracting motion super-pixel and trajectories by using our proposed method is shown 
in Fig. 2. 

 

 
(a) Image frame   (b) Optical flow  (c) Motion boun-  (d) Motion super-  (e) Valid trajectories 

                                  daries           pixels   
Fig. 2. Process of salient motion super pixels and trajectories extraction. 
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The gradients of the variations of optical flow can be computed at point X and its 
surrounding grid points. It is very useful to decompose the gradient of optical flow into x 
and y directions, and a histogram can be obtained in both x and y directions. The com-
puted optical flow is shown in Fig. 2 (b) and optical flow gradients in x and y direction 
can be represented by Eq. (1). 

( , ) ( , )
,  .x y

v x y u x y
V V

x y

 
 

 
 (1) 

Where Vx and Vy are the horizontal and vertical flow gradient maps, each partial deriva-
tive captures the change of optical flow (i.e., the motion boundary) with v and u as its 
correspondents. The changes of two consecutive frames Ft and Ft+1 are always in local 
regions and we can compute the salient motion boundaries information by using Eq. (2), 
as shown in Fig. 2 (c). 

1
2 (| | | |)FT x yA V V   (2) 

Where AFT is the quantity that measures the motion boundary information at any patch 
Pt,j of the frame. Eq. (2) measures the normalized sum of the change of the motion vec-
tors. Now, we can define the super-pixels as change regions, which contain the key in-
formation, as illustrated in Fig. 2 (d). We first pre-define the changes number q = HWa 
between the consecutive boundary images, which is proportional to the image resolution 
WH. Empirically, a is set to 0.002  a  0.003. Secondly, the pixel values distribution is 
computed by uniform quantization level Bin. After quantizing, the bin indexes which 
satisfy q are ranked by the number within each interval. Having selected the last index 
Indmax from the ordered indexes, the adaptive threshold  can be calculated by Eq. (3).     

 = Vmin + Indmax (Vmax – Vmin)/Bin, (3) 

where Vmax and Vmin are the maximum and minimum values in boundary image. 
After this, we apply the KLT and SIFT tracker on salient motion super-pixels to 

track multiple points at original spatial scales. KLT and SIFT served as complementary 
sources to generate trajectories. The trajectories generated by our method are shown in 
Fig. 2 (e). In summary, given a video V, we obtain a set of trajectories as: 

K(V) = {K1, K2, K3, …, KT}, (4) 

where T is the number of trajectories and KT denotes the tth trajectory in the original spa-
tial scale:  

1 1 1 2 2 2{( , , ), ( , , ),..., ( , , )}.t t t t t t t t t
T p p pK x y z x y z x y z  (5) 

Where ( , , )t t t
p p px y z  is the pixel position of the pth point in trajectory KT. These trajecto-

ries will be used to extract our TCD by using trajectory-constrained sampling and pool-
ing process. 
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3.2 Deep Features Extraction 

This section represents the pipeline for deep features extraction. In principle, any 
kind of ConvNet architecture can be adopted for TCD extraction. In our implementation, 
we choose the 3D ConvNet (C3D) [3] for the spatio-temporal stream due to their re-
markable performance on prominent public datasets. This network can be trained on 
large-scale video dataset and modeled the appearance and motion information simulta-
neously. The empirical and systematic study indicates that homogeneous setting with 
convolution kernels of 333 is the best option for C3D net. With these kernels settings 
C3D net can be used as deep as possible subject to the machine memory limit and com-
putation affordability.  

3.2.1 C3D network architecture 

C3D network has the ability to learn visual patterns directly from pixels without any 
pre-processing step. The architecture of C3D comprises of trainable filters and local pool 
operations, which is very useful to find hidden patterns in a video frame and captures all 
tiny changes in terms of spatial and temporal information. 

 
Table 1. The convolutional and pooling layers of the C3D architecture. 

Layers Conv1a Conv2a Conv3a Conv3b Conv4a Conv4b Conv5a Conv5b 
Size 333 333 333 333 333 333 333 333 

Stride 111 111 111 111 111 111 111 111 
Channel 64 128 256 256 512 512 512 512 

Ratio 1 1/2 1/4 1/4 1/8 1/8 1/16 1/1 
Layers Pool1 Pool2 Pool3 Pool4 Pool5 Fc6 Fc7  

 
Softmax 

Layer 

Size 122 222 222 222 222  
Stride 122 222 222 222 222  

Channel 64 128 256 512 512 4096 4096 
Ratio 1/2 1/4 1/8 1/16 1/32  

 

 
Fig. 3. Complete network architecture of C3D. 

