
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1203-1221 (2018)
DOI: 10.6688/JISE.201809_34(5).0006

1203

An Automated Assessment System for Analysis of Coding
Convention Violations in Java Programming Assignments*

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE
Department of Information Engineering and Computer Science

Feng Chia University
Taichung, 407 Taiwan

E-mail: {hmchen; d0239867; gjl840311}@mail.fcu.edu.tw

Coding conventions are a set of coding guidelines used by software developers to

improve the readability of source code and increase software maintainability. Under-
standing coding conventions has become an indispensable discipline in software engi-
neering; however, many university-level programming courses fail to prepare their stu-
dents in this regard. In this study, we examined the distribution of coding convention vi-
olations in the assignments of programming courses where coding conventions are ne-
glected. We then developed an automated system by which students can submit their
programs and obtain immediate feedback on their coding assignments. Moreover, the
system reduces the workload on instructors by providing insight into the quality of the
code presented by students.

Keywords: code quality, coding convention, program assessment, code readability, soft-
ware maintainability, software engineering

1. INTRODUCTION

The readability of source code is an important metric in characterizing the mainte-
nance of software systems [1]. According to [2], maintenance can account for as much as
40% of the cost allotted for software development. Among software engineering tech-
niques, coding convention is one of the major factors that have a significant impact on
the readability of source code [3]. Coding conventions are a set of coding guidelines that
software developers have to follow when they are writing code. Coding conventions are
rules encompassing all concerns about improving code quality [4]. These rules are com-
monly categorized as follows: file structure, indentation, comments, white space, identi-
fier naming, declarations, statements and practices specific to programming languages
[5-10]. With coding conventions, readers can have a consistent look to source code and
understand source code more quickly. In general, the first step for newcomers at most
software companies involves familiarization with coding conventions.

Coding convention, a part of Clean Code [11], has been shown to improve produc-
tivity of software development and reduce program failures. Since most software sys-
tems are developed and maintained by a group of engineers, coding conventions make it
quicker and easier for multiple team members to review and revise code. Despite its im-
portance in the software industry, this issue is largely overlooked in programming
courses at the university level. One impediment to the application of coding conventions
in programming courses is the difficulty in reviewing programs to determine the degree

Received September 14, 2017; revised October 29, 2017; accepted December 19, 2017.
Communicated by Yu-Chin Cheng.
* This research was supported in part by Ministry of Science and Technology, Taiwan, under Grants No. 106-

2221-E-035-002, 2017.

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1204

to which they adhere to defined coding conventions.
For example, the source code in Table 1 was written in accordance with the Google

Java style [12], whereas the source code in Table 2 was written without regard for con-
ventions (arbitrarily). Both of these source code segments have the same functionality,
i.e., converting temperature from Celsius to Fahrenheit. Furthermore, both of the code
segments pass compilation and unit tests. Nonetheless, the source code in Table 1 is far
easier to read than that listed in Table 2, which contains improper indentations, spacing,
braces, identifier naming, and comments. Unfortunately, few instructors have the time to
take coding conventions into account.

Table 1. Example code following coding conventions.
1
2
3
4
5
6
7
8
9

10
11
12

public class TemperatureConverter {

 /**

* covert temperature from Celsius to Fahrehheit.
* @para Celsius Celsius temperature
* @return Fahrenheit temperature

 */
 public float covertToFahrenheit (float Celsius){
 float fahenheit = 32 + (9.0f/5.0f) * celsius;
 return fahrenheit;
 }
}

Table 2. Example code with coding convention violations.
1
2
3
4
5
6
7
8

public class TemperatureConverter {

 public float covertToFahrenheit (float Celsius)
{
 float fahenheit =

32 + (9.0f/5.0f) * celsius;
 return fahrenheit;
 }}

In this research, we developed an automated assessment system for the analysis of
code, especially with the ability to identify violations in coding conventions. The system
was developed to examine Java programs submitted by students. Another goal of the
system is to provide students with an iterative learning environment. Our aim was to en-
able students to submit coding assignments, obtain immediate feedback on the quality of
their source code, and revise the code accordingly. The assessment system also furnishes
a set of analysis reports for instructors and students alike, to help them better understand
the status of assignments.

The main contributions of this research are as follows:

1. We developed a system that automatically assesses the code quality of assignments in

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1205

Java programming courses, for use by students and instructors alike.
2. The system provides immediate feedback to facilitate the iterative development of

programming skills.
3. The system produces a variety of reports representing an overview of all assignments

as well as the details of each program submission.

The remainder of this paper is organized as follows. Section 2 reviews related liter-

ature. Section 3 presents the distribution of coding convention violations in programming
assignments in courses lacking instruction on coding conventions. The developed auto-
matic assessment system is outlined in Section 4. The operational workflow of the sys-
tem is demonstrated in Section 4. Conclusions are drawn in Section 5.

