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Cyberattack Detection plays a vital role in network security and is an important means
to maintain network security. In order to enhance the security and improve the detection
ability of malicious intrusion behavior in the network, this paper proposes a multi-layer
Dense Attention (Denseformer) model. The model is composed of multiple transformer-
like structures, and each layer is stacked of multiple encoder and decoder sub-layers. The
encoder and decoder include self-attention and cross-attention mechanisms, and their fea-
tures are obtained by cross-fusion of multi-branch structures. By sharing information among
multiple encoder-decoder layers, Denseformer can use the attention mechanism to process
unserialized input source samples. On the whole, Denseformer is like an attention network
embedded on the dense layer, making it easier to handle correlations between features. By
stacking the encoding and decoding modules with attention, Denseformer has better gen-
eralization performance than other models, thereby improving its cyberattack detection ac-
curacy. The experimental results show that, without other complex training techniques, the
proposed method achieves 85.65% on the NSL-KDD dataset.

Keywords: cyberattack detection, intrusion detection system, deep learning, attention mech-
anism, data scarcity

1. INTRODUCTION

With the rapid updates and iterations of the Internet of Things (IoT), Artificial Intel-
ligence (AI), and Cloud Computing, network information security problems have become
increasingly prominent and are facing huge challenges in recent years. Cyberattack de-
tection is a main means to ensure network security. The role of the cyberattack detection
model is to monitor and analyze network communications, and identify abnormal be-
haviors in the network through active response. Intrusion Detection System (IDS) can
be defined as a security service. It monitors and investigates system events to identify
unauthorized access to system resources [1].

Received June 2, 2022; revised October 3, 2022; accepted November 25, 2022.
Communicated by Meng Chang Chen.
† Corresponding author.
* The authors contributed equally to this work and should be considered co-first authors.

935



936 HAIXIA HOU, DAOJUN LIANG, MINGQIANG ZHANG, DONGFENG YUAN

There are many methods to detect cyberattacks, including traditional machine meth-
ods [2–7] and deep learning methods [8–12]. Some classic methods, including KNN,
SVM, SOM, random forest, etc., are all used for network attack detection. The advan-
tages of these methods are fast training and strong interpretability, but the disadvantages
are low detection accuracy and poor generalization performance. For example, these
methods may have a larger false position rate [1]. There is also a lot of work in dealing
with unbalanced data [5–7,13] for cyberattack detection problems. Conventional cyberat-
tack detection models usually perform poorly in unbalanced datasets, because they cause
the classification results to be biased towards classes with large number of samples. At
present, researchers usually use under-sampling [6,13] or over-sampling [5,7] methods to
deal with the problem of data imbalance in network intrusion detection. When unbalanced
data is processed by under-sampling, it is easy to lose most of the sample information, re-
sulting in a decrease in the classification accuracy of categories with many samples. Some
oversampling methods, for example, SMOTE [5] oversampling samples based on simple
interpolation operations, it is easy to create redundant data samples to increase the diffi-
culty of model training.

In recent years, deep learning has developed rapidly with its powerful representation
and generalization capabilities. For example, sequential structures such as Recurrent Neu-
ral Network (RNN) [14], Long Short-Term Memory (LSTM) [15], and Transformer [16]
are suitable for Natural Language Processing (NLP). And CNN [17] structures such as
ResNet [18] and DenseNet [19] are suitable for image processing. On the cyberattack
detection task, many works use deep learning to improve the accuracy and generaliza-
tion of the model, such as Deep Belief Networks [8,20,21], deep AutoEncoder-like mod-
els [9,22–24], CNN-like models [25–27], RNN-like models [28], LSTM-like models [11],
Attention-like models [12, 29]. These models take the detection data as a time series and
input them into the encoder-decoder architecture to improve their generalization capa-
bility. Inspired by this, we consider the cyberattack detection dataset as real features
plus varying noises, and use a stacked multi-layer encoder-decoder structure to capture
the relationship between real features. In this paper, we introduce the Dense Attention
(Denseformer) layer for cyberattack detection tasks, which has high robustness to noise,
thus effectively preserving the real features and improving its generalization performance.

The paper is organized as follows. In Section 2, we introduce some relate work about
intrusion detection. Then, the proposed Denseformer is included in Section 3. Section 4
introduces experiments result of the proposed method. Finally, we conclude the paper in
Section 6.