 
The architecture of C3D network is given in Fig. 3 and (Table 1) illustrates the dif-

ferent parameters setting of each convolutional and pooling layer. We refer 3D Convolu-
tion and pooling kernel size as dkk, where d is kernel temporal depth and k is kernel 
spatial size. The network has 5 convolution layers and 5 pooling layers (each convolu-
tion layer is immediately followed by a pooling layer), 2 fully connected layers and soft- 
max loss layer. The number of channels (filters) for 5 convolution layers from 1 to 5 are 
64, 128, 256, 512, and 512 respectively. Ratio represents the spatial map size ratio. In 
both spatial and temporal dimensions, all convolutional layers have 333 convolution 
filters with stride 111. All pooling layers from pool2 to pool5 (except for the first lay-
er) have 222 pooling kernels with stride 222 which means the size of the output 
signal is reduced by a factor of 8 compared with input signal. The first pooling layer i.e. 
pool1 layer has kernel size 122 with the intention of not to merge temporal signal and 
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to preserve the temporal information in the early phases. The output of each convolu-
tional layer is a kind of volume in the form of feature maps. All pooling layers lead to the 
same number of feature maps as convolution layers but with reduced spatial resolution 
and also these pooling layers introduce the scale-invariant features. The two fully con-
nected layers have 2048 outputs and finally softmax layer is used to predict action labels.  

 
3.2.2 Extraction process of feature maps 

 
For the extraction of feature maps, we utilize C3D network [3] which can yield a 

feature hierarchy with increasing complexity. The special trainable filters of C3D net-
work capture the input data and automatically extract the spatiotemporal features for 
classification. The degree of abstraction of features is enhanced as the number of layers 
increases. The result of a convolutional layer for each channel can be viewed as a spati-
otemporal block i.e., feature map. Through visualizing the feature maps, it can be found 
that the bottom two convolutional layers i.e. Conv1a and Conv2a learn the underlying 
features such as edges and colors. The next two layers i.e. Conv3a and Conv3b extract 
high texture features. Conv4a and Conv4b learn more discriminative features such as 
face of the object. The last two layers i.e. Conv5a and Conv5b have larger receptive 
fields and obtain the most invariant and discriminative features (complex visual ele-
ments). This is the reason, we only consider the output feature maps of layer Conv5b for 
our model because these feature maps have high level of visualization and projection. 

Similar to [3], we use a sampling step size of one frame to iterate over the frames of 
the video for creating the input clips. As the last layer of this network i.e., pool5 has the 
size of feature maps of only 44. In our pipeline, we make a modification in the network. 
We only consider the output feature maps of layer conv5b and will remove the layers 
from pool5 to fc7. The layer conv5b contains two feature maps (Spatial and temporal 
feature maps), each of them 77512. These feature maps will be used for extracting 
TCD in the next subsection. We can represent these two feature maps as: 

Cs denotes the feature map of spatial scale and Ct is the feature map of temporal 
scale of M layers.   

1 2 3

1 2 3

{ , , ,..., } and

{ , , ,..., }

s s s s
s m

t t t t
t m

C c c c c

C c c c c




 

So we can represent the set of all convolutional maps of video stream V as: 

Cv = {Cs, Ct}. (6) 

We denote the size of the feature map by Cv  HWDN, where H and W are the height 
and width in spatial dimension, D is the depth in temporal dimension, and C is the num-
ber of channels. 

4. TRAJECTORY BASED 3D CONVOLUTIONAL DESCRIPTOR (TCD) 

TCD is a kind of local trajectory-aligned descriptor computed in a 3D volume 
around the trajectory. The size of the volume is NN pixels, where N is the receptive 
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field size and P is the trajectory length. This section describes the method for extracting 
TCDs from convolutional feature maps Cv and a set of valid trajectories K(V) for a given 
video V. Our extracted feature maps capture the appearance and motion information of 
3D volume by using C3D net. However, to enhance the robustness of TCDs and to trans- 
form the feature maps in more scalable and generalized form, we design two normaliza-
tion method, namely spatiotemporal and channel normalization. These normalization 
methods provide the following useful aspects to boost the recognition accuracy. 

