
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 1037-1059 (2023)

DOI: 10.6688/JISE.202309_39(5).0003

1037

Fuzz Testing Process Visualization

HAN-LIN LU1,+, REN-JIE ZHUANG1 AND SHIH-KUN HUANG1,2

1Department of Computer Science
2Information Technology Service Center

National Yang Ming Chiao Tung University

Hsinchu, 300 Taiwan

E-mail: littleflyer2015@gmail.com+; {jackgrence.cs08; skhuang}@nycu.edu.tw

The conventional fuzz testing process consists of an input mutation, an execution to

test the program, monitoring, and information collection to discover bugs and security vul-

nerabilities. However, practical programs have more features and complex logic, and leg-

acy mutation strategies cannot reach a deeper path to find potential bugs. A solution to this

problem is to analyze the input seeds and employ test harnesses for the testing flows. This

study proposes an interactive visualization tool called FuzzInspector for fuzz testing. We

implemented a visualizer mode on AFL++ to generate test data for a binary analysis tool

(Qiling framework and Radare2). We then visualized the controlflow graph and execution

path information. This method does not require the source code and reduces the perfor-

mance overhead. We also implemented an interactive user interface for the user to set the

breakpoint, seed, register, and memory address and send the request to the Qiling frame-

work for dynamic analysis. Moreover, the seed constraint can assist the fuzzer in generat-

ing a formatted seed for exploring a specific execution path. We evaluated the search time

using a known approach to common vulnerabilities and exposures (CVE) and found that

the search for bugs with constraints is 15 to 20 times faster than that without constraints.

Moreover, we introduced a dynamic analysis feature to find controllable data and assist

the exploit development process.

Keywords: big data, knowledge management, knowledge creation, knowledge application,

technology, Cynefin framework

1. INTRODUCTION

In recent years, software testing has become increasingly important. As software vul-

nerabilities continue to be revealed, the resulting losses are growing. Software developers

have been conducting software testing through a fuzzing process. Fuzz testing can be used

to rapidly test a program through seed mutation, execution, monitoring, and information

collection, allowing bugs and security vulnerabilities to be identified and thereby improv-

ing the quality of the software. However, in practice, fuzzing still requires numerous inter-

actions between the fuzzer and engineers to more effectively find program vulnerabilities.

For example, we may need to know which part of the program the fuzzer is exploring or

how many paths are executed. We also want to know whether the fuzzer is stuck under a

certain branch condition and, therefore, cannot pass. In addition, the run-time information

provided by the fuzzer requires an appropriate user interface to help engineers debug or

understand the fuzzing behavior. Conceptually, such an interface can provide visual infor-

mation and data, allowing the different stages of fuzzing to be easily understood. However,

the existing fuzzers can only provide limited information and lack a suitable display interface.

Received September 30, 2022; revised November 14, 2022; accepted December 21, 2022.
Communicated by Chu-Ti Lin.
+ Corresponding author.

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1038

A coverage-guided fuzzer called American fuzzy lop (AFL) [1] is currently one of

the most commonly used fuzzers. AFL uses an instrumentation technique to insert code at

compile time during the fuzzing process to retrieve the path information and rapidly change

the mutation strategy. The instrumentation stores the branch target with a bitmap hash to

speed up the execution time and reduce memory usage. However, the hash value cannot

be transformed into an execution path.

1.1 Execution Path of the Seed Inputs

The AFL can display the number of unique paths and crash seeds, as well as the exe-

cution speed per second during the fuzzing process. Based on the path counts and time-

stamps, we can only know the capability of exploring the execution paths between different

fuzzers. Owing to the design restrictions of a bitmap hash of the code coverage, we cannot

track the actual execution path of a seed or understand which condition is satisfiable or

creates a bottleneck. To resolve this issue, we can accumulate the coverage result using

llvm-cov to realize an unsatisfiable constraint. However, llvm-cov does not support a bi-

nary-only option, and it needs to compile from the source code. We, therefore, use a binary

analysis tool to visualize the fuzz testing, display the path information using vis.js [2] dur-

ing fuzzing, and provide a user interface for interacting with the fuzzer.

1.2 The Benefit of Visualization

Providing visualization information during the fuzzing process will help the user un-

derstand the fuzzer behavior and modify the test harness or fuzzer to detect more bugs.

Previous studies [3, 4] have shown that visualizing software behaviors can effectively as-

sist in software development and debugging. The visualization process can help in under-

standing the behavior of the executing software. For example, to determine how much

performance overhead is incurred through a new method, researchers in this field typically

use path-growing graphs to compare the capability of exploring the execution paths and

the average execution time. Furthermore, binary analysis tools, such as interactive disas-

sembler IDA Pro [5], or Ghidra [6], support control-flow graphs that help understand the

program behavior. In addition, llvm-cov shows the execution counts for every code block.