2. RELATED WORK

Cyberattack detection problems is widely studied because of its importance to net-
work security. The existing research methods include machine learning methods and deep
learning methods. Classical machine learning methods are widely used because of their
fast training speed and strong interpretability. In [2], the Tree-Seed Algorithm (TSA) is
introduced to extract the effective feature of the input data, and KNN is used for classi-
fication. In [3], the authors have reviewed the application of Self-Organizing Mapping
(SOM) in intrusion detection. The authors in [4] developed a combining classifier model
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based on tree-based algorithms for cyberattack detection. Their algorithm is mainly based
on Weka software, using data mining methods.

With the development and popularity of deep learning, many deep learning meth-
ods have also been used in cyberattack detection. The Deep Belief Networks (DBN) is
introduced to the field of cyberattack detection in [8], and a cyberattack detection model
based on DBN is proposed to apply in intrusion recognition domain. The authors in [9]
proposed an asymmetric deep AutoEncoder (AE) for unsupervised feature learning to re-
alize cyberattack detection. In [11], the authors proposed an IDS detection method based
on hierarchical LSTM (HLSTM) network. With the introduction of hierarchical LSTM,
the network can learn multiple time levels on complex network traffic sequences. The au-
thors in [10] use ResNet for cyberattack detection, which converted the intrusion data into
image signals and conducted binary classification evaluation in the NSL-KDD dataset.

The author in [25] use the layer of Conv, FC, LSTM and its variants to construct
different models such as 3Conv+BiLSTM, Conv+LSTM, 4Conv+2FC and Conv+2FC to
select optimal network architecture. They found that CNN and its variant architectures
have significantly performed well because of its capability to extract high level features.
The Multi-distributed Variational AutoEncoder (MVAE) is proposed in [22], it samples
more distinguishable latent feature to improve the accuracy in detecting intrusions. How-
ever, this method is a binary classification method that detects both normal and abnormal
instructions and cannot be used to detect classes of attacks. In [24], the CNN is intro-
duced for the task of network intrusion detection. They convert the raw data into the
image format to fit the CNN inputs. The authors in [20] propose a fuzzy aggregation
approach using the modified density peak clustering algorithm (MDPCA) and deep belief
networks (DBNs). MDPCA is used to divide the training set into several subsets with
similar sets of attributes. Then, each subset is used to train its own sub-DBNs classifier.
Finally, the output of all sub-DBNs classifiers is aggregated based on fuzzy membership
weights. In [23], the authors propose an effective self-taught learning (STL)-IDS method
based on the STL framework. After the training stage, the features extracted by STL-IDS
are fed into the SVM to improve its detection capability for intrusion and classification
accuracy. In [28], the authors propose a deep learning approach for intrusion detection
using recurrent neural networks (RNN-IDS) and investigate the effect of the number of
neurons on the performance of the model. In [27], the authors propose a deep learning
approach for intrusion detection using a multi-convolutional neural network (multi-CNN)
fusion method, which divide the features into four parts and introduced CNN to detect
intrusion attack.

In recent years, Transformer [16] and its variants [30, 31] has been widely used in
the field of NLP and Computer Vision (CV) due to its attention mechanism and powerful
learning capabilities. Its success is mainly attributed to its powerful self-attention mecha-
nism and cross-attention mechanism. Although the Transformer abandons the traditional
CNN [18, 19, 32] and RNN [14, 15] design, the whole network structure is completely
composed of the attention mechanism, and the whole encoder is required to input the
decoder, which increases the distance from the encoder to the decoder in the forward
process. In this paper, we investigate the unification of encoder and decoder into sepa-
rate layers and stacking them consecutively. The proposed method not only shortens the
distance from the encoder to the decoder, and enables the network information to be con-
verted between the self-attention and the cross-attention, but also captures the long-term
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dependencies between features and the ability to suppress noise. Therefore, our motiva-
tion is to stack the encoder-encoder modules densely (Denseformer) and using Attention
mechanism in each sublayer for features extracting and instruction detection.

3. METHODS

In the cyberattack detection task, the data features change greatly and are accompa-
nied by a lot of noise. The correlation between the features is difficult to model, which
directly affect the detection performance of the model. In order to better capture the corre-
lation between features, Denseformer is proposed to realize the gradual extraction of data
features by stacking multiple attention layers. The stacking of multiple layers of atten-
tion can capture and model long-range dependencies between features of intrusion data,
thereby improving the performance of cyberattack detection. In this section, we first in-
troduce dense attention layers suitable for cyberattack detection tasks, and then introduce
the overall architecture of Denseformer.