 
(1) To ensure the high visualization of the feature maps and their projection to the image 

space. 
(2) To reduce the influence of the illumination changes and to keep the discriminative 

information intact in the feature maps. 
(3) To suppress the activation burstiness caused by some neurons in the C3D net. 
(4) To make sure that the feature value of each pixel range in the same interval, and let 

each pixel make the equal contribution in the final representation.  
 
Spatiotemporal normalization is conducted by dividing the feature map values by the 
maximum value of the spatiotemporal block for each channel. Given a feature map Cv  

HWN, we normalize the feature value as follows: 

C̃st(h, w, n) = C(h, w, n)/maxh,wC(h, w, n), (7) 

where maxh,wC(h, w, n) is the maximum value of nth feature map over the whole video 
spatiotemporal extent. This normalization method ensures that each convolutional fea-
ture channel ranges in the same interval, and thus contributes equally to final TCD 
recognition performance. 
 
Channel normalization is conducted by dividing the feature map values by the maximum 
value in the spatiotemporal position across different channels. Given a feature map Cv  

HWN, we can conduct channel normalization as follows: 

C̃ch(h, w, n) = C(h, w, n)/maxnC(h, w, n), (8) 

where maxnC(h, w, n) is the maximum value of different feature channels. This normali-
zation method ensures the equal contribution of feature maps in the final representation. 

After the step of feature normalization, the values of the points on feature maps are 
aligned into a same interval. In experiment, these two normalization methods are used 
separately and then results C̃st(h, w, n) and C̃ch(h, w, n) are fused to further enhance the 
performance. Fig. 4 shows some real examples of generated feature maps after normali-
zation methods. We can observe that the generated feature maps have the high visualiza-
tion with minimum illumination effects. 

Now, we will extract TCD based on valid trajectories KT and normalized convolu-
tional feature maps C̃ by performing trajectory pooling. In C3D net, spatial and temporal 
padding are implemented on the convolutional layer to make its inputs and outputs have 
the same size. The effect of the padding is that it creates the mapping between the points 
in videos and those on feature maps. So, the points with coordinate (h, w, d) in video clip 
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V corresponds to that with coordinate (rh, rw) on obtained representation of feature 
maps. Where r is the spatial map size ratio calculated in advanced, as listed in (Table 1). 
In this way, points of the trajectories KT are mapped directly on obtained normalized 
feature map C͂ when conducting trajectory pooling by using following Eq. (9).  

( , ) max (( ), ( ), ),k k
T p p

p
D K C C r h r w n     (9) 

where, r is the spatial feature map size ratio with respective to input size and ( ),k
pr h  

( )k
pr w  is mapped from the corresponding pth point (hk

p, wk
p, dk

p) of original video in tra-  

jectory KT, () is the rounding operation. So, D(KT, C̃)  NT is our designed trajectory 
based 3D convolutional descriptor (TCD), where T is the number of trajectories and N is 
the number of channels.    
 

  
Pushups Playing violen Surfing Skat boarding 

Fig. 4. Motion map after normalization methods, illustrating the discriminative information with 
high visualization and minimum effect of illumination changes.  

5. EXPERIMENTATION AND RESULTS 

In this section, the proposed approach is experimentally evaluated on well-known 
benchmark human action datasets: KTH [28], UCF101 [29], HDMB51 [30] and UCF 
Sports [31]. The description of these datasets, experimental setup and comparative anal-
ysis are presented in subsequent sections. 

5.1 Datasets and Their Validation Schemes 

The KTH dataset [28] is a well-known public dataset containing 599 video clips of 
6 human action classes, including running, jogging, walking, boxing, clapping and wav-
ing. The sequences were recorded with a fixed camera at the rate of 25 fps in different 
setups such as illuminations, appearance and scale variations. Most of the sequences are 
single view with static and homogeneous background. We follow the original experi-
mental setup i.e distributing the samples into training set of (2, 3, 5, 6, 7, 8, 9, 10 and 22) 
(9 subjects) and the remaining 16 subjects into training set. Average accuracy is reported 
as the performance measure over all classes. 