2. RELATED WORK

In recent years, a few schools have been aware of the importance of coding conven-
tions in programming courses. Li et al. [13] spent three years to investigate whether stu-
dents are willing to write code complying with coding standards. Their observation
showed that students were reluctant to apply coding standards in writing code. To under-
stand the cause, the authors made a questionnaire and distributed it to the students en-
rolled in three different programming courses. They found that more than 85% students
considered coding standards was a significant topic. However, most students do not have
time to apply coding standards in assignments. They proposed a set of teaching strategies
to motivate students developing a habit of following coding standards. One of the strate-
gies is introducing automatic tools to facilitate the compliance of coding standards when
students learn to program.

In [14], the author proposed a code review process in a programming course in or-
der to motivate students to apply coding standards and facilitate communications among
students. The process includes choosing review materials, finding peers, and holding a
review meeting, followed by submitting review reports. After the execution of a code
review process, an interview with students, who participated in the process, was con-
ducted to get their comments. The author found that applying coding review in pro-
gramming courses can gain benefits, such as getting feedback from peers and forcing
students to review code. However, it showed some drawbacks, including that students
tend to give peers higher grades, and some students may cheat. Besides, it is difficult to
apply the process in inspecting programs with large amount of code. Therefore, if there
are automatic tools that can support code review, give correct feedback and assess code
objectively, the issues of these drawbacks can be addressed.

Wang et al. [15] presented an improved peer code review process and analyzed the
behavior of the participants. Different from traditional code review processes, its im-
proved part is that students are allowed to continue sending code and getting review
feedback to/from reviewers. When the revised code was complete, students can submit it
to instructors for marks. After analyzing the participants’ behavior, they found that the
poor self-disciplined students did not consider the code quality when writing code as
well as were bursting to send their code for review and waited for review comments. On
the reviewer side, most reviewers were reluctant to review the code sent from poor pro-

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1206

gram writers. The authors said that the proposed process was not perfect due to some
problems found. If automatic code review tools are available, they can facilitate the en-
forcement of process control, avoid conspiracy and reduce review time on reviewers.

In relation to the automatic detection of coding convention violations, a number of
code analysis tools have been developed to examine violations of coding conventions
and facilitate the improvement of code quality. CheckStyle [16] is a code analysis tool
that can guide software developers to write Java code compliant with coding conventions.
It provides more flexibility in configuring checking rules associated to different types of
conventions. It also supports the generation of reports to present the types and locations
of violations after programs are examined. In this research, CheckStyle is one of the
tools integrated in our system to assess students’ programming assignments.

PMD [17] is a source code analyzer able to help software developers discover po-
tential flaws in programs. In terms of coding conventions, it can identify the violations,
including braces, code size, naming and so forth. In addition, it takes programing prob-
lems into account, such as security flaw, duplicate code, unused code, coupling, design,
optimization, exception, etc. The types of coding conventions covered by PMD are less
comprehensive than those supported by CheckStyle. Customizing checking rules of
PMD has a higher learning curve as compared to CheckStyle. PMD is usually served as a
complement to CheckStyle to advance code quality.

SonarQube [18] is a web-based application that provides a set of features to source
code analysis and a visualized dashboard to understand levels of code quality from vari-
ous viewpoints, such as bugs, vulnerabilities, code smells, duplications, and code size. It
can examine code quality continuously as long as programs are built and report distribu-
tions of coding problems over time. There are more than 25 programming languages
supported by SonarQube thus far. SonarQube is developed as a platform that allows de-
velopers to integrate it with the tools of code inspection by implementing defined inter-
faces. Thus, it can leverage the existing tools, such as CheckStyle and PMD, to detect the
violations of coding conventions and generate meaningful reports with friendly user in-
terfaces to users.

As we used Git [19] to manage source code of assignments submitted by students,
here are studies related to applying Git in programming courses. Kelleher [20] intro-
duced Git technique and GitHub [21] Cloud service in in-class exercises and assignment
homework. The author aimed to help students to be familiar with standard engineering
tools and educated them to have programming ability demanded by software industry.
The target students who learned Git are both second and third year CS undergraduate
students. For second year students, the major Git topic they learned is cloning of reposi-
tories where starter code of assignments is provided. Third year students practiced more
complicated operations of Git, such as creating own repositories, committing changes,
creating branches and so forth. The author observed that using Git in classroom brings
benefits including, secure submission, underwriting provenance, better source file or-
ganization, integrated issue tracking and exposure to standard industry practice.