Hence, developers can write unit tests to examine the execution results and remove redun-

dant code.

1.3 Interactive Visualization for Fuzz Testing

To avoid affecting the efficiency of fuzzing while generating visual information, we

fed the seed to other processing procedures for analysis and then transferred the analysis

results to a web page for display, allowing the different paths of various seeds to be dis-

played. When depending solely on the pure path information, it is difficult to understand

the logic of the tested program. We, therefore, added a dynamic analysis function to allow

the user to select the seed to be executed, set the breakpoint, and obtain the desired register

or memory content using a specific syntax.

To understand the impact of seed input generation on the state of the program execu-

tion, we also modified the colorization method of REDQUEEN [7] to obtain seed data that

FUZZ TESTING PROCESS VISUALIZATION

1039

cannot be modified when a branch is reached. In addition, we used the colorization method

to search for seed data affecting the current state of the CPU. Thus, we could quickly de-

termine the seed data used to control the state of the program execution, find a new path,

or assist in exploit development. Finally, according to the information obtained, we devel-

oped a seed-restricted operation interface that allows users to set the constraint such that

the fuzzer can generate seeds that conform to the constraint and force the fuzzer to explore

new execution paths or limit the exploration to specific paths.

1.4 Contributions

The contributions of our study can be summarized as follows:

• Visualization of the execution of the input seeds. This allows users to quickly understand

the differences in the program execution paths of different seeds.

• Visualization of the execution path exploration capabilities of different fuzzers. Multiple

fuzzing methods can be simultaneously evaluated to determine which conditional ex-

pressions in the methods can pass or fail.

• Dynamic analysis interface. We can obtain information regarding the execution stage of

a program, choose different seeds as inputs, obtain register or memory content, and un-

derstand the logic of the program.

• Mark what seed data will affect a specified CPU state, understand the conditions for

exploring new execution paths, and assist in developing exploits.

• Restrict seed generation formats and direct the fuzzer to explore new or specific execu-

tion paths and rapidly locate potential vulnerabilities.

• Use FuzzInspector as a standalone tool. FuzzInspector can directly connect different

fuzzer strategies and display the visualized data without modifying the fuzzer architec-

ture.

The source code can be accessed from https://github.com/JackGrence/FuzzInspector.

2. RELATED WORK

The visualization of statistical data helps users understand their meaning. However,

few studies on fuzzing have employed visualization technology. For example, VisFuzz [8]

records basic blocks and functions during a compilation, but it cannot automatically ana-

lyze a bottleneck. The relationship function of FuzzInspector can assist in understanding

the program logic through human operations. FuzzSplore [9] analyzed the fuzzing infor-

mation over an extended period. The similarity among seeds produced by different fuzzers

can be examined, and the seed mutation ability of different fuzzers can be determined. In

contrast to FuzzInspector, we provide multiple fuzzers for simultaneous evaluation; in ad-

dition, we use the constraint function to share the seeds found by other fuzzers. Coverage

visualizer [10] is a web-based JAVA code coverage visualization tool that provides visual

code coverage information and displays which code is executed by the test program

through color markers, allowing users to quickly understand the program behaviors.

FuzzInspector can also draw stars in the executed code block and display the path accord-

ing to the seed. The IJON [11] annotation mechanism uses human intervention to directly

add comments that IJON can relate to the code and thereby guide the fuzzer. By contrast,

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1040

although FuzzIn-spector cannot provide a source-code-level guidance method, it can use

the constraint function to achieve a certain level of guidance and does not require the pro-

gram source code. In addition, FMViz [4] uses different color changes to represent the

different mutation stages of the fuzzer. Some studies [12-14] have provided visualization

reports that can help developers understand how program bugs occur and where they are

located. FuzzInspector can help program developers conveniently identify program vul-

nerabilities, while allowing users to understand the relationship between the program input

and program logic through information visualization. FuzzInspector implements a user in-

terface, allowing the fuzzer to execute more efficiently by manually adjusting the strategy.