The UCF101 dataset [29] is a widely adopted benchmark for human action recogni-
tion and the extension of UCF50. It comprises of 101 action classes and at least 100 
video clips associated with each action class. There are 13,320 video clips in total. Most 
of the video clips are realistic, clean and user-uploaded videos with cluttered background 
and camera motion. We adopt validation scheme of the THUMOS13 challenge [32] and 
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follow the three testing/training splits for performance evaluation by reporting average 
recognition accuracy. 

The HDMB51 dataset [30] is a large collection of realistic videos ranging from 
YouTube and Google videos to digitized videos collected from various sources. In total, 
there are 6,766 manually annotated video sequences of 51 different action categories and 
each category contains at least 100 video clips. This dataset is very challenging and 
complex as it contains videos with more interclass variations and complicated back-
ground. For experimental setting, we follow the original evaluation guidelines [41] using 
three different testing/training splits. Each split with each action class has 30 clips for 
testing and 70 clips for training. We report the average recognition accuracy over these 
three splits. 

The UCF sports dataset [31] is also a very popular dataset and characterized by 
higher action complexity. This dataset encompasses 150 videos from 10 action classes, 
including diving, golf swing, kicking, lifting, horse riding, running, skate-boarding, 
swing-bench and walking. These videos were recorded in real sports environment taken 
from broadcast television channel such as ESPN and BBC. We adopt the evaluation 
scheme proposed in [43, 44] that splits datasets into 47 testing samples and 103 training 
samples. This kind of distribution minimizes the strong correlation of background cues 
between training and testing sets. The average accuracy is used to measure the final per-
formance. 

5.2 Experimental Setup and Parameters Tuning 

This section explains the implementation details for the validation scheme of 
benchmark datasets and training of (C3D) network. The validation scheme for KTH and 
UCF sports are given in the section 5.1. As UCF101 is larger than HMDB51 dataset so 
we use it to train (C3D) network initially, and transfer this learned model for TCD ex-
traction on the HMDB51 dataset. We choose the training dataset of UCF101 split1 for 
learning (C3D) network to extract the local deep features. Caffe toolbox is used to im-
plement our model while OpenCV is used for trajectory extraction. We fine tune the 
model parameters on the UCF101 dataset, where the learning rate is set as 10-2, de-
creased to 10-3 after 14K iterations, and training stopped at 20K iterations. 

We crop each testing frame from center and four corners with size of 224224 and 
the mirror of these crops, so there are 10 crops for each testing frame. In the temporal 
multi-scale strategy, we sample 32 frames with equal interval. We use VLAD (Vector of 
Locally Aggregated Descriptors) [33] as encoding method to capture high statistical in-
formation. Unlike iFV (improved fisher vector) [34], VLAD is simpler and based on first 
order statistics. In many recent works, VLAD encoding method outperforms the iFV, 
when using deep features. We create the codebooks from 500K random selected features 
extracted from a subset of videos. We set the size of the codebook to 256 visual words, 
which is the standard adopted size. For the classification part, we use linear SVM with 
the parameter C = 100 in all experiments. 

5.3 Experiments and Comparative Analysis 

In this section, we test our proposed method in the context of action recognition. 
We give experimental results and comparative analysis with state of the art approaches. 
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Experiment 1: Evaluation of effectiveness and efficiency of our extracted trajectories 
We compare our relative motion point trajectory method with three other state of 

the art trajectory-based methods: SIFT [10], KLT [11] and dense cuboid [9] on UCF 
Sports dataset. We list the performance of each individual descriptor (HOF, HOG and 
MBH) and their overall possible combinations in terms of average accuracy for all tra-
jectory methods in (Table 2). For SIFT, KLT and dense cuboid approaches, we adopt 
Leave-One-Out experimental setup i.e., they are using more than 90% of the data for 
training and the rest for testing. For our approach, we split dataset into 47 testing sam-
ples and 103 training samples. It can be observed that results obtained by our trajectory 
method are much superior to existing state-of-the-art existing trajectory-based methods. 
In general, the combination of all the descriptors improves the performance significantly 
on our proposed trajectory-based method. Results are 5.4% better than the best counter-
part. 