Lawrance et al. [22] presented the benefits of using version control systems in
classrooms and adopted Git as a version control tool taught in three CS courses, i.e.
software engineering, complier design and object-oriented programming, as well as CS1
courses for non-CS engineering majors. The authors described the process of setting up
Git and leveraging GitHub in these courses to enable collaborative activities for students’

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1207

team projects. They learned that students appreciated using Git and continued to use Git
outside of their courses.

Kertsz [23] presented a teaching model that adopted GitHub as a collaborative plat-
form and used it in assignments of an operating system laboratory. Herein, GitHub fea-
tures are employed in collaborative activities, including fork feature to distribute as-
signments to students, pull request feature to review code pushed by students and issue
tracking feature to ask questions from students. With this model, the author can assess
students’ performances based on their collaborative logs, such as code commits, pull
requests and raising issues, which can be retrieved by accessing the web APIs provided
GitHub. A survey, made at the end of semester, pointed out most students preferred the
collaborative platform. However, there exists a higher learning curve to understand the
collaborative process of GitHub.

3. ANALYSIS OF CODING CONVENTION VIOLATIONS

In this section, we examine coding convention violations in assignments from two
Java-related programming courses: Object-oriented Programming and Mobile Applica-
tion Programming, offered at Feng Chia University, Taiwan. Neither of these courses
guide students in the use of coding conventions. Our analysis revealed the types of cod-
ing convention violations most often made by students of programming courses.

3.1 Checkstyle

Support tools, such as Checkstyle [16], PMD [17] and SonarQube [18], are helpful
in identifying coding convention violations. These tools can facilitate the detection of
coding convention violations in source code and provide recommendations on how to fix
them. In this study, we opted for Checkstyle because it was designed specifically for the
static analysis of Java code, it is highly configurable, and it is easily integrated with inte-
grated development environments (IDEs) and build tools.

Checkstyle classifies coding conventions into the following 14 categories: Imports,
Annotations, Block Checks, Class Design, Coding, Headers, JavaDoc Comments, Met-
rics, Modifiers, Naming Conventions, Regexp, Size Violations, Whitespace, and Miscel-
laneous. Users can customize their own check rules as checkers in each category. Check-
style takes the checkers specified in a configuration file and the source code as inputs. It
then parses the source code looking for violations and produces analysis results.

3.2 Experiments and Results

We examined assignments from two Java-related programming courses in order to
identify the types of coding convention violations commonly made by students. We em-
ployed Checkstyle in conjunction with Google Java Style as checkers in the analysis of
source code. Google Java Style is widely used in Java software projects. In addition,
most of its naming and formatting rules adhere to the original Java coding standard.

We began by analyzing the source code of assignments from a course on Objecto-
riented Programming. This included a total of eight assignments ranging from basic to
advanced levels. Specifically, we examined student submissions for the first, fourth, and

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1208

eighth coding assignments. The first assignment involved writing a main method to serve
as a program entry point and understanding the use of String APIs for the replacement of
specific keywords for a given String object. The fourth assignment involved writing Java
methods, implementing loop structures in methods, and invoking methods across objects.
The final assignment involved programming a group of classes based on a given UML
class diagram [24] and the implementation of Polymorphism principle [25].

As shown in Table 3, indentation violations were the most common problem. This
can likely be attributed to students who get used to adopt tabs for indenting statements.
The length of tabs is not fixed on all systems, which means that when code with tab in-
dentions is opened on a different text editor, the presentation of the code may differ. It is
for this reason that most coding standards recommend the use of spaces for indentation.
Another problem was inconsistency in the indentations of statements belonging to the
same level. Table 2 presents an example in which the indentation of statements on lines 5
and 7 should be the same. Maintaining consistency in the indentation of statements is
viewed as important throughout the software industry.

Table 3. Average number of violations in OOP assignments.

Metrics
HW1 HW4 HW8

 Count

Number of Classes 1 4 8
Lines of Code 8.5 91.2 112.6

Checker Violations

Indentation 5.5 38 50.4
Whitespace 1.4 27 38.1
Method_Def 0 2 5.2
Javadoc Comment 0.8 4.2 2.3
Identifier Naming 0.7 4 1
Brace 0 3.6 0.3

Whitespace was the second most common coding convention violation. Whitespace
rule ensures that spaces are included before/after reserved symbols, such as commas,
braces, parentheses, and operators. Table 2 presents an example where a whitespace
should be placed between operator * and variable Celsius on line 6. Violations in Meth-
od Def and Javadoc Comment were also common. The Method Def violation refers to a
missing empty line between a method declaration and the statement above it. Javadoc
Comment violations indicate the lack of a purpose-related comment corresponding to a
public or protected method.