3. DESIGN AND IMPLEMENTATION

Initially, fuzzers cannot determine the execution paths they have not traveled along

or why they cannot enter the branches. They rely solely on static and dynamic analyses to

manually process large numbers of seeds. We must follow a required execution path to

explore the path that a test harness has not traveled on and avoid entering branches that

have been tested and are not of interest. To reduce manual intervention, we propose im-

plementing an assistant tool called FuzzInspector, which employs an interactive visualiza-

tion process for fuzz testing. It provides additional fuzzing information for viewing the

differences in the execution paths of different seeds or fuzzers; moreover, it performs dy-

namic analysis to understand the impact of seed input on the state of a program and inter-

acts with a fuzzer in real time to restrict it to exploring only a specific execution path.

We first introduce a fuzzer and discuss three aspects − cross-platform support, exe-

cution performance, and user interface support. AFL uses an instrumentation technique to

insert code at the compile time during the fuzzing process to retrieve the path information

and rapidly change the mutation strategy. Without the source code, AFL must rely on other

tools to obtain running coverage information. For example, it can perform fuzz testing

without the source code through QEMU mode. QEMU [15] is a generic open-source ma-

chine emulator that emulates a program on different CPU architectures. QEMU defines the

minimal code unit, called a translation block, for translation. Therefore, the translation

block can be considered a basic block and enables the AFL to insert the instrumentation

code in the block and provide path coverage for the fuzzing process. However, QEMU

does not provide a user-friendly interaction interface. Unicorn [16] provides an interface

based on QEMU and implements the hook function to allow users to interact with the

program (for example, when a program executes a system function, it records the relevant

parameters and stops the execution if malicious commands are found.)

The changes proposed by Unicorn were eventually integrated into AFL-unicorn [17]

and UnicornAFL [18], allowing AFL and AFL++ to fuzz any executable file simulated by

the Unicorn Engine. Although Unicorn improves user interaction, it does not support sys-

tem calls of different operating systems. Therefore, the Qiling framework [19] adds system

call simulations of different architectures. In addition, QEMU’s implementation of system

calls to a local executable language is changed in Qiling using Python, resulting in a highly

flexible user experience. In the next section, we introduce the FuzzInspector architecture,

including real-time interactions with a fuzzer, the binary analysis queue, and the user in-

teraction interface.

FUZZ TESTING PROCESS VISUALIZATION

1041

3.1 FuzzInspector Architecture

Our implementation is based on AFL++ [20], which integrates several fuzzing-related

research methods, including power scheduling in AFLFast [21], mutation scheduling in

MOpt [22], and transforming the input-to-state in REDQUEEN [7], in conjunction with

MOpt. In addition, it supports LLVM, QEMU, GCC, Unicorn [16], and QBDI in the in-

strumentation aspect, allowing AFL++ to be applied to different target programs. Fig. 1

shows the architecture of FuzzInspector. To provide additional path information and inter-

actions with the fuzzer, we divided FuzzInspector into several subsystems, including real-

time interaction with the fuzzer, a binary analysis queue, and a user interaction interface.

Using the FuzzInspector API, the system can exchange information, obtain the data re-

quired by each component, and interactively visualize the fuzz testing process.

Fig. 1. FuzzInspector architecture.

• Functionality

First, real-time interactions with the fuzzer are responsible for collecting seeds, pro-

viding a follow-up analysis, and receiving user-defined seed formats. The fuzzer can only

use received seeds to achieve a specific path exploration effect. The binary analysis queue

provides and processes all binary-related information, including the figure generation pro-

cess, conducts a dynamic analysis, returns the results of the seed path analysis, and pro-

vides statistical data. The user interface is responsible for displaying all data on the web

page, such as a flow chart, log information, fuzzer path display, and related animation to

distinguish the differences in the seed paths.

• Communication of Fuzzing Information and Status

The communication process can be divided into two types. The first is seed collection

and analysis during the fuzzing phase. We allowed multiple fuzzers to run simultaneously.

The fuzz section sends the seed to FuzzInspector and then conducts a binary analysis. The

analysis results are displayed on a webpage to achieve real-time updates of the fuzzing

information.

• Active Requests

The second type of communication is triggered by a user executing a required func-

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1042

tion. A function request is sent through the user interface. If it is binary, the results of a

relevant information analysis are forwarded to the binary analysis queue for execution. The

user interface receives the results and displays them until the execution is completed. We

assume that the seed format of the fuzzer is set. In this case, the designated fuzzer on the

left is notified to receive the restriction, the seed generation format of the fuzzer is con-

trolled, and the path expected by the user is explored.

3.2 Interactions with the Fuzzer

The function of real-time interactions with the fuzzer is to collect seeds and receive

the seed constraints. This allows FuzzInspector to analyze the path information provided

by seeds, allowing users to understand the conditional current passing and failing formulas,

compose constraints restricting the seed generation format, and control the fuzzer to ex-

plore specified paths.