Furthermore, we also investigate the efficiency of the proposed approach, we ana-
lyzed the trajectory rejection rate and the speed of operation i.e., the number of frames 
per seconds (fps). We measured the operation time from loading of video to obtaining all 
the descriptors. We used 101 videos from the action class pushing of HMDB51, having 
an average frame size of 335240 pixels. All results are obtained on single Geforce GTX 
Titan 3.6GHZ with 6 GB RAM and GTX 980 graphics card, not using any parallel pro-
cessing. We compare our introduced approach with other existing state-of-the-art meth-
ods such as improved dense trajectories (IDT) [18], ordered trajectories (OT) [38] and 
trajectories rejection (TR) [39] methods.  

According to (Table 3), the proposed method only selects 99.90 valid and irredun-
dant trajectories per frame. On the other hand, (IDT) and (OT) select 128.72 and 110.0 
trajectories per frame respectively and (TR) produces minimum number of trajectories 
i.e., 90.41 per frame. Additionally, we can observe that the processing speed of (IDT) is 
7.82±0.003 fps and (OD) obtains 8.05±0.003 fps. In contrast, the processing speed of 
proposed approach is about 8.4±0.004 fps which is nearly 17% of increase in speed as 
compared to (IDT) and 11% as compared to (OD). The primary reason is that our ap-
proach require minimum computing time for optical flow computation. Furthermore, 
since the proposed approach does not make use of homography estimation and only ex-
tracts descriptors from the selected trajectories, the proposed approach is able to attain a 
lower computational complexity.  

 
Table 2. Performance comparisons of our method (extracted trajectories) with state of 

the art trajectories methods. We report average accuracy over all classes for 
the UCF sports dataset. 

Descriptors 
Trajectories (Tested on UCF sports Dataset) 

SIFT KLT Dense-cuboids Our (Trajectories) 
TS 55.7 72.8  71.8 

HOF 74.2 80.2 80.2 75.7 
HOG 69.9 72.7 77.8 87.3 

HOF+HOG 70.8 75.4 79.1 83.1 
MBH 72.1 78.4 83.2 86.7 

HOF+MBH 76.9 80.3 83.9 87.0 
Combined 77.9 82.1 85.5 90.9 
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Overall, our method achieves the second best results after (TR), which obtains pro-
cessing speed of 9.84±0.004 by extracting only 90.41 trajectories per frame. (TR) follow 
dynamic frame skipping scheme by computing absolute difference between two consec-
utive frames in order to measure the significance change. However, our method outper-
form the (TR) in terms of recognition accuracy as shown in (Table 7) on two well-known 
datasets. The possible reason is that, we do not follow any frame skipping scheme as in 
(TR) in order to prevent the chance of losing any valid information from skipped frames. 
In summary, our method proved very effective to minimize the computation complexity 
of different subsequent operations without any significant loss of accuracy.  

 

Table 3. Efficiency of human action recognition (%) for our method for extracted tra-
jectories and comparison with other trajectory based methods. 

Trajectory Method Total frames # of extracted Trajectories Processing time (fps) 
IDT [18] 29,258 128.72/frame 7.82±0.003 
OT [38] 29,258 110.0/frame 8.05±0.003 
TR [39] 29,258 90.41/frame 9.84±0.004 

Our method 29,258 99.90/frame 8.48±0.004 

 
Experiment 2: Exploration Experiments 

In this section, TCD is used to explore the influence of different settings in steps of 
the proposed pipeline. To specify the PCA dimension of TCD, we first explore different 
dimensions reduced by PCA on the HMDB51 dataset. We employ our proposed TCD 
with conv5b descriptor and spatiotemporal normalization to investigate the impact of 
different PCA dimensions and the results are summarized in (Table 4). We vary the di-
mension from 32 to 128 and results show that dimension 64 gets the best performance 
among them, and higher dimension may cause performance degradation. Thus, TCD is 
reduced to 64 dimension and then fed into our encoding scheme i.e. (VLAD) in the 
whole experiments. 