3.1 Dense Attention Layer

The attention layer in Transformer is designed for language models, making it unable
to adapt to the characteristics of cyberattack detection data. In order to stack the attention
in multiple layers, it is necessary to slightly modify the Transformer structure so that
the information flows to the encoder and decoder respectively. Here, let’s review the
Transformer structure. It is an encoder and decoder structure. Each encoder and decoder
part has multiple attention layers stacked. Each attention module contains two layers of
structure, one is the Multi-Head Attention (MHA) layer, and the other is the feedforward
layer. Unlike the encoder, the decoder contains an additional layer of cross-attention
mechanism to process the output from the encoder layer. Therefore, it has a three-part
structure: self-attention sublayer, cross-attention sublayer and feedforward layer. Fig. 1(a)
shows the overall structure of dense attention layer, where the attention mechanism can
be expressed as

Att(Q,K,V ) = So f tmax(
QKT
√

d
)V, (1)

where Q, K, and V are learnable query, key, and value matrices respectively. d is the di-
mension of the input vector.

Performing atention operations on multiple inputs at the same time will result in an
MHA mechanism

MHA(Q,K,V ) = [H1,H2, ...,Hh]WAtt ,

where Hi = Att(QW Q
i ,KW K

i ,VWV
i ),

(2)

where W Q
i ,W K

i ,WV
i and WAtt are learnable projection matrices, and Hi represents the ith

attention head. Note that unlike self-attention, the key and value of cross-attention in the
decoder come from the output of the encoder. Then, we can stack the encoder-decoder
layer to build the Denseformer.
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Fig. 1. (a) Dense Attention Layer; (b) Denseformer network architecture with stacked multiple
encoder-decoder layers.

3.2 Denseformer

In order to better process the cyberattack detection data, we densely stack the multi-
layer encoder and decoder structure, each layer of the encoder and decoder appearing in
pairs form a dense attention layers. Therefore, Denseformer is a stacked multiple dense at-
tention layers. The overall structure of Denseformer is shown in Fig. 1 (b), which consists
of a stacked multi-layer encoder-decoder structure. Before the data flows to the encoder
and decoder, the data needs to be reshaped. Here, we first perform a dense connection
operation on it, and then reshape the output tensor to obtain the input of the encoder and
decoder respectively. The structure of encoder and decoder is similar to Transformer. The
difference is that Transformer is a network structure designed for natural language. For
more general data, the data needs to be preprocessed to have sequences and tokens struc-
ture. The dense attention layer is divided into two branches from the data input part, and
reshape them respectively to adapt to the sequences and tokens structure. The structure
can be formalized as

Xi = Reshape(σ(WiXin)) i = 1,2, (3)

where σ is the Relu [33] activation function, Xin is input data and Xi is the output feature
of the ith branch. After processing the input data, the data will flow to the encoder-decoder
structure. The encoder layer E can be formulated as

Q,K,V =WqX1,WkX1,WvX1

ESA = SA(Q,K,V ),

Eout1 =We(ESA +X1)+ESA,

(4)
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where SA stands for self-attention. Replacing X1 in Eq. (4) with Eout1 will result in the
final output of encoder Eout2. Moreover, the decoder D can be formulated as

Q,K,V =WqX2,WkX2,WvX2

DSA = SA(Q,K,V ),

Dout1 =Wd1(DSA +X1)+DSA.

DCA =CA(WqEout2,WkEout2,WvDout1),

Dout2 =Wd2(DCA +X1)+DCA,

(5)

where CA stands for cross-attention. Then, the encoder and decoder structures appearing
in pairs at each layer are defined as Ti(i = 1,2, ...). The structure of Ti can be formalized
as

T (X1,X2) = D(E(X1),X2), (6)

Therefore, the whole structure of Denseformer can be expressed as: First, the information
of the encoder in Ti will flow to the decoder. The input features X1 first flow to the encoder
part of Fe

1 , and the features X2 flow to the decoder part of Fd
1 . Then, the Denseformer of

T1, T2, and T3 are connected in sequence. Finally, the final results are output Fout through
the dense layer. The whole process can be formalized as

Fe
1 ,F

d
1 = T1(X1,X2),

F2
e ,F

2
d = T2(F1

e ,F
1
d ),

F3
e ,F

3
d = T3(F2

e ,F
2
d ),

Fout =WF3
d ,

(7)

where W is the weight of the last layer. The encoder-decoder structure in Denseformer
makes it more suitable for datasets with large noise levels like NSL-KDD. The encoder of
each layer is used to extract coarse-grained features, and the decoder is used for refining
these features to obtain fine-grained features. After the above process, Denseformer can
effectively process cyberattack detection data through the stacked attention mechanism of
multi-layer encoder-decoder.