• Seed Transferring

We added a visualization mode to AFL++. To analyze the binary information without

affecting the fuzzing performance, a seed is only sent out when a new path is found. There-

fore, if the fuzzer finds a new path, it will use the “Provide Seed Information” API to send

the seed path and fuzzer PID to FuzzInspector, and then continue with the fuzzing process

to reduce the burden on the fuzzer. To manage multiple fuzzers, we also collect the fuzzer

PID for follow-up purposes.

• Constraints

In the constraint-handling part, we implement the signal handler of the signal, i.e.,

user-defined signal 2 (SIGUSR2). When the fuzzer receives a signal, it uses api:Obtain

Seed Constraint to obtain the seed constraint, as indicated in Table 1, and stores it in the

fuzzer for further fuzzing.

Table 1. FuzzInspector API.

Function Path Argument 1 Argument 2 Argument 3

Obtain Seed Constraint /fuzzer

Unexplored List /funccov Binary keywords

Refresh Screen /bitmap/get Basic Blocks

Disassemble /disassemble Address to disassemble

Obtain Seed Path /path/get Seed File path Basic Blocks

Obtain Seed Info /seed Seed File path Fuzzer PID

Setup Constraint /constraint CPU Status Fuzzer PID

Obtain CPUState /cpustate breakpoint CPU status Seed path

Obtain Relationship /relationship breakpoint CPU status Seed path

Table 2 lists the structure of each constraint type stored in the fuzzer. The constraint

type is divided into whitelists and value ranges. Whitelist data are provided by the user for

seed data replacement. Moreover, users can make detailed adjustments to the seeds through

the API, such as the starting position and length of the data in the seed to be replaced.

FUZZ TESTING PROCESS VISUALIZATION

1043

Table 2. Constraint structures.

Offset Name Description

000 constraint_type Numeric type or Whitelist

004 endian Little or Big endian

008 offset Seed Offset

00c overwrite_len Overwritten Data Length

010 data_cnt Constraint Size

014 data Constraint 1 size and type

0?? data Constraint 2, 3, ..., data_cnt

A constraint is used after a fuzzer generates a new seed and the target program exe-

cutes it. The pseudocode converting the seed is shown in Algorithm 1. It reads all constraint

expressions on the execution path. Modifiable seed data are converted into numerical index

values of the candidate data. However, to avoid data that already conform to a constraint

formula from becoming index values, we add an external constraint formula to ensure that

the seed is not converted if the data on the offset satisfy the constraint requirements. This

will enable the fuzzer to explore a specific path through seed format conversion.

Algorithm 1: Seed Format Transform

Require: seed: The Seed generated by the fuzzer; constraints: The user-defined constraints;

Ensure: The seed follows the constraint;

1: For each constraint  constraints

2: Read candidates from constraint;

3: Read off set from constraint;

4: Read randint from seed[off set];

5: Calculate index = randint mod Size of candidates;

6: Read value from seed[off set]

7: If value  candidates

8: value = candidates[index]

9: Replace data at seed[off set] to value;

10: return seed;

3.3 Binary Analysis Queue

Fuzzinspector is based on AFL++, which supports Unicorn mode and allows pro-

grams simulated by the Unicorn Engine to perform fuzz testing. However, because Uni-

corn does not provide the functions of the system calls, it is necessary to use the Unicorn

hooks to implement the system calls required by a target program. The pre-operation pro-

cess in fuzz testing is time-consuming; therefore, we use the Qiling framework as the bi-

nary analysis tool. The Qiling framework implements the system calls of other major sys-

tems and does not need to be written by the user. Because it is developed based on the

Unicorn Engine, it can be connected to UnicornAFL and uses AFL++ Unicorn mode for

fuzzing.

The binary analysis queue stores all execution data on the binary-related functions,

which the fuzzer then uses to obtain dynamic and static analysis information through the

Qiling framework and r2pipe API. We define different execution logic roles according to

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1044

the required function and store the work to be executed in a queue, allowing r2pipe to ex-

ecute in sequence and maintain consistency in the binary analyses. Radare2 and r2pipe

provide a binary analysis library [23]. FuzzInspector uses the r2pipe API for a binary anal-

ysis and provides the data required for visualization. It supports various operating systems,

CPU architectures, and file formats and provides r2pipe, allowing language bindings to

use the Radare2 functions.