In the Java programming language, identifiers, including class name, method name,
and variable name, have specific naming conventions. The class name should be a noun
adhering to the upper camel case [26]. Method names should start with a verb. Variable
names and method names should be in lower camel case [26]. Table 2 presents an exam-
ple where class name, Temperature Converter, on line 1 does not adhere to the upper
camel case, while variable name, Celsius, on line 3 is not in lower camel case. The last
item in Table 3 refers to braces. The start brace should appear at the end of the same line
as the declaration statement, and the end brace should start a line by itself. Table 2 illus-

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1209

trates an example where the start brace on line 4 should be placed at the end of line 3, and
the end brace on line 8 should be moved to the next line with a correct indentation style.

We also examined team projects from a course on Mobile Application Program-
ming. Students in this course formed teams to develop Android applications using Java
programming language. By the end of the semester, 23 Android applications had been
submitted. As in the previous course, the students were given no guidance with regard to
coding conventions.

As shown in Table 4, these projects were riddled with two additional violations:

Table 4. Average number of violations in Android Projects.
Metrics Count

Number of Classes 18
Lines of Code 3550

Checker Violations

Indentation 1787
Whitespace 803
Method_Def 155
Javadoc Comment 54
Identifier Naming 248
Brace 203

Column Limit and Import Order. In Google Java Style, each line is limited to 100
characters, and import statements should follow the rule that import package names ap-
pear in ASCII [27] sort order. We can see that the number of violations in these team
projects was far higher than that in the previous course. This resulted from that the in-
structor in the Object-oriented Programming course provided skeletons in starter code;
however, no such starter code was provided in the Mobile Application Programming
course. In addition, the size of assignment code in the Object-oriented Programming
course is far smaller than that in the Mobile Application Programming course.

From these experiments, we discovered that ”the definition of a completed assign-
ment” for most students is that their code succeeds to execute and satisfies the functional
requirements of assignments. The importance of coding conventions is neglected in most
programming courses. If we can teach the concept of coding conventions in program-
ming courses, which makes students’ code evolve with clean and professional styles, it
would be helpful to students to strengthen their competitiveness in software industry.
Besides, since there are a large number of students enrolling and several homework as-
signed in a programming course, examining assignments for coding convention viola-
tions would impose a heavy burden on instructors and teaching assistants. These moti-
vated us to develop an automated assessment system to promote programming skills by
emphasizing good code quality, while helping to mitigate the work load on instructors.

4. AUTOMATED ASSESSMENT SYSTEM

In this section, we outline the design rationale of the developed assessment system

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1210

as well as the features and key modules of the system.

4.1 Design Rationale

Unlike existing programming assessment systems, the aim of the system is to help
students learn programming as well as assist in evaluating code quality. Most assessment
systems examine the source code of assignments, compare program outputs with test
data, and provide graded assessment results. Our assessment system was designed as an
iterative learning environment, where students submit programming assignments and
obtain feedback pertaining to the quality of their code. This cycle is repeated until the
assignment meets the necessary requirements or the assignment deadline comes due.

Fig. 1 presents the iterative learning process, which is initiated by an instructor who
specifies a programming assignment. Once students are notified of the assignment, they
can complete the assignment by writing code and submit it through the system. The sys-
tem automatically analyzes assignments according to the assessment criteria defined by
the instructor. Errors/failures detected during code analysis are flagged in feedback re-
turned to the student. The students then revise the code accordingly and resubmit the
assignment. The process does not end until the time of the deadline. Following each
evaluation, a report is generated to advise the student of his/her submission status and
code analysis results. Instructors can also see the progress made by the students accord-
ing to the results of their submissions.

Fig. 1. The iterative learning process.

As shown in Fig. 2, we defined four levels of code quality. Level 1 code analysis
involves checking whether the submitted programs succeed in compilation. Level 2 is a
check for plagiarism, which can be disabled by the instructor for small programs. Level 3
involves evaluating the functionality of the program. Instructors can add test cases to
determine whether the outputs of student programs match expectations. Level 4 involves
analysis of code quality; i.e., whether the students violated the coding conventions speci-
fied by instructors. In the future, we will also take into account potential bugs [28] and
code smell [29].

The system halts code analysis and sends feedback to the student as soon as an er-
ror/failure is detected at any level. Students can use this to identify the cause of failures

Fig. 2. Four levels of code quality, as determined

by automated code analysis.

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1211

and correct them in subsequent revisions. The logs of errors/failures and submissions are
archived to serve as historical records for use in generating reports.

4.2 Features

The developed web-based programming assessment system is called ProgEdu, the
major features of which are detailed in the following.

4.2.1 Batch account registration

Batch account registration makes it possible for instructors to batch-produce multi-
ple accounts simply and easily. An enrollment file containing the identification number,
name, and email of each student is first uploaded. The ProgEdu system then creates an
account for each student automatically. Students can use the accounts to access ProgEdu
as well as back-end third party services. Instructors can also utilize these accounts to
trace the source code submitted by students.

