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As one of the most important operations in relational database management systems,
the join operation is very time-consuming as it needs to merge related records between
two tables to produce valuable data. Thus far, several join schemes have been proposed to
improve the performance of the join operation, and the hybrid hash-join scheme generally
shows the best performance among them. However, this scheme incurs a big overhead
during the probing phase as it must scan all records across buckets in the hash table in
order to find a corresponding record. In this study, we propose a new hash join scheme,
called bucket-sorted hash join, which only maintains records sorted within a bucket. Our
proposed scheme can significantly reduce the overhead incurred during the probing phase
because all records are sorted within a bucket, and the corresponding records are easily
found using a binary search. Our experiments show that the proposed scheme can improve
the performance of the join operation by up to 300% in terms of the TPC-H benchmark
compared to the hybrid hash join scheme. Thus, the proposed scheme is a viable alternative
in hash join operations.
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1. INTRODUCTION

The aim of relational database management systems (RDBMSs) is to store and man-
age large-scale structured information in a database which consists of relational tables.
To quickly answer queries in structured query language (SQL) issued by end-users, an
RDBMS should support two important operators. The first is the B∗–tree–based indexing
algorithm [1, 2], and the other is the relational join algorithm. In particular, the join opera-
tion is used to connect several tuples r in a table R to other tuples s in a table S if r and s are
related to each other. Fig. 1, describes a simple example of a join operation as follows:
Given two tables, R and S, assume that the schema data of R are {StudentID, Student-
Name, Major, CourseID} and those of S are {CourseID, CourseName, InstructorName,
NumberOfStudents}. To see the list of all courses that a student, John Doe, signs up for a
semester, we can write a simple SQL script program such as “SELECT R.StudentName,
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Fig. 1. Example of joining two tables (R and S).

S.CourseName FROM R, S, WHERE R.StudentName = “John Doe” AND R.CourseID
= S.CourseID.” In this case, because query responses are usually prepared based on re-
lated information from one or more tables in a database, the join operation is one of the
most frequently occurring operations in database systems and can largely affect the per-
formance of RDBMSs by consuming a significant amount of system resources, such as
CPU cycles, disk bandwidth, and buffer memories.

From the mid-1980s to the early 1990s, basic concepts and concrete algorithms in-
volving join operations were actively developed by the database research community.
Currently, rather than conducting new research on fundamental join operation algorithms,
most state-of-the-art studies focus on modifying the existing join algorithms that need
to be optimized for new computer systems and the latest technology. For example, with
the advent of various, next-generation non-volatile memories such as NAND flash mem-
ory [3, 4], PCM [5, 6, 7, 8, 9], and STT-MRAM [10, 11], fundamental database algorithms
have been re-imagined by numerous researchers and engineers. Existing disk storage has
been gradually replaced by NAND flash memory-based solid-state drives (SSDs), instead
of HDDs in common computer systems. Because the physical properties of SSDs are
completely different from those of HDDs, existing software running on HDDs needs to
be modified for SSDs to maximize performance. Furthermore, several recent studies have
been conducted on PCM-based join operation algorithms [12, 13]. Efficient join algo-
rithms have been presented for modern multi-core processor systems and even GPU-based
computer systems. In the modern big data era, most database researchers are also inter-
ested in parallel join algorithms [14] and MapReduce-based join algorithms [15]. Despite
the existence of these ongoing studies on new join algorithms suitable for modern sys-
tems, there is still room for performance improvement in the traditional join algorithms
that have already been widely used in commercial RDBMSs.

In general, regardless of the ANSI-standard or Oracle SQL, there are various types
of join operations: INNER JOIN, [LEFT|RIGHT|FULL] OUTER JOIN, CARTESIAN
JOIN(EQUI–JOIN), and [COMMON TABLE EXPRESSION|CONNECT–BY] SELF
JOIN. In addition, as join algorithms, NESTED LOOP JOIN (NLJ), SORT MERGE JOIN
(SMJ), and HASH JOIN (HJ) have been widely employed in commercial RDBMSs. In
NLJ, the candidate records are first selected by the WHERE clause of a join query from a
driving table R. Then, for each candidate record r ∈ R, a full table scan is performed on an
inner table S to match r to s∈ S. This method is mainly used to join small-sized tables. On
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the other hand, both SMJ and HJ are more appropriate for joining large-sized tables. In
SMJ, each of two tables, R and S, is first sorted by the WHERE clause of a join query and
then a join operation is performed for R and S. However, this method requires additional
memory space for the sorting task, and the execution time is insufficient when the join
operation cannot be executed immediately. This is because a table with a small number of
records must wait for the table with a larger number of records to be sorted first. Similar
to SMJ, HJ is typically used when joining large-sized tables. In HJ, given two tables, R
and S, R is prepared as a hash table using a hash function if the size of R is smaller than
that of S. For each s ∈ S record, using the same hash function, the relevant records from
R are found by scanning the hash table. In most database applications, relational tables
are not sorted and equi-join is usually used. Thus, in this work, we focus on the hash join
algorithm among the three join algorithms.