• Seed Analysis

First, the bitmap function analyzes the received seed and displays data on the interac-

tive user interface. To obtain the path information in the execution stage, FuzzInspector

creates a sub-process program to execute a pre-written Qiling framework script, which can

provide parameters to change the execution behavior. The bitmap function uses parameters

to create a sub-process of the Qiling framework with a basic hook block ability and prints

the current address and path information in each basic block without the program source

code. In this way, the fuzzer can count the unexplored paths, allowing users to understand

the path differences and which functions currently have low program coverage; this will

help identify the functions that are difficult for the fuzzer to explore.

In addition, the function address of r2pipe is defined as the execution path because

the released program typically uses compiler optimization options to make the program

smaller and faster, which hinders the ability of the static analysis tool to locate the function

accurately. Therefore, if we find an address that r2pipe cannot resolve while obtaining the

running path, we define it as the beginning of the function to provide a DOT graphic de-

scription file to help the user develop a flowchart in the interactive interface.

• Dynamic Analysis Information

The CPUState function is used to dynamically analyze the target program and receive

a breakpoint address, the CPU state information, and the seed path to be used. With these

three parameters, we can create a sub-process sequence to set the parameters, and the

Qiling framework script runs in CPUState mode. The script stops at the breakpoint, ana-

lyzes the CPU status information, and prints the result to provide the execution stage in-

formation to the user.

The CPU status information format must comply with the format defined by (type_

length_address). The supported types are numeric, string, and hexadecimal values. The

stack, default, and register names are for a particular usage, and the formats do not need to

provide the length or address fields. In addition, the address field can either be given a

value or the register’s name. The register value will be automatically read as the address

during parsing, and the data at the address will be obtained.

• Obtaining Seed Information

The relationship function determines the relationship between the seed data and the

CPU status at the execution stage. The user can quickly understand which of the seed data

are necessary for a branch and which data will affect the specified register or memory

content. The relationship function can help with the exploit development to control the

CPU state. To achieve this, we implemented the relationship mode in the Qiling framework

script. The receiving parameters are the same as the CPUState function parameters − the

breakpoint address, CPU state information, and seed path. In this mode, the modified col-

orization method is performed twice.

FUZZ TESTING PROCESS VISUALIZATION

1045

Table 3. CPU status types.

Type Description

u16 16 bit value

u32 32 bit value

u64 64 bit value

str Null terminated string

byte hexadecimal format and printable ASCII

hex hexadecimal format

map filename and offset

stack first 10 data in stack

default all registers and stack information

register register values

The original colorization algorithm continuously replaces the seed data with random

characters and determines whether the bitmap is tainted. If the bitmap is not tainted, the

algorithm restores the data, cuts the seed range into two parts, and runs the colorization

algorithm again. Finding the relationship between a bitmap and seed enables the fuzzer to

be more efficient because the fuzzer only needs to replace a specific part of the seed. We

believe that such an algorithm can be used to determine the seed data necessary to reach

the target address and determine the seed data that can be affected by the specified CPU

status information, both of which can be satisfied by modifying the bitmap-check process

of the colorization algorithm. After the dynamic library is loaded, we create a sub-process

to run the CPUState mode, collect the return data of the sub-process, select the scope of

the colorization method to be used, and identify the data that affect the state of the execu-

tion.

• Forcing a Fuzzer on a Pre-specified Path

The constraint function can restrict the seed-generation format to explore a specific

path. The constraint information in the queue parses the constraint format returned by the

user and then converts it into API data for the fuzzer to read.

The constraint function can restrict the seed generation format to explore a specific

path. The constraint information in the queue parses the constraint format returned by the

user and then converts it into API data for the fuzzer to read. Multiple constraints can be

provided simultaneously and separated by custom symbols. As shown in Fig. 2, the | sym-

bol is used to separate different constraints. Custom symbols can separate relevant con-

straint data. The constraints include type, endianness, offset, copy length, and data. There

are four field formats, namely str, hex, int, and range. Except for the range format, all other

types are written in a whitelist file, which is stored in list form. Each time the seed is

converted, one of the whitelist data points is selected as the seed data for that time. By

contrast, the range type accepts only two pieces of data − the beginning and end of the

value range. The seed data is obtained by selecting a numerical range.

The endian order (byte order) is primarily used for the int and range types. The “<”

and “>” symbols indicate whether a little endian or big endian is used to fill in the value

when modifying the seed. The offset field specifies the offset addresses in the seed to fill

in the data. Considering Fig. 2 as an example, which indicates that two bytes are written at

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1046

address offset 10 of the seed, the data are in big-endian order, and a value of between 01

and 05000 is selected according to the initial data of the seed number.

Fig. 2. Constraint example.