4. DATASETS AND PROCESSING

4.1 Datasets

KDD-CUP99: This dataset is 9 weeks of network connection data collected from a
simulated US Air Force LAN, which divided into marked training data and unmarked test
data. The test data and training data have different probability distributions. It contains
some types of attacks that do not appear in the training data, which makes cyberattack
detection more realistic. The training dataset contains 1 normal identification type and 22
training attack types. In addition, 14 kinds of attacks only appeared in the test dataset.

NSL-KDD: NSL-KDD has solved the data redundancy problems in the KDD99
dataset. It can be used as an effective benchmark dataset to help researchers compare dif-
ferent intrusion detection methods. The NSL-KDD training set and test set are reasonable,
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and the evaluation results of different research work will be consistent and comparable.
Table 1 describes the sample distribution of this dataset.

Table 1. The detial of the NSL-KDD datasets.
Total Normal Dos Probe R2L U2L

NSL-KDD Train+ 125973 67343 45927 11656 995 52

NSL-KDD Test+ 22544 9711 7458 2421 2754 200

NSL-KDD Test-21 11850 2152 4342 2402 2754 200

4.2 Data Processing

Because the attributes of each column of NSL-KDD are quite different, three of them
are strings. Therefore, we first perform one-hot encoding on these strings, then perform
log operations on all attribute values x = log(x+1). Finally, the Gaussian normalization
is performed on each attribute. The whole process is as Xi =

Xi−µ

δ
, where µ and δ are the

mean and variance of each attribute in the training set, respectively.

5. EXPERIMENTS

Hyperparameter Settings: The hyperparameters are setted based on the perfor-
mance on validation set. All the networks use the Pytorch framework, and trained on one
NVIDIA Tesla V100 GPU using Adam optimization method [34]. The batch size on each
GPU is set to 128 for 200 epochs. The initial learning rate is set to 0.1.

Network Settings: For Denseformer, the initial dimension of dense layer are setted
to 128, and the input size of the attention module is 8.

5.1 Evaluation Metric

In our experiment, multiple commonly metrics are used for evaluation1

• Accuracy

Acc =
T P+T N

T P+FP+FN +T N
. (8)

• Recall Socre

Rec = ∑
i

Wi
T Pi

T Pi +FNi
. (9)

where the index i is the subscript of the classes and Wi is the weight of each class.

• F1 Socre

F1 =
2T P

2T P+FN +FP
. (10)

1In this list of items, TP, TN, FP, FN are the abbreviations for True Positive, True Negatives, False Positive,
False Negative, respectively.
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• Precision

Precision =
T P

T P+FP
. (11)

Since cyberattack detection is a multi-classification problem, we use weighted Recall
and F1 socre as the performance indicators of the model. The weighted average Recall is
an improvement of macro average Recall, so we can better measure the coverage of the
sample and the proportion of true positive samples in the positive samples.

5.2 Performance on NSL-KDD Test+

In the experiments of this paper, the comparison models used are K-Nearest Neigh-
bor (KNN), Support Vector Classification (SVC), XGBoost (XGB), Decision Tree (DT),
Light Gradient Boosting Machine (LGBM), Multi-Layer Perceptron (MLP) are imple-
mented by scikit-learn machine learning library. The 3Conv+BiLSTM, Conv+LSTM,
4Conv+2FC and Conv+2FC are implemented as [22, 25], the CNN-IDS are implemented
as [26], and the HLSTM are implemented as [11].

80 

60 

40 

20 

KNN SVC XGB DT LGBM MLP 3Conv+ Conv+ 4Conv+ Conv+ CNN-IDS HLSTM Dense 
BiLSTM LSTM 2FC 2FC former 
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Recall 76.38 76.31 75.64 73.72 60.29 78.22 77.66 78.84 76.55 80.4 78.14 83.88 85.64 
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Fig. 2. Comparison between different models on NSL-KDD test+ dataset.

We use different networks to conduct experiments on two datasets: NSL-KDD Test+
and NSL-KDD Test-21. The experimental results are shown in Figs. 2 and 3. It can be
found that for different indicators, such as Accuracy, Recall and F1 score and Precision,
Denseformer has shown good generalization performance on these indicators.