4.2.2 Assignment management

We furnished an assignment management feature to help instructors and students
manage assignments more easily. ProgEdu provides a web-based user interface on which
to set up assignments with descriptions, starter code, and coding convention rules. Prog-
Edu automatically creates corresponding workspaces for students to manage their pro-
gramming assignments. When students sign in, workspaces are already created for them.
This is where they can check out the latest code, make revisions, inspect the differences
between two revisions, and trace their progress in the completion of each assignment.

4.2.3 Code analysis

Since there are a large number of students enrolling in programming courses, we
can image that reviewing correctness of code will take instructors and teaching assistants
a lot of time. To reduce the review time, introducing automatic tools is necessary. We
adopted a number of open-source tools to enable automated code analysis for the levels
of code quality in order to lessen the load on instructors and teaching assistants.

4.2.4 Programming history

Many universities have been developing learning management systems (LMSs) [30]
to facilitate online learning. Moodle [31] is a widely adopted LMS working with a num-
ber of online course management services to enable the sharing of teaching materials,
gauge learning performance, and produce statistical reports. This system also makes it
possible for students to retrieve course materials and upload assignments from/to the
Moodle system.

Despite Moodle provides many useful functions, it is essentially designed for gen-
eral usage of course management. If students submit assignment programs through
LMSs, what they deliver is a snapshot of source code. Instructors can only examine the

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1212

programs uploaded and check whether students submit them on time. However, in most
assessment cases, understanding how students write code is more significant than what
they submit finally. Existing LMSs lack a mechanism by which to trace the progress of
students in learning to write code.

ProgEdu provides an iterative process that enables instructors and students alike to
trace the progress of assignments students work on, and illustrate differences between
revisions. This is highly valuable particularly for instructors seeking to assess the quality
of the work completed by students as well as overall coding behavior.

Fig. 3. Architecture of ProgEdu system.

4.2.5 Timely reports

At present, instructors seeking statistical information on the learning performance of

students must assess assignments, award grades, and provide comments on LMSs. Stu-
dents are unable to obtain feedback from instructors until their completed assignments
have been assessed.

ProgEdu has a reporting feature that gives students access to reports based on code
analysis immediately upon submission of their programs. ProgEdu also provides in-
structors a variety of statistical charts indicating whether students have submitted their
assignments on time and whether the quality of the submitted code meets expectations.

4.3 System Architecture

Fig. 3 illustrates the architecture of the ProgEdu system, comprising a set of mod-

ules integrated with open-source tools. Details pertaining to each module are presented
in the following. ProgEdu Portal serves as a front-end web-based user interface provid-
ing access to ProgEdu services for instructors and students. At the ProgEdu Portal, the
instructor adopts the role of administrator, who has the authority to register student ac-
counts, distribute assignments, and obtain statistical reports concerning the status of as-
signments. The ProgEdu Portal enables students to obtain links to assignment workspac-
es holding starter code, submit coding assignments, and check code analysis results.

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1213

The student management module enables the creation of student accounts on the
ProgEdu and back-end Version Control Server, i.e. GitLab [32]. Unlike the cloud host-
ing services in [19], the server used for the management of student programs is located in
our laboratory. This makes it possible to invoke Web APIs provided by GitLab for the
management of student accounts, the creation of private repositories as programming
workspaces, and access to logs related to each repository. The student management
module makes it possible for instructors to set up student accounts individually or in
batches in order to streamline workflow.

The assignment management module allows instructors to configure assignments by
specifying descriptions, uploading starter code, and configuring code analysis via the
ProgEdu Portal. The assignment module creates a corresponding Git [19] repository for
the assignment of each student. The students can use their favorite IDE Tools, such as
Eclipse [33], IntelliJ IDEA [34], NetBeans [35] and Android Studio [36], to submit as-
signments. We integrated the system with the open-source continuous integration (CI)
server, Jenkins [37], to launch code analysis as soon as students submit assignments to
their Git repositories.

The CI server periodically polls program submission events in GitLab. When stu-
dents submit a new revision to GitLab, the CI server invokes the Code Analyzer to ex-
amine the revision. We extended the open source build tool, Maven [38], through the
development of three plugins: plagiarism, unit test, and coding convention. Our Log Ex-
tractor module retrieves analysis results and logs from the Code Analyzer. The bundle of
retrieved information includes a student identifier, a timestamp when the student submit-
ted the code, a comment describing the submission, the names of files revised in that
submission, and code analysis results including data pertaining to failures. The Log Ex-
tractor module stores this data in a Log Database (an open-source document-based data-
base called ElasticSearch [39]) to enable the processing of data for further analysis and
visualization. Unlike relational databases, ElasticSearch is easy to scale up, supports
schema-free data structures, and has outstanding search and analysis performance.