After successfully parsing the constraint data provided by the user, the constraint API

will be updated, and the Fuzzinspector will obtain the data content of the seed constraint

API and send a SIGUSR2 signal to the fuzzer. The fuzzer invokes the API upon receiving

the signal. It receives and parses the constraints provided by the user, enables the user to

interact with the fuzzer in real-time, and restricts the seed format to reach the function of

a specific path for exploration.

Table 4. Constraint type.

Type Description

range8, range16, range32, range64 8, 16, 32, 64 bit range type

int8, int16, int32, int64 8, 16, 32, 64 bit value type

hex hexadecimal type

str string type with null termination

3.4 User Interface

The user interface provides information for users to track the current running status

of the fuzzer, including the different paths of seeds, the CPUState information, the rela-

tionship search process, and the current running log information. To achieve this, we used

vis.js to obtain the program flowchart and API provided by the flask. Vis.js [2] is a brow-

ser-based visualization library that can handle large amounts of dynamic data for drawings,

including network diagrams, timelines, line graphs, and bar graphs. Charts can interact

with data to achieve drag-and-drop operations. In addition, many events and methods are

provided to customize the required visual content. Users can view the specified address of

the function flow chart or other advanced information and functions provided by FuzzIn-

spector.

• Path Information

In the execution path interface, the “real-time screen update” API is called once per

second to update the current status of the fuzzer in real-time. The API returns the address

displayed on the current process by which the fuzzer is executed with stars of different

colors. Using this information, we can identify the differences in the ability of the fuzzer

FUZZ TESTING PROCESS VISUALIZATION

1047

Fig. 3. FuzzInspector main interface. Fig. 4. The path difference flowchat.

to explore new paths. In addition, we use the “get seed path” API to obtain the execution

path of the specified seed and add flickering and jitter effects on the stars belonging to the

path, allowing users to understand the path differences between different seeds.

• Dynamic Analysis and Constraint Interface

For the CPUState, relationship, and constraint functions, we must provide the input

boxes required for each function, such as the disassembled command, available seed path,

and fuzzer list. FuzzInspector places the required information into the binary analysis

queue and waits for the execution. After the user presses the send button, the “get cpustate,”

“get relationship,” and “set constraint” APIs are called. We also included loading anima-

tion and real-time log information for users to know which feature is currently running

during the waiting process. In addition, we introduced a data search animation in the rela-

tionship function to show the details of each execution step. Finally, we marked the un-

changeable and variable data with different colors to enable users to understand the rela-

tionship between seed data and the execution stage.

4. RESULTS AND EVALUATION

A 3.2-GHz Intel i7-8700 processor and 16 GB of memory were used for the experiment.

4.1 FuzzInspector User Interface

In the first experiment, we used a WF2419 router as the target and ran the AFL++

MOpt and default modes. This section introduces various user interfaces and functions in

FuzzInspector.

• Seed Path Difference

The interface of FuzzInspector is shown in Fig. 3. We can select the seed and address

we want to observe and create the program flowchart in the middle. To observe and under-

stand the differences in the seed paths, we can select the seed according to the top menu

shown in Figs. 4 and 5 and add brackets to the stars according to the selected seed to in-

dicate the seed path.

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1048

• Fuzzer Path Exploration

FuzzInspector can be simultaneously connected to multiple fuzzers. It can show

which fuzzer has a greater path exploration ability among the fuzzers. As shown in Fig. 19,

different-colored stars represent different fuzzer execution results. The presence of the blue

star on a code block indicates that the fuzzer has a better exploration ability.

Fig. 5. Functions with large path differences.

• Dynamic Analysis Interface

The breakpoint address, seed, register, or memory can be specified in the dynamic

analysis interface. It is executed by Qiling to obtain the required data and display it in the

user window. Fig. 6 shows the interface for selecting the breakpoint. We can view the

disassembly result of the address and select it for observation. We also provide a seed

selection interface, as shown in Fig. 7, which shows all seeds running on the basic block

that users can choose from.

Fig. 6. The break point selection interface. Fig. 7. The seed selection interface.

By observing the contents of the register or memory, as shown in Fig. 8, we can enter

register a1 to be observed in the input box and then use u32 to observe the memory and

display it as a 32-bit value. Fig. 9 shows the string and byte types used to observe the

FUZZ TESTING PROCESS VISUALIZATION

1049

specified memory address. We also provide the memory address field for the register’s

name, and the current value of the register is used as the memory address for reading dy-

namic data.

Fig. 8. The address selection interface. Fig. 9. The value in the memory address.