 
We also conduct experiments to analyze the effectiveness of normalization methods by 

using conv5b descriptor from 3D convolutional spatio-temporal net [3] on the HMDB51 
dataset. In (Table 4), we describe the average accuracy of different normalization meth-
ods. ST.Norm and Cha.Norm stands for spatiotemporal normalization and channel nor-
malization respectively and No.Norm stands for the original representation without nor-
malization. Combination of them is 5% better than No.Norm, which demonstrates the 
good effects of normalization methods. Therefore, in the remainder of this section, we 
will use the combined representation obtained from these two normalization methods for 
our TCD.   

 

Table 4. Exploration of different setting for PCA (dimension) and normalization method 
for designing TCDs. 

Different 
settings 

No. Norm Cha. Norm. ST. Norm.
Combined. 

Norm. 
PCA PCA PCA 

32 dim 64 dim 128 dim 
Accuracy 0.49 0.51 0.52 0.54 0.48 0.52 0.50 
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Experiment 3: Class-wise accuracy for action recognition 
In this section, we compute the class-wise accuracy for action recognition to evalu-

ate the performance of our method. Fig. 5 shows the category-wise accuracy of HMDB51 
dataset on test data. The horizontal-axis represents categories and the vertical-axis shows 
the percentage accuracy of corresponding category. The HMDB51 dataset contains a 
variety of actions related to human body movement, facial actions and human interaction 
for body movements. There are total 51different classes, each containing more than one 
hundred clips. For our experiment, we consider all 51 action classes. From results, it can 
be seen that recognition results of most of the categories are greater than 90%; some of 
them reach 100%; and only 4 categories have accuracies less than 50%. The variation in 
accuracy of most of the classes is between 80% to 100%. The proposed method im-
proved the recognition rate on HMDB51 dataset from 68.7% to 77%.      

We further investigate the recognition accuracy of our method by constructing con-
fusion matrix of two datasets i.e. KTH and UCF Sports datasets. The confusion matrixes 
for TCD on KTH and UCF Sports datasets are shown in (Table 5) and (Table 6) respec-
tively. The confusion matrix indicating the accuracy of each action and correspondence 
between the target classes along x-axis and output classes along y-axis. We consider 6 
action categories from KTH dataset and 10 action categories from UCF Sports dataset to 
conduct our experiment. On the KTH dataset, our model performs well on Boxing, 
HandClapping and Walking categories. According to the confusion matrix, intensity of 
the true score is high (diagonal) for each category and our method achieves 94% average 
accuracy for all six classes. It is interesting to note that in KTH dataset, some of catego-
ries with similar actions are easily confused with each other and giving the minimal false 
prediction. For example Handwaving and Handclapping, both are interfering with each 
other and misclassified. Similarly, some leg-related actions such as Jogging and Running 
are interfering with each other and giving low recognition scores. The possible explana-
tion is that Jogging has similar trajectories with Running. The confusion matrix of UCF 
Sports is also well diagonalized and our method obtains 92% average recognition accu-
racy for all 10 action categories. However, some action categories such as Golfswing, 
Kicking and Running are misclassifying each other with some minimal false prediction 
and giving low recognition scores. The underlying reasons are the similarity of the fea-
tures and representations among different actions, and the number of training samples 
are too small, despite TCD still performs well on most categories. 

 

 
Fig. 5. Class wise accuracy of HMDB51 dataset for action recognition. 
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Table 5. Confusion matrix of KTH dataset with action categories. 

Categories Boxing 
Hand  

Clapping 
Hand 

Waving
Jogging Running Walking 

Boxing 1.000 0 0 0 0 0 
Hand Clapping 0 0.95 0 0 0 0.01 
Hand Waving 0 0.03 0.94 0 0 0.01 

Jogging 0 0 0 0.91 0.02 0.01 
Running 0 0 0 0.11 0.90 0.01 
Walking 0 0  0.01 0 0.96 
Average 

  Accuracy 
  0.94 

 

Table 6. Confusion matrix of UCF sports dataset with action categories. 