The Visualized Dashboard module provides users with a set of visualization reports,
including tables and charts. It interacts with the Log Database to retrieve relevant data
and generate corresponding reports based on user demands. These reports make it possi-
ble for instructors to visually assess assignments using a variety of indices on the dash-
board. Students can obtain feedback from the reports as well as the status of each as-
signment. They can also obtain rich information regarding of the types of failure they
encountered in each assignment as well as methods to correct them.

5. SYSTEM DEMONSTRATION

Fig. 4 presents the operational scenario of assigning homework projects, completing
assignments, and obtaining code analysis results. Instructors sign into the system and
register student accounts. They then upload an entire enrollment list to enable the auto-
matic creation of student accounts. At the end of each course unit, the instructor then
assigns an assignment.

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1214

Fig. 4. Operational scenario of OpenEdu.

After that, the students receive an email notification describing the assignment as
well as links to assignment repositories on the GitLab server. Students can employ their
favorite IDE tools equipped with Git client functionality to clone relevant artifacts from
remote repositories to their local programming workspaces. The students then submit the
source code from completed assignments to their repositories using Git push command.
Git is the most popular version control system in use today. Through ProgEdu, students
are able to learn the management of source code with version control systems, especially
with Git.

As shown in Fig. 5, each student has his/her own Web page on which to obtain an
overview of assignments from the ProgEdu Portal. The overview contains a table indi-
cating the number of projects assigned by the instructor thus far, the number of submis-
sions related to each assignment, and the final code analysis results marked in various
colors. To see the details of a particular assignment, students simply press one of the
links on the left side of the page to display a detailed report, as shown in Fig. 6. The lo-
cation of the Git repository associated with this assignment is presented at the top of the
page. The current code analysis results are presented below the Git repository link. The
number is the submission count, and the color indicates the level of code quality, ranging
from poor (gray) to good (green). The programming history, containing the submission
date, comments and the code analysis result of each submission, is listed next to the code

Fig. 5. The overview of assignments for students.

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1215

Fig. 6. Assignment report for students.

analysis results. After students click on one of submission records in the programming
history, feedback information for that submission is presented at the bottom of the page.
Information displayed in this area lists the causes of errors/failures associated with each
submission.

ProgEdu also provides instructors with a set of reports by which to assess assign-
ments using a variety of indices to identify the types of difficulties students face while
learning to write code. Fig. 7 presents a table illustrating the state of each assignment
submitted by each student. The colors marked in the rounded rectangles indicate the lev-
el of code quality.

Fig. 7. Overview of assignments for instructors.

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1216

Fig. 8. Programming history of one assignment.

As shown in Fig. 8, when instructors click on the number of code submissions
shown in the rounded rectangles, ProgEdu Portal opens a new window with the pro-
gramming history of the assignment a student has been working on. The programming
history contains a series of submission records. They can also click on the status circle of
that submission to obtain the corresponding feedback information, as shown at the bot-
tom of the page in Fig. 6. This gives instructors a broad understanding for all the pro-
grams submitted by all students as well as the code analysis details of each submission.

ProgEdu also furnishes a variety of charts to assist instructors in analyzing assign-
ment statuses. Currently, most LMSs only provide instructors with text-based statistic
information about turn-in status of each assignment. ProgEdu provides a chart presenting
the distribution of program submission status with respect to each assignment, as shown
in Fig. 9. This chart shows instructors the number of students who handed in their as
signments and whether the submissions were on time. With this chart, instructors can
understand the trend of assignment submissions. If the number of on-time submission
gradually decreases over time, it would indicate that students encounter difficulties in
learning programming. Instructors should slow down the pace of teaching.

Fig. 9. Distribution of program submission status.

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1217

Fig. 10. Distribution of code analysis failures.

Most programming assessment systems are capable of determining whether submit-
ted programs meet the functional requirement of assignments, but not able to further
identify the types of programming failures. ProgEdu provides a chart showing instructors
the average number of failures for different types made by students in relation to each
assignment, as depicted in Fig. 10. With this chart, instructors can investigate which
kinds of programming failures that students made commonly in each assignment and
then can spend time to teach students how to resolve these failures.

In terms of coding conventions, ProgEdu provides a detailed view to show the av-
erage number of coding convention failures detected in each assignment, as depicted in
Fig. 11. With this chart, instructors can understand which types of coding conventions
that students are not familiar with, even though immediate feedback is replied. In re-
sponse to a higher number of coding convention failures, instructors can consider to im-
prove the recommendation of failure fixes in feedback information or seek for tools that
students can employ to correct failures when they are writing code.