• Seed and CPU Status

The relationship function can obtain the relationship between the seed and specified

CPU state. It allows us to determine which seed data are necessary to reach the branch and

which seed data affect the CPU state. Thus, we can determine which input should be used

to find new paths and assist with the exploit development. Fig. 10 shows an example of a

program flowchart. Next, we use the relationship function to understand the arrival condi-

tions of the 0414adc address and the controllable data.

Fig. 10. The flowchat of program. Fig. 11. The exploit content.

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1050

First, the 0414adc address is clicked to enter the analysis interface, as shown in Fig.

11, and then the CPUState function is used to obtain the memory content, which is the data

we want to control. Next, the switch to the relationship function interface to be searched,

as shown in Fig. 12, is an animation of the execution process of the relationship, which

allows users to understand what bytes are found at this stage and are marked with different

colors. The final result is shown in Fig. 13, where the pink block represents the seed data

that must exist to reach the address, and the blue block represents the data that can affect

the memory content, allowing users to quickly understand what control information is used

to assist in the exploit development.

Fig. 12. The relationship loading flow. Fig. 13. The example of showing the control-

lable seed.

Fig. 14. Before constraint setting. Fig. 15. After constraint setting.

FUZZ TESTING PROCESS VISUALIZATION

1051

• Constraint Interface

The constraint function receives the constraint formula provided by the user and al-

lows the fuzzer to convert the mutated seed according to the constraint formula before

running the target program to obtain a seed that conforms to the constraint formula. It then

uses the seed to run the target program. Using this method, users can set up whitelist data,

explore different paths, or restrict the fuzzer to explore specific paths.

As shown in Fig. 14, only the fuzzer of the blue star can move to the right branch in

this function. To let the pink star also go to this path, we first use the relationship function

to analyze how to reach this branch condition. Fig. 16 shows the conditional search process.

After the search is completed, as shown in Fig. 17, we set the constraint for the fuzzer of

the pink star according to the results. After a period of time, we obtain the result shown in

Fig. 16. As shown, a conditional setting allows the fuzzer to go to the branch that is not

considered initially. This function explores a specific path according to the user’s require-

ment.

Fig. 16. The condition searching flow. Fig. 17. The condition search result.

• Block Coverage

While analyzing the seed, the block coverage is also calculated, allowing users to

discover the function with low coverage. In addition, we also calculate the degree of dif-

ference between the execution paths. The information on the degree of difference can help

the developer find bottlenecks encountered by the fuzzer and use this information as a basis

for improvement.

Fig. 20 shows the block coverage screen, where the user can input the keywords of

the executable file or function library to filter the function. The function of filtering out the

CGI program is shown in Fig. 20. The interface is divided into left and right columns. The

left side depicts the function with the least and highest coverage. If the first link is clicked,

we will be directed to the page shown in Fig. 18. As this function runs only two basic

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1052

blocks, the coverage of this function is low. On the interface shown on the right, the func-

tion of the fuzzer from a large path difference to a small path difference is represented from

top to bottom. The user clicks on the first link to enter the page shown in Fig. 19. Even

when the basic block of this function is executed, not all fuzzers will be executed, allowing

users to find the fuzzer bottleneck quickly.

Fig. 18. Functions with low coverage. Fig. 19. The comparison of fuzzer coverage age

capabilities.

Fig. 20. Block coverage interface. Fig. 21. The efficiency comparison of dif-

ferent fuzzing strategies.

FUZZ TESTING PROCESS VISUALIZATION

1053

• Log Information

The log message records all related functions and actions and then provides users with

an understanding of the current running status of FuzzInspector, such as the message class,

time, and detailed information. The log display box is displayed in the upper-left corner of

the main screen, as shown in Fig. 3. In addition, a log message display is also provided in

the function interface, allowing the user to check which task FuzzInspector is currently

performing.

• Alert on Fuzzer Bottleneck

To notify users when a bottleneck is encountered, we developed a simple algorithm

that averages the number of paths at regular intervals to determine whether the fuzzer has

encountered a bottleneck. As shown in Fig. 22, in addition to the fuzzer name and color

displayed in the upper-right corner, when we determine that the fuzzer has encountered a

bottleneck, an exclamation point is added to the front of the name, prompting the user to

check the performance analysis of the fuzzer and modify the constraint to find a new path.

Fig. 22. The bottleneck tips.

• Semi-Auto Filling of Constraint

To allow the execution results of the relationship to be readily used in the constraint

function, we provide a semi-automatic method for users to select the constraints to be ap-

plied. The data marked by the relationship function can be converted into a constraint for-

mat by clicking and dragging it into the input box to facilitate user operations.

• Constraint Efficiency

The execution speed is analyzed, and the experimental results are shown in Fig. 21.