In this study, we propose bucket-sorted hash join (BHJ), which is a novel hash join
algorithm used to sort records by using a binary search only within a bucket; this consid-
erably reduces its probing time. Existing hybrid hash join algorithms sequentially scan
records in a hash table until the corresponding records are matched. Our experimental
results show that the proposed hash join algorithm outperforms the existing hash join al-
gorithms by up to 300% because it significantly decreases the probing time in the second
phase in HJ.

The rest of this paper is organized as follows: In Section 2, we introduce existing
hash join algorithms. In Section 3, we describe the details of the proposed BHJ algorithm
to improve the performance of the existing hybrid hash join algorithm. Next, we explain
the experimental set-up and discuss the experimental results in Section 4. Finally, we
summarize our work and discuss future work in Section 5.

2. BACKGROUND AND RELATED WORK

In this section, we assume that tables R and S will be joined with different schemes,
to explain them easily.

2.1 Join Operation

The join operation, which is one of the most important operations in RDBMS, gen-
erates valuable data by combining related records between two tables. In addition, this
operation is very time-consuming because it needs to compare and merge the records of
two tables. Thus, studies have been conducted to improve the join operation [16, 17], and
these join algorithms are primarily categorized into three types: (1) nested loop join, (2)
merge join, and (3) hash join.

2.2 Nested-loop Join

The nest-loop join algorithm [18] first reads one record from table R and then scans
an entire table S to find the corresponding record, as shown in Fig. 2. If the correspond-
ing record is found in table S, the algorithm merges the two records in tables R and S.
It repeats this procedure for all records in table R, taking on the form of a nested loop
that consists of inner and outer loops. Therefore, the nested-loop scheme generally shows
inferior performance compared to other schemes. To improve the performance of the
nested-loop scheme, the block nested-loop join scheme had been proposed. It reads mul-
tiple records from table R once, and then searches for the corresponding records in table
S. This effectively reduces the number of accesses to table S.
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Fig. 2. Block nested-loop join scheme.

2.3 Merge Join

Fig. 3 depicts the merge join operation scheme that first sorts tables R and S before
merging them. The scheme reads a record from table R and finds a corresponding record
in table S, or vice versa. The algorithm then repeats this operation for all records in
tables R or S. The merge join operation will be fast if these tables are indexed by the
merged columns in these two tables. However, if the merged columns are not indexed,
the scheme must execute an expensive sorting operation on the merged columns. Thus, it
can significantly deteriorate the performance of the join operation [19].

Fig. 3. Merge join scheme.

Fig. 4. Hash join scheme.

2.4 Hash Join

The hash join scheme has two steps: build and probe. In the build step, it builds a
hash table for the table with the smaller number of tuples. In the probe step, it probes
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the constructed hash table using the other table. This can be accomplished with all these
operations in memory [20] if the tuples of these tables are small. However, if these tables
are too big to fit in the memory, they require expensive disk I/O operations. The early
hash join [21] is based on symmetric hash join and uses a single hash table for each input.
It also consists of reading and flushing. This join algorithm dynamically customizes the
balance between initial performance results and minimum execution time. The grace hash
join scheme [22, 23] was proposed to reduce the number of expensive disk I/O operations,
as presented in Fig. 4. The scheme consists of two phases. In the first phase, table R is
divided into multiple partitions, and each partition is read from the disk and hashed with a
hash table. In this paper, a directory (i.e., hash table) consists of multiple directory entries
and resides in main memory. Buckets are also allocated in the memory space to hold
corresponding records by the hashed value. Each directory entry can have multiple linked
buckets, and a hashed record is assigned to each corresponding directory entry. If the
allocated memory space for a certain directory entry in the hash table is full, all records
of the allocated memory space are written back to the disk and deleted, and the algorithm
then continues to process all the tuples in table R. In the second phase, it builds the hash
table with a different hash function after reading the tuples in table R from the storage.
Then, it probes the built hash table for table R with a tuple of table S, after reading the
tuple of table S from the storage. Thus, the grace hash join scheme can significantly
reduce the number of disk I/Os because it accesses tables R and S with block I/Os.