Fig. 11. Distribution of coding convention failures.

These charts have three benefits: (1) reduced workload in the review of assignments,
enabling teachers to concentrate on teaching tasks that cannot be performed by machines;
(2) information on the progress of writing code and the types of difficulties faced by

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1218

students; (3) analysis from various perspectives, including submission status, code anal-
ysis results, programming history, and code quality.

In order to examine the effect of the developed system, we applied it in the course
of Object-oriented Programming in the first semester of 2017. There were 60 students
enrolled in this course, and seven assignments were assigned thus far. Fig. 12 depicts the
analysis result in which each bar presents the number of submissions over the total stu-
dents. Because the first three assignments are basic and simple, the function of coding
convention detection was not enabled. We can see that the average number of submis-
sions is around two. There were no coding convention failures detected in these three
assignments.

After the third assignment, the instructor taught the concept of coding convention
and asked students to write code in accordance with the Google Java style. From the
analysis result in Fig. 12, it shows additional three iterations spent by students to fix
coding convention failures with respect to homework 4. This resulted from that they
were not familiar with the rules of Google Java Style. In relation to the homework from
5 to 7, the number of submissions for the fixes of coding convention failures decreased
gradually. This indicates that students are able to submit programs that meets the re-
quired conding conventions. This empirical study presents the actual improvement of
students’ program skills in terms of code quality by employing the iterative learning
mechanism.

Fig. 12. Effect of automatic coding convention detection.

6. CONCLUDING REMARKS

In this paper, an automatic assessment system to analyze code quality for Java pro-
graming courses is presented. Different from other assessment systems that grades stu-
dents’ programs by comparing the output data with expected ones, the system can facili-
tate students to continue revising their programs until the assignment requirements in-
cluding succeeding to compilation, no plagiarism, passing unit test and no violations of
coding conventions, are fulfilled. Through the iterative process, students can learn pro-
gramming from the feedback related to various levels of code analysis. Thus, the system

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1219

can assist students in advancing programming skills with good code quality. In addition,
with the support of the system, instructors can reduce their time and resources on re-
viewing source code and assess students programs from various dimensions of analysis
results.

Currently, the system is developed as a basic infrastructure to support the assess-
ment of programming assignments. In the future, we will extend the system to satisfy the
following requirements:

1. The system can facilitate students to develop team projects and help instructors ana-

lyze programming behavior from the data of programming histories. We plan to mine
meaningful information, for example, the contribution of each team member, the pat-
terns of plagiarism, the association between submission count and final grade, etc.,
from the data collected by the system.

2. The system can support complex code analysis such as the detections of potential bugs
and bad smell so that the quality of students programs can get further improved. Be-
sides, the system can support code analysis for more programming languages, such as
C, C++ and Python.

3. Nowadays, there are many online programming courses offered by MOOCs (Massive
Open Online Courses) [40] platforms. However, it lacks supporting tools that allow
learners to practice programming and analyze their code quality automatically. Thus,
we plan to leverage container technology [41] to turn the system into a supporting tool
so that it can be easily integrated with MOOCs platforms.

REFERENCES

1. R. P. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE Tran-
sactions on Software Engineering, Vol. 36, 2009, pp. 546-558.

2. R. L. Glass, Facts and Fallacies of Software Engineering, Addison-Wesley, Boston,
2002.

3. Y. Tashtoush, Z. Odat, I. Alsmadi, and M. Yatim, “Impact of programming features
on code readability,” International Journal of Software Engineering and Its Appli-
cations, Vol. 7, 2013, pp. 441-458.

4. M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Code convention adherence in
evolving software,” in Proceedings of the 27th IEEE International Conference on
Software Maintenance, 2011, pp. 504-507.

5. Google, “Google’s coding standards for source code in the JavaTM Programming
Language,” Google Style Guides, https://github.com/google/styleguide, 2017.

6. Facebook, Coding Standards, https://github.com/facebook/jcommon/wiki/Coding-Stan-
dards, 2016.

7. K. Cwalina and B. Abrams, Framework Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET Libraries, Addison-Wesley, Boston, 2005.

8. A. Reddy, Java Coding Style Guide, Sun Microsystems, 2000.
9. H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules, Guidelines, and

Best Practices, Addison-Wesley, Boston, 2004.
10. F. Lepied, Quality Python Development, 2012.

HSI-MIN CHEN, WEI-HAN CHEN AND CHI-CHEN LEE

1220

11. R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Prentice
Hall, 2008.

12. Google, “Google Java style guide,” https://google.github.io/styleguide/javaguide.html,
2017.

13. X. Li and C. Prasad, “Effectively teaching coding standards in programming,” in
Proceedings of the 6th Conference on Information Technology Education, 2005, pp.
239-244.