Categories 
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Diving 1.00 0 0 0 0 0 0 0 0 0 
Golf-Swing 0 0.90 0.07 0 0 0 0 0.10 0 0 

Kicking 0 0.17 0.91 0 0 0 0 0.01 0 0 
Lifting 0 0 0 0.95 0 0 0 0 0 0 

Riding Horse 0 0 0 0 0.93 0 0 0 0 0.06 
Running 0 0.02 0.17 0 0.09 0.89 0 0 0 0.09 

Skateboarding 0 0 0 0 0 0 0.93 0 0 0 
Swing Bench 0 0 0 0 0 0 0 0.94 0 0 
Swing Side 0 0 0 0 0 0 0 0 0.93 0 

Walking 0 0.10 0 0.09 0 0 0 0.07 0.05 0.90 
Average 

Accuracy 
 0.92 

 

Experiment 4: Comparison to the state of the art methods 
To evaluate the effectiveness and performance of proposed TCD, we compare it to a 

variety of existing state-of-the-art methods on UCF101 and HMDB51 datasets. Since 
videos in both datasets are relatively long, we adopt a spatial-temporal multi-scale testing 
strategy for these two datasets. The comparison results are presented in (Table 7). We 
divide these baseline methods into different groups according to the type of feature being 
used, such as hand-crafted features, deep-learned features, and hybrid features. Among 
the hand-crafted feature-based techniques, iDT-FV [37] performs well and have compet-
itive results but our approach outperforms the iDT-FV by fair margin on both datasets. 
Compared with deep learning models such as Hierarchal Rank pooling [44], Chained 
Multi-stream [45], the proposed method achieves better results than [44, 45] on UCF101 
and HDMB51 respectively. As our approach is based on hybrid model, we also compare 
our method with existing state-of-the-art hybrid model based techniques such as TDD [1] 
and MTC3D [47]. Both of these models follow iDT [18] for trajectories extraction and 
adopt higher-order encoding scheme i.e. Fisher Vector (FV) to encode the handcrafted 
features. According to the result, our proposed method outperforms these two methods 
by fair margin on both datasets. The underlying reason is that our introduced method for 
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trajectories extraction is very much capable of reducing irrelevant background and cam-
era motion trajectories without skipping of any frame of video. We analyze the perfor-
mance of our TCDs with both encoding scheme i.e. improved Fisher Vector (iFV) and 
VLAD and achieve best results with VLAD encoding scheme. On the whole, the combi-
nation of (C3D) with trajectory pooling strategy provides the best results, which obtains 
the accuracy of 70.0 % on HMDB51 and 92.3% on UCF101 dataset and witness the ef-
fectiveness of trajectory-based 3D convolutional descriptor (TCD) for the action recog-
nition tasks. 
 

Table 7. Comparison of our (TCDs) method to the state-of-the-arts approaches. 
Features State of the art approach Year UCF101 HMDB51 

Hand-Crafted 

iDT [18] 2013 84.70 57.21 
iVLAD [35] 2014 84.16 56.36 

M-PCCA-MVSV [36] 2014 83.50 55.90 
iDT-FV [37] 2014 87.90 61.10 

Ordered Trajectories [38] 2015 72.80 47.30 
Trajectory Rejection [39] 2017 85.74 58.91 

Deep-CNNs 

Two-stream ConvNets [26] 2014 88.0 59.40 
Factorized ConvNets [40] 2015 88.10 59.10 

Temporal Pyramid CNNs [41] 2015 89.10 63.10 
Dynamic Images [42] 2016 89.10 65.20 

Two Stream 3D-Nets [43] 2016 90.20  
Hierarchal Rank pooling [44] 2016 91.41 66.90 

Chained Multi-stream [45] 2017 91.10 69.90 
Hidden Two-stream CNNs [46] 2017 90.30 58.90 

Hybrid 

TDD+iDT-FV [1] 2015 91.50 65.90 
MTC3D+iDT+FV [47]  2017 90.4 65.0 

Our TCD-iFV  91.40 66.70 
Our TCD-VLAD  92.3 70.0 

6. CONCLUSION 

In this paper, we introduce an effective action recognition framework in the form of 
trajectory based 3D convolutional descriptor, which efficiently integrates the merits of 
both hand-crafted and deep features. First, relative point motion trajectories are extracted 
from relative motion regions within the super-pixels. 3D convolutional architecture for 
spatio-temporal stream is utilized to learn discriminative feature maps. Then we aggre-
gate these convolutional features into TCDs by adopting trajectory constrained sampling 
and pooling techniques. In addition, we introduce some normalization methods which 
further boost the recognition accuracy. The achieved results over the benchmark datasets 
demonstrate the robustness and superiority of our video representation. 
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