The hybrid hash join scheme [24, 25] is a variant of the grace hash join and is in-
tended to utilize memory more efficiently. In hybrid hash join, the first partition of table
R is kept in the memory and the hash table is built during the first phase, without writing
back to the storage. When hashing the first partition of table S, the algorithm directly
probes the hash table of the first partition of table R in the memory. Except for the first
partition of tables R and S, other partitions will be processed in exactly the same way as
the grace hash join. Thus, the hybrid hash join scheme can eliminate the disk I/Os for the
first partition. In this study, we will propose a new approach to improve the performance
of the hash join scheme.

3. BUCKET-SORTED HASH JOIN

In this section, we introduce the motivation for our study and propose a novel hash
join scheme that sorts records only within the same bucket, instead of sorting all records
across multiple buckets

3.1 Motivation

The join operation in SQL produces a new table by combining two or more tables
in a RDBMS, and the hash join scheme (as one of the implementations of the join opera-
tion) shows high performance compared to other implementations. In addition, there are
several schemes that are utilized to implement the hash-join scheme, including the grace
hash-join and hybrid hash-join schemes. In this study, we focused on the hybrid hash-join
scheme because it will produce higher performance compared to other hash-join schemes.

Next, we measured the execution time of the hybrid hash-join scheme between tables
R and S, which comprise the CUSTOMER and ORDERS tables, respectively, in the TPC-
H. These tables are shown in Fig. 5. TPC-H, the ad-hoc/decision support benchmark
among the benchmarks of the Transaction Processing Performance Council, is extensively
used to evaluate database management systems(DBMSs) or computer systems. In this
experiment, we generated records for the CUSTOMER and ORDERS tables in TPC-H
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Fig. 5. Schema of tables R and S.

Fig. 6. The breakdown execution time of hybrid hash-join scheme.

by normal distribution. The numbers of records in these tables are 450K and 2250K,
respectively. This means that the number of records in table S is 10 times larger than that
in table R. In addition, we set the bucket size to 4 Kbytes. All values of the CUSTKEY
attribute as the primary key are unique in table R, and all tuples in table R are to be sorted
by the primary key. The CUSTKEY attribute in table S can be duplicated, and all tuples
in table S are sorted using the ORDERKEY attribute as the primary key.

Fig. 6 shows the execution time of the hybrid hash-join operation. While the elapsed
hash time is similar to the disk I/O time in the first phase, the probing time is the relatively
dominant component of total execution time in the second phase compared to the building
and disk I/O times. This probing operation first selects a specific record in the S table,
and then continues to scan the hash table of the R table by comparing the primary key in
the R table and the foreign key in the S table until a corresponding record is found in the
hash table. This means that the probing operation must scan the hash table of the R table
many times. Thus, it is particularly important to minimize the probing time to improve
the performance of the hybrid hash-join operation.

3.2 The Proposed Scheme

In this study, we propose a new hash-join scheme, called bucket-sorted hash-join,
to sort records only within a bucket in order to reduce the probing time, while the hy-
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Algorithm 1: Insert Operation
1 Function Insert(Record R, The Bucket B)

2 while (B is full) do
3 B : = B->next;
4 if (B is equal to the last bucket) then
5 Allocate a new bucket;
6 B : = the new bucket;
7 break;

8 if (B ! = empty) then
9 A := The last record in B;

10 R : = The new record;
11 while (A.Key > R.Key) do
12 Move right A in the bucket;
13 A := A’s preceding record;
14 Add R into A’s right side;
15 else
16 Add R into B;

brid hash-join scheme sequentially scans records in a hash table until the corresponding
records are matched.