On the NSL-KDD Test+ dataset, Denseformer achieves high performance on the all
indicators respectively. In terms of Accuracy, Recall and F1 metrics, the performance of
Denseformer has improved significantly. In terms of Accuracy metrics, Denseformer has
2% and 9% performance improvements compared to HLSTM [11] and CNN-IDS [26].

Compared with other methods in [25], Denseformer has a significant improvement
in various performance indicators. Among all traditional machine learning methods,
the LGBM method achieved the worst results, and the SVC method and MLP method
achieved higher accuracy of 76.31% and 78.22%, respectively. The xgboost embedding
learning XGB method is only 1.92% higher in accuracy than the DT. In the deep learn-
ing method, Conv+2FC and HLSTM have achieved an accuracy of more than 80%, and
Denseformer has a large margin gains compare to these methods.
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Table 2 compares other advanced deep learning methods. The accuracy of Dense-
former has exceeded the current most advanced deep learning methods. For exam-
ple, in NSL-KDD Test+, Denseformer exceeds BAT-MC [12] by approximately 1.49%
points. This model uses multi-layer convolution and BiLSTM. Compared with the
DBN+MDPCA [20] model that uses deep belief networks and density clustering methods,
Denseformer has a 4.3% performance improvement. In particular, Denseformer outper-
forms Variational AutoEncoder [29] with a whole encoder-decoder structure by about
5.16%.

Table 2. Performance comparison between Denseformer and other models.

Dataset Model Accuracy (%)

NSL-KDD Test+

DNN-5 [21] 78.50
AE-RL [24] 80.16
STL+SVM [23] 80.48
VAE [29] 81.13
RNN-IDS [28] 81.29
Multi-CNN [27] 81.33
DBN+MDPCA [20] 82.08
Transformer [16] 83.09
BAT-MC [12] 84.15
Denseformer 85.64

NSL-KDD Test-21

VAE [29] 64.30
RNN-IDS [28] 64.67
Multi-CNN [27] 64.81
DBN+MDPCA [20] 66.18
Transformer [16] 67.97
BAT-MC [12] 69.42
Denseformer 72.95

5.3 Performance on NSL-KDD Test-21

On the NSL-KDD Test-21 dataset, Denseformer achieves the best results in all indi-
cators. Denseformer is better than the performance of HLSTM, and greatly exceed other
models by a large margin, including shallow learning methods and deep learning meth-
ods. For example, the shallow methods such as SVC, XGB and CNN-IDS [26], as well
as a hybrid of CNN+LSTM [22, 25].

Table 2 also shows the performance of various methods on the NSL-KDD Test-21
datasets. It can be seen that Denseformer surpasses other state-of-the-art methods. Dense-
former can capture the global information between the local and global position, which
is beneficial to the improvement of performance. It is worth noting that Denseformer use
encoder-decoder with attention mechanism between multiple layers, which means that the
network architecture is very effective for network intrusion detection tasks. In particular,
Denseformer outperforms Variational AutoEncoder [29] with a whole encoder-decoder
structure by about 8.65%.

Compared with the current state-of-the-art models, Denseformer has 2.64%, 2.70%,
2.64% and 2.72% average improvement in four metrics such as Accuracy, Recall, F1 and
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precision, which means that it can significantly increase the detection rate of cyberattacks.
This method can prevent security problems such as data and privacy leakage, server fail-
ure, etc., and greatly improve the security guarantee that is urgently needed in network
environments such as the Internet, the Internet of Things, and cloud-edge computing.

KNN SVC XGB DT LGBM MLP 3Conv+BiLSTM
Conv+
LSTM

4Conv+
2FC

Conv+
2FC CNN-IDS HLSTM Dense

former
Accuracy 55.17 54.57 51.62 55.01 43.82 57.19 52.78 55.53 55.33 57.32 55.87 69.44 72.95
F1 Score 53.85 52.88 49.98 54.65 44.72 53.65 51.96 51.76 57.12 54.35 51.2 70.27 73.52
Recall 55.17 54.57 51.62 55.01 43.82 57.19 52.78 55.53 55.33 57.32 55.87 69.44 72.95
Precision 75.88 73.52 78.45 75.99 59.47 75.08 77.44 64.7 76.09 77.47 64.7 74.42 78.86
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20
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40
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70
80

Fig. 3. Comparison between different models on NSL-KDD test-21 dataset.