14. X. Li, “Using peer review to assess coding standards a case study,” in Proceedings
of the 36th Annual Conference on Frontiers in Education, 2006, pp. 9-14.

15. Y. Wang, L. Yijun, M. Collins, and P. Liu, “Process improvement of peer code re-
view and behavior analysis of its participants,” in Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, 2008, pp. 107-111.

16. Checkstyle, http://checkstyle.sourceforge.net/, 2017.
17. PMD, https://pmd.github.io/, 2017.
18. SonarQube, https://www.sonarqube.org/, 2017.
19. D. Spinellis, “Git,” IEEE Software, Vol. 29, 2012, pp. 100-101.
20. J. Kelleher, “Employing git in the classroom,” in Proceedings of World Congress on

Computer Applications and Information Systems, 2014, pp. 1-4.
21. A. Pipinellis, GitHub Essentials, Packt Publishing, UK, 2015.
22. J. Lawrance, S. Jung, and C. Wiseman, “Git on the cloud in the classroom,” in Pro-

ceeding of the 44th ACM Technical Symposium on Computer Science Education,
2013, pp. 639-644.

23. C. Z. Kertsz, “Using github in the classroom a collaborative learning experience,” in
Proceedings of the 21st IEEE International Symposium for Design and Technology
in Electronic Packaging, 2015, pp. 381-386.

24. J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference
Manual, Pearson Higher Education, US, 2004.

25. B. Eckel, Thinking in Java, Prentice Hall, NJ, 2006.
26. F. P. Miller, A. F. Vandome, and J. McBrewster, CamelCase: Compound (Linguis-

tics), Whitespace (Computer Science), Capitalization, Patti LaBelle, Visual Basic,
MacGyver, IPod, Chemical Formula, Naming ... Programming Language, Marketing.
Alpha Press, 2009.

27. C. E. MacKenzie, Coded Character Sets: History and Development, Addison Wes-
ley, Boston, 1979.

28. N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh, “Using stat-
ic analysis to find bugs,” IEEE Software, Vol. 25, 2008, pp. 22-29.

29. M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
Boston, 1999.

30. Y. Kats and Y. Kats, Learning Management Systems and Instructional Design: Best
Practices in Online Education, IGI Global, PA, 2013.

31. S. S. Nash and M. Moore, Moodle Course Design Best Practices, Packt Publishing,
UK, 2014.

32. J. van Baarsene, GitLab Cookbook, Packt Publishing, UK, 2014.
33. R. Kulkarni, Java EE Development with Eclipse, Packt Publishing, UK, 2015.
34. J. Krochmalski, IntelliJ IDEA Essentials, Packt Publishing, UK, 2014.
35. G. Wielenga, Beginning NetBeans IDE: For Java Developers, Apress, NY, 2015.

AN AUTOMATED ASSESSMENT SYSTEM FOR ANALYSIS OF CODING CONVENTION VIOLATIONS 1221

36. C. Craig and A. Gerber, Learn Android Studio: Build Android Apps Quickly and
Effectively, Apress, NY, 2015.

37. N. Pathania, Learning Continuous Integration with Jenkins, Packt Publishing, UK,
2016.

38. B. Varanasi and S. Belida, Introducing Maven, Apress, NY, 2014.
39. C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Distributed Real-

Time Search and Analytics Engine, O’Reilly Media, CA, 2015.
40. J. Kay, P. Reimann, E. Diebold, and B. Kummerfeld, “Moocs: So many learners, so

much potential ...” IEEE Intelligent Systems, Vol. 28, 2013, pp. 70-77.
41. D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud

Computing, Vol. 1, 2014, pp. 81-84.

Hsi-Min Chen (陳錫民) received the B.S. and Ph.D.degrees
in Computer Science and Information Engineering from National
Central University, Taiwan, in 2000 and 2010, respectively. He is
currently an Assistant Professor with the Department of Infor-
mation Engineering and Computer Science, Feng Chia University,
Taiwan. His research interests include software engineering, ob-
ject-oriented technology, service computing, and distributed com-
puting.

Wei-Han Chen (陳薇涵) received the B.S. degree in the De-
partment of Information Engineering and Computer Science, Feng
Chia University, Taiwan. She is currently a master student in the
same department at Feng Chia University. Her research interests
include software engineering, mobile application technology, and
education technology.

Chi-Chen Lee (李霽烝) received the B.S. degree in the De-
partment of Information Engineering and Computer Science, Feng
Chia University, Taiwan. He is currently a master student in the
same department at Feng Chia University. His research interests
include software engineering, mobile application technology, and
education technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