Algorithm 1 presents the detailed process of an insert operation in the first and sec-
ond phases in our proposed scheme. To insert a new record into a certain bucket in the
proposed scheme, it first checks whether the bucket is full or not. If the bucket is full, it
moves to the next bucket. If the bucket is not full, it starts comparing the record to insert
with the last record in the bucket. If the key of the inserting record is smaller than the key
of the last record in the bucket, it moves the last record to the next, and then compares
the preceding record to the last record again. Otherwise, it simply inserts the new record
next to the current record. The scheme repeats this process until a new record is properly
added to a certain bucket and indicates that the new record will be inserted in the proper
slot in the bucket by maintaining the ascending order among records within the bucket.

Algorithm 2 presents the detailed process of a probing operation in the second phase
in our proposed scheme. In our proposed scheme, we use the binary search algorithm to
find the record within a certain bucket instead of scanning records. To probe the record,
the scheme visits the first bucket to find the corresponding record using the binary search
algorithm. If the corresponding record is found, it combines these two records. Then,
it moves to the next bucket to search, and keeps doing so until the last bucket is visited
because multiple records with the same key value can exist in some tables.

Next, we explain the proposed scheme with a simple example, and Fig. 7 depicts
how the bucket-sorted hash join works. While the proposed scheme is the same as that
of the hybrid hash-join in the first phase, in the second phase the 0 directory entry (first
partition) initially has one bucket to hold four records, 8, 16, 24 and 40, as shown in Fig.
7 (a). Within the bucket, the four records are stored in ascending order, and now a new
record, 80, is inserted in this directory entry. Because the current bucket has no space to
store the new record, the new bucket is first allocated and linked, and then the record is
inserted in the first slot in the second bucket. Fig. 7 (b) shows the status of the hash table
after the new record (80) is added. Now, we add the new record 32 to the first directory
entry in the hash table. Because the first bucket is full, the algorithm checks whether the
next bucket has available space to store the new record. The record in the first slot is
moved to the second slot, and the new record will be added to the first slot in the second
bucket to maintain the ascending order among records within the second bucket. Fig. 7 (c)
shows the status of the hash table after the new record 32 is added. Thus, a certain record
can be easily searched for with our proposed scheme, using the binary search algorithm.
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Algorithm 2: Probe Operation
1 Function Probe(Record R, Bucket B)

2 while (B ! = The Last Bucket) do
3 BinarySearch(R,B);
4 B : = B->next;

5 Function BinarySearch(Record R, Bucket B)
6 First : = the first record in Bucket B;
7 Middle : = the middle record in Bucket B;
8 Last : = the last record in Bucket B;
9 while (First <= Last) do

10 if (Middle.Key < R.Key) then
11 First := The next record of Middle;
12 else if (Middle.Key == R.Key) then
13 Combine A and B;
14 else
15 Last := The preceding record of Middle;
16 Middle = The middle record Between First and Last;
17 return NULL;

This implies that our proposed scheme can significantly reduce the probing time in the
second phase, compared to the hybrid hash-join scheme.

(a) Before adding a record 80. (b) After adding a record 80. (c) After adding a record 32.
Fig. 7. Bucket-sorted hash join.

3.3 Time and Memory Space Complexity

Assume that we use a separate chaining to resolve a collision in a hash table, and
additional memory spaces other than the key/value pairs in the hash table directory are
not needed. The cost of a hash join includes i) partitioning the relations into blocks, ii)
creating a hash table entry, iii) probing with a hash table, iv) reading and writing the disk
blocks, and v) moving the data to the write memory buffer.

During a partitioning phase, the relations R and S are divided into similar sized par-
titions, Ri and Si, using a hash function. Assume that each partition Ri and Si can be fit
into one memory block with a proper hash function. Then, the partitioning cost, TPartition,
is defined as

TPartition = (Nr +Ns)∗ (Th ∗CL∗O(Bn)+Tm)

+ (dNBr/(NBm−1)e+ dNBs/(NBm−1)e)
∗ (Tr +Tw)

where Nr and Ns are the number of records in the relations, and Th and Tm are the hashing
and memory access times for a record, respectively. One page block in memory is used for
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Table 1. Notations.
Notation Description
R, S, O Two relations to join R and S, output relation O.
Nr, Ns Number of records in relation R and S. Assume Ns� Nr.