Table 3. Ablation experiments with denseformer layers replaced by other layers.
Model Conv Dense LSTM Denseformer
Dataset Test+ Test-21 Test+ Test-21 Test+ Test-21 Test+ Test-21

Accuracy 78.14 58.69 82.51 67.42 83.88 70.39 85.64 72.95
F1 Score 74.82 56.50 81.86 69.08 82.73 69.14 84.89 73.52

Recall 78.14 58.69 82.51 67.42 83.88 70.39 85.64 72.95
Precision 77.61 66.52 83.98 77.40 84.97 75.15 85.97 78.86

5.4 Ablation Experiments

To verify the effectiveness and generalization of Denseformer, we did ablation exper-
iments on replacing the Denseformer layer with other layers and the depth of the Dense-
former, respectively. Table 3 shows that Denseformer was still able to outperform Conv
(Convolution), Dense (Full Connection) and LSTM layers on the NSL-KDD Test+ and
NSL-KDD Test-21 datasets, demonstrating the effectiveness of the Denseformer layer.

Table 3 also shows that if we replace the encoder or decoder in Desneformer with
other layers, such as convolution, Dense or LSTM, it will lead to performance degrada-
tion. This shows that using an encoder with a self-attention mechanism to extract features
and using a decoder with cross-attention to refine features is very important for intrusion
detection tasks. The encoder-decoder structure with attention mechanism greatly reduces
overfitting to noise, which is also the key to improving performance in intrusion detection
tasks.

Table 4 shows that as the number of layers increases, the performance of Dense-
former gradually gets better. However, the performance decreases when the number of
layers exceeds 3, and the highest accuracy metric can be achieved at a depth of 4. This
indicates that both underfitting and overfitting of the model affect its performance, and
that the same hyperparameters do not consistently achieve the best performance on all
metrics.
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Table 4. An ablation study on the depth of denseformer layer.
Depth 1 2 3 4 5

Dataset Test+ Test-21 Test+ Test-21 Test+ Test-21 Test+ Test-21 Test+ Test-21
Accuracy 82.54 67.07 84.76 71.73 85.64 72.95 85.57 72.87 84.36 70.76
F1 Score 80.42 66.91 83.80 72.05 84.89 73.52 84.66 73.55 82.92 70.74

Recall 82.54 67.07 84.76 71.73 85.64 72.95 85.57 72.87 84.36 70.76
Precision 84.15 79.64 85.19 78.10 85.97 78.86 86.49 80.77 84.62 78.09

Fig. 4. The T-SNE visualization of the denseformer on the NSL-KDD Test datasets; The numbers
0, 1, 2, 3, and 4 indicate ’Normal’, ’DoS’, ’Probe’, ’U2R’, ’R2L’.

5.5 Visualization and Analysis

Figs. 4 (a) and (b) respectively describe the T-SNE visualization of the denseformer
model on the two test sets. It can be seen that the number of normal categories is much
larger than the number of other categories, and there is a greater degree of confusion
between the normal category and the R2L category. The Probe category is relatively
independent, but it can be confused with other categories, such as the DoS category. On
the whole, the samples of each category are obviously unbalanced, and each category is
confused with each other.

Fig. 5 depicts the confusion matrix of Denseformer on the two test sets. This model
is relatively poor in U2R and R2L attack categories, but the detection success rate in
other categories is relatively high. Our analysis is that the stacked attention mechanism
of Denseformer increases this part of the penalty, which increases the overall model ac-
curacy.

6. CONCLUSION

In this paper, we study a stacked dense attention network named Denseformer, which
unifying the encoder and decoder into separate layers and stacking them consecutively.
In order to further enhance the generalization performance of attention layer in cyber-
attack detection task, this paper proposes a dense attention with stacked multi-layer at-
tention mechanisms. This method not only shortens the distance from the encoder to
the decoder, and enables the network information to be converted between self-attention
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Fig. 5. The confusion matrices of the Denseformer on the NSL-KDD Test+ and NSL-KDD Test-21
datasets.

and cross-attention, but also captures the long-term dependencies between features and
the ability to suppress noise. This model also realizes the embedding of the multi-layer
encoder-decoder model by stacking the dense attention layers. By using the attention
mechanism of multi-layer encoders and decoders, the model can capture the relationship
between cyberattack data features, thereby improving model performance. Experimental
results show that Denseformer outperforms other models in various performance indi-
cators, which proves that Denseformer model has better generalization performance on
cyberattack detection tasks.
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