NBr, NBs, NBo Number of page blocks in relation R and S.
Bn Number of entries in a bucket.
CL Average chain length, dNs/Bne.
q Utilization factor for a hash table, q = Ns0/Ns,

i,e, the ratio of the first page block.
NBqs, NBqr Number of pages for the first partition block.

Ri,Si, Oi ith partition of relation R, S and O.
NBm Number of page blocks in main memory.
Tm Time to move to a write buffer.
Th Time to create a hash table entry for a record, Th ∗CL∗O(Bn) to generate

unsorted bucket and Th ∗CL∗O(B2
n) to generate partially sorted bucket.

Tp Probing time for a record, Tp ∗CL∗O(Bn) for sequential search bucket and
Tp ∗CL∗O(logBn) for binary search bucket.

Tr Read one page block from disk to memory time.
Tw Write one page block from memory to disk time.

streaming the relations and the other NBm−1 page blocks are used to store the partition
blocks. Then, the hashing time for a record is Th ∗CL ∗O(Bn) and (dNBr/(NBm−1)e+
dNBs/(NBm−1)e) blocks are read from disk into memory during the partitioning phase.

Once the relations are properly partitioned, each partition, Si, is read into main mem-
ory and a corresponding hash table entry is generated by another hash function. Assume S
is a smaller size relation, a hash table is generated based on the relation S, one page block
is used for streaming the relation, (NBm−2) page blocks are used for hash table, and the
last one block is used as an output buffer. Then, the hash table generation cost THash is
defined as

THash = Ns ∗ (Th ∗CL∗O(Bn)+Tm)

+ (dNBs/(NBm−2)e)∗Tr

where Th∗CL∗O(Bn) is a hash entry generating time and dNBs/(NBm−2)e is the number
of blocks to read during this phase.

Then, the hashing table is preserved in the memory and the other relation block, Ri,
is read into the memory to probe. The probing cost is defined as

TProbe = Nr ∗ (Tp ∗CL∗O(Bn)+Tm)

+ (dNBs/(NBm−2)e−1)∗NBr ∗Tr

where Tp∗CL∗O(Bn) is the probing time and (dNBs/(NBm−2)e−1)∗NBr is the number
of blocks to read during the probing.

Finally, the joined result relation block, Oi, is written back to the disk. The cost is
defined as

TWrite = NBo ∗Tw.

When the two relations, R and S, are pre-sorted, then a bucket searching term, O(Bn)
can be replaced with O(logBn) using a binary search.
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• Hybrid Hash Join. In a hybrid hash join, the record belonging to the first partition
block stays in memory to reduce the disk I/O during a partitioning phase. Assume
that q is the ratio for the first partition block of either the relation S or R. Then, each
page block from S is read into the memory and a hash table is generated with the
records. If the record belongs to the first partition block, then the record is stored in
the hash table. Otherwise, the record is moved into a write buffer area. Therefore,
the first page block (i.e., q ∗Ns records) stays in the main memory and the other
page blocks (i.e., (1− q) ∗Ns records) are moved back to a disk through a write
buffer. After the partitioning, each page block, except the first block from R, is
moved into memory to probe using the hash table. If the record belongs to the first
partition block, then record is probed with the generated hash table. Otherwise, the
record will be moved to a write buffer area.

The partitioning phase leaves the records belonging to the first page block in mem-
ory. Therefore, the total cost of partitioning is defined as

TPartition = (Nr +Ns)∗ (Th ∗CL∗O(Bn))

+ (Nr +Ns)∗ (1−q)∗Tm

+ (dNBr/(NBm−NBqr−1)e
+ dNBs/(NBm−NBqs−1)e)
∗ (Tr +(1−q)∗Tw)

where q is the ratio for the first page block, and NBqr and NBqs are the numbers of
the first page blocks for relations R and S, respectively.

Because only (1−q) page blocks are needed to read into a main memory, the cost
of hashing table creation is defined as

THash = Ns ∗ (Th ∗CL∗O(Bn)+(1−q)∗Tm)

+ (d(NBs−NBqs)/(NBm−2)e)∗Tr

Now, the probing cost is defined as

TProbe = (1−q)∗Nr ∗ (Tp ∗CL∗O(Bn)+Tm)

+ (d(NBs−NBqs)/(NBm−2)e−1)
∗ (NBr−NBqr)∗Tr

Finally, the cost associated with writing the results to disk stays the same as

TWrite = NBo ∗Tw

Similarly, when the relations are already sorted, we can reduce the probing time by
using a binary search rather than a linear search. Therefore, the hash table searching
term O(Bn) can be replaced by O(logBn).

• Bucket-Sorted Hash Join. During hash table creation, the keys in the hash table
are partially sorted in the bucket-sorted hash join. Therefore, instead of a linear
search inside a page block, the bucket-sorted hash join uses a binary search on
the partially sorted page block. Consequently, it requires more time to generate a
partially sorted hash table entries within a bucket, but probing time is reduced by
using a binary search within a bucket.
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Because partition phase is the same as that of the hybrid hash join, the total cost is
defined as

TPartition = (Nr +Ns)∗ (Th ∗CL∗O(Bn))

+ (Nr +Ns)∗ (1−q)∗Tm

+ (dNBr/(NBm−NBqr−1)e
+ dNBs/(NBm−NBqs−1)e)
∗ (Tr +(1−q)∗Tw)

During a hash table creation phase, blocks should be partially sorted, which requires
O(B2

n) instead of O(Bn) as in hybrid hash join. The cost to create a hash table is
defined as

THash = Ns ∗ (Th ∗CL∗O(B2
n)+(1−q)∗Tm)

+ (d(NBs−NBqs)/(NBm−2)e)∗Tr

Since the hash table is partially sorted, we can use a binary search within a bucket
during the probing phase which requires O(logBn) rather than O(Bn). Then, the
probing cost is defined as

TProbe = (1−q)∗Nr ∗ (Tp ∗CL∗O(log(Bn))

+ (d(NBs−NBqs)/(NBm−2)e−1)
∗ (NBr−NBqr)∗Tr

The cost associated with writing the result blocks to the disk remains the same as

TWrite = NBo ∗Tw

In this method, if relations R and S are already sorted, then we can replace the
sorting terms O(B2

n) by O(1) during the hash table creation. The probing phase
would also then require O(logBn) with a binary search .

Lemma 1 When relation R has more than (B2
n−Bn)

Bn−logBn
∗Ns records, then the hybrid hash join

T H
J requires more operations than the bucket-sorted hash join T S

J .

Proo f : Assume T H
J is the cost for the hybrid hash join and T S

J is the cost for bucket-sorted
hash join. Then, based on the notation in Table 1 and the above equations, we can define
the following relation.

T H
J −T S

J = Ns ∗Th ∗CL∗O(Bn)

+ Nr ∗ (1−q)∗Tp ∗CL∗O(Bn)

− Ns ∗Th ∗CL∗O(B2
n)

− Nr ∗ (1−q)∗Tp ∗CL∗O(logBn)

After replacing the fixed costs Th and Tp with a constant, the hybrid hash join requires
(Ns +Nr) ∗O(Bn) operations, while the bucket-sorted hash join needs Ns ∗O(B2

n)+Nr ∗
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O(logBn) operations. Then, the above equation will be changed approximately to

T H
J −T S

J ≈ (Ns +Nr)∗O(Bn)

− Ns ∗O(B2
n)

− Nr ∗O(logBn)

Therefore, the hybrid hash join T H
J requires a higher number of operations compared

to bucket-sorted hash join T S
J when the number records of relation R is greater than

(B2
n−Bn)

Bn−logBn
∗Ns. In conclusion, the cost of sorting during the hash table creation can be

recovered within the probing phase by using a binary search scheme in the bucket-sorted
hash join when the relation has enough number of records.

4. EXPERIMENT VALIDATION

In this section, we explain the experimental set-up and show the performance evalu-
ation 1.

4.1 Experimental Set-up

In our experiments, we used only two tables, R and S, which stand for CUSTOMER
and ORDERS tables, respectively, in TPC-H [26], as shown in Fig. 5. In addition,
HHJ R S, HHJ S R, BHJ R S, and BHJ S R represent hybrid hash join with building
R and probing S, hybrid hash join with building S, and probing R, bucket-sorted hash join
with building R and probing S, and bucket-sorted hash join with building S and probing
R, respectively. Table 2 lists the configurations of our test-bed, and we determine the hash
table size using the buffer size and the sizes of tables R and S in [27].

Table 2. Experimental test-bed configuration.
CPU Intel(R) Core(TM) i7-4790

Quad-Core, 3.6 GHz
Front-side Bus 1.6 GHz
Main Memory 16 Gbytes

Storage Interface Serial ATA3
HDD Seagate Barracuda ST1000DM003

7200 RPM, 1 Tbytes
OS Cent OS 6.5 (Linux 2.6.34)

File System ext4

4.2 Performance Comparison

The first experiment executes the join operation between the R and S tables, which
have only 450K tuples and a varied number of records from 450K to 2250K, respectively.
In the first phase, the join operation reads and hashes tuples of table R into buckets using
a certain hash function, and then the hashed tuples are written back to the disk. The same
treatment is conducted on the tuples in table S. In the second phase, tables R and S will
be used to build and probe a hash table, respectively.
1In this paper, the performance is determined by the completion time, which is the total elapsed time to process
all requested operations.
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Fig. 8 shows the completion times of the grace hash join scheme, hybrid hash join
scheme and the proposed scheme, breaking down the total elapsed time for the hashing
and disk I/O times in the first phase, and the building, probing, and disk I/O times in
the second phase. The figure shows that the first phase hashing time for hybrid hash
join scheme is longer than that of grace hash join scheme, but the probing time in the
second phase is shorter. This is because by hashing the first partition of table S, the
algorithm directly probes the hash table of the first partition of table R in the memory.
Furthermore, the grace hash join scheme has a higher total execution time than that of
the hybrid hash join. From now, our experiment only compares the performance of our
proposed scheme (Bucket-sorted Hash Join) to that of hybrid hash join scheme in this
paper. In this experiment, the execution times of the first phases of these two schemes
are exactly the same because the operations of the first phases are exactly the same. In
addition, the disk I/O times in the first and second phases are negligible.

Fig. 8. Analysis of completion times between grace hash join, hybrid hash join and bucket-sorted
hash join by varying the number of records in table S.

Fig. 9. Analysis of completion times between hybrid hash join and bucket-sorted hash join by
varying the number of records in table R.

Interestingly, BHJ S R (i.e., our proposed scheme with building S and probing R)
shows the best performance because it results in the shortest probing time in this experi-
ment, if the ratio of the tuples in tables R and S is less than or equal to 1-4. Compared to
the hybrid hash join scheme, the proposed scheme shows a significantly reduced probing
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time in the second phase, whereas the building time is slightly deteriorated. The proposed
scheme spends more building time sorting records sorted within each bucket when build-
ing S in the second phase, but much less time to probe within a bucket during probing R
by the binary search scheme. However, HHJ R S (i.e., the hybrid hash join scheme with
building R and probing S) shows better performance compared to our proposed scheme
if the ratio of the tuples in tables R and S is 1-5. This is because our proposed scheme
incurs more overhead to maintain all the records sorted in a bucket. As we expected, the
total execution times of our proposed and hybrid hash schemes are similar at building R
and probing S because the records in table R are already sorted. In addition, HHJ S R
(i.e., the hybrid hash join with building S and probing R) shows the worst performance
owing to the long probing time in this experiment.

(a) If the numbers of tuples of tables R and S are 450K and 1350K, respectively.

(b) If the numbers of tuples of tables R and S are 1350K and 450K, respectively.
Fig. 10. The analysis of completion times between hybrid hash join and bucket-sorted hash join by
varying the distributions.

Next, we set table S to only 450K records and table R to a varied number of records
from 450K to 2250K in this experiment, and Fig. 9 shows the completion times of the
hybrid hash join scheme and the proposed scheme. In this experiment, BHJ R S (i.e., the
proposed scheme at building S and probing R) outperforms the hybrid hash join scheme
by up to 300% because it significantly reduces the probing time in the second phase,
whereas HHJ S R (i.e., the hybrid hash join scheme at building S and probing R) shows
the worst performance. When probing R after building S, the algorithm needs to scan
all the buckets linked to the same directory entry to perform a join operation correctly
because values in the CUSTKEY attribute can be duplicated.

The proposed scheme can quickly search a corresponding record in a bucket using a
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binary search, whereas the hybrid hash join should scan all records across buckets because
records in a bucket are not sorted. The proposed scheme and hybrid hash join scheme
show remarkably similar performance at building R and probing S. All records in a bucket
are naturally sorted at hashing R because all the tuples in table R are maintained in a
sorted order, and therefore, the algorithm can search a corresponding record using the
binary search algorithm in a bucket when probing R. Now, we additionally use normal
and zipf distributions to generate tuples in tables R and S randomly, whereas we used the
uniform distribution in previous experiments. In this experiment, the numbers of records
in tables R and S are set to 450K and 1350K, respectively, and vice versa. As shown in
Figs. 10 (a) and (b), the total elapsed times are similar across different distributions, while
our proposed scheme shows the best performance at hashing S and probing R. This result
implies that the used hashing function could randomly distribute the tuples in tables R and
S in these two schemes because the distributions do not affect the performances of both
the bucket-sorted and hybrid hash join schemes in our experiments.

(a) If the numbers of tuples of tables R and S are 450K and 1350K, respectively.

(b) If the numbers of tuples of tables R and S are 1350K and 450K, respectively.
Fig. 11. Analysis of completion times between hybrid hash join and bucket-sorted hash join by
varying the buffer size.

We varied the buffer sizes from 25 MB to 65 MB in this experiment. In Fig. 11, the
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completion times in two schemes are the fastest at the largest buffer size, but the slowest
at the smallest buffer size. This is because the bigger buffer size can hold more records in
main memory to incur fewer disk accesses, as the buffer size increases. In this experiment,
our proposed scheme also shows the shortest completion times at hashing S and probing
R, whereas the hybrid hash join scheme shows the worst completion times owing to a
long probing time in the second phase.

Here, we compare the performance impact of bucket size from 4K bytes to 256K
bytes when the R and S tables have 450K and 1350K tuples, respectively, in hybrid hash
join and in our proposed schemes in this experiment. As shown in Fig. 12, the hybrid
hash join scheme shows similar performance as the bucket size increases, because it has
no overhead to maintain the records in a sorted order. By contrast, our proposed scheme
shows shorter completion times as the bucket size increases up to 64 Kbytes, because
the records are maintained in a sorted order in a certain bucket, reducing the probing
time during join operation. If the bucket size increases beyond 64 Kbytes, our proposed
scheme shows worse completion times. This is because the sorting time within a bucket
increases as the bucket size increases. However, our proposed scheme still shows much
better performance compared to the hybrid hash join scheme across versatile bucket sizes.

Fig. 12. Analysis of completion times between hybrid hash hoin and bucket-sorted hash join by
varying the bucket size.

Fig. 13 (a) shows the completion times as the number of records increases from
50K to 850K in table R, and the ratio of the number of tuples in R and S is 1 to 3.
Meanwhile, Figure 13 (b) shows the completion times as the number of records increases
from 50K to 850K in table S and the ratio of number of the tuples in R and S is 3 to 1.
In this experiment, our proposed scheme improves the completion times by up to 300%
compared to the hybrid hash join scheme. As the number of records increases, more
buckets are linked to each hash directory entry and additional probing time is required
to visit more buckets. The hybrid hash join scheme requires negligible building time but
much longer probing time because it must scan all records across multiple buckets. By
contrast, the proposed scheme shows much shorter probing time because the binary search
algorithm is used to search a bucket.

In a nutshell, our proposed scheme shows significant performance improvement
compared to hybrid hash join scheme in versatile experimental environments when hash-
ing the table S and probing the table R, and shows better or similar performance compared
to hybrid hash join scheme when hashing the table R and probing the table S.
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5. CONCLUSION

In this study, we proposed the bucket-sorted hash join scheme, a new hash join
scheme designed to improve performance. Our scheme can easily search the correspond-
ing record during probing operations because the records are maintained in a sorted order
only within each bucket, not across the buckets. Thus, it can significantly reduce the exe-
cution time of a join operation. The experimental results demonstrated that our proposed
scheme can improve performance by up to 300 % compared the hybrid hash join scheme.

(a) The ratio of the numbers of tuples of tables R and S is 1 to 3.

(b) The ratio of the numbers of tuples of tables R and S is 3 to 1.
Fig. 13. Analysis of completion times between hybrid hash join and hybrid hash sort join by varying
the number of records.

In the future, we plan to extend our work for application to a range-join operation.
Furthermore, we plan to propose a completely new join algorithm to significantly improve
its performance over that of prior schemes.
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