Here, “original” stands for the original AFL++, “vismode” indicates the enabling of visu-

alization mode, and “constraint” represents the use of the constraint function. It can be

observed that FuzzInspector incurs almost no performance penalty for fuzzing.

4.2 Known CVE

In this experiment, we use CVE-2021-3156 as the experimental target. Vulnerability

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1054

is a heap-based buffer overflow, which allows an attacker to use the vulnerability to esca-

late the privileges on the local terminal and gain root privileges. We used FuzzInspector

with AFL++ to test whether the constraint setting function can find vulnerabilities more

quickly, applied FuzzInspector to analyze the causes of the crash, and utilized the condi-

tions to assist in the exploit development.

• CVE Searching Time

We used the AFL++ MOpt and default modes to compare the time cost under different

constraints, including no constraints, parameters known to trigger vulnerabilities, and a list

of known parameters. The experimental results are listed in Table 5. As shown, MOpt

mode is nearly three times faster than the default mode when the constraint function is not

used; however, the speed is approximately the same as the constraint; however, it is 30-

times faster than that of MOpt and 130times faster than that of the default mode. In Table

5, constraint* represents a list of known parameters. The fuzzer with constraint* is approx-

imately 15 to 20 times faster than that with no constraint, and the default mode with con-

straint* is even faster. The MOpt mode is approximately five times faster. Based on a

certain degree of understanding of the target program, program vulnerabilities can be

quickly identified by customizing data in a specific format for fuzz testing.

Table 5. CVE-2021-3156 searching time (in second).

Mode No-Constraint Constraint Constraint* Speedup Speedup*

MOpt 843.33 22.83 39 36.94 21.62

Default 2428.17 18.50 161.67 131.25 15.02

• Crash Analysis

Next, we analyzed the crash and set the breakpoint in the parameter analysis loop, as

shown in Fig. 24. The red box contains the parameter content that is typically read; how-

ever, if we look carefully, we will find that there is a duplication of data, and the memory

address to be read is a chunk in the heap section. If the seed is used directly to execute the

program, a heap-related error will be displayed. We, therefore, know that this crash belongs

to a heap-based buffer overflow.

• Controllable Data Analysis

We can use the relationship function to confirm whether the overflow address is con-

trollable; therefore, we set the relationship parameter to the memory section that causes

the overflow. Fig. 23 shows the part that reaches this position (shown in pink). The neces-

sary data for the address can be seen as parameter i. The data marked in blue represent the

controllable range. We can determine the controllable data-position using such a display

interface, which helps construct appropriate chunk data to complete the heap exploitation.

4.3 User Experience

In this experiment, we determine whether FuzzInspector can effectively assist test

engineers in understanding the bottleneck of the fuzzer and improve the code coverage

without understanding the target program. The target program was libexif-0.6.22, and

AFL++ enabled the MOpt and CmpLog modes. The test engineers were two laboratory

FUZZ TESTING PROCESS VISUALIZATION

1055

students with experience in reverse engineering and fuzzing but unfamiliar with the target

program libexif.

Fig. 23. Crash behavior. Fig. 24. Crash exploit analysis.

Both test engineers intermittently used FuzzInspector. As shown in Fig. 29, the two

test engineers increased the number of paths by 30% and 10%. They first executed the

fuzzer for about 10 and 15 days, respectively. From Fig. 29, we can see that in the first 10

hours, the fuzzer was able to find new execution paths quickly. However, the fuzzer ran

for about 24 to 50 hours, and the coverage slowed down rapidly. After 100 hours of exe-

cution, the fuzzer can find about 10 new paths every day, which shows that the fuzzer has

tried most of the program branches that are easy to pass, but it is stuck in a difficult condi-

tion and cannot execute new paths. When the coverage can no longer increase, the engineer

uses the FuzzInspector to find out the input that can pass the specific branch condition and

then let the fuzzer continue to execute according to the new input.

From the positions of 260 and 370 hours on the horizontal axis of Fig. 29, the cover-

age drastically increases, showing that the fuzzer passed the stuck branch, thus discovering

new program execution paths. For example, the function in Fig. 30 uses different strings

for comparison. The test engineer uses FuzzInspector to find the conditional expression

that has not passed “FUJIFILM”. After the conditional formula was set to the fuzzer, over

200 new paths were discovered.

We also noticed that libexif has several conditional expressions that the fuzzer cannot

pass. Therefore, the curve in the figure is stepped, which means that every time an engineer

uses FuzzInspector, the program coverage is significantly improved.

4.4 Comparing with Other Well-Known Tools

In this experiment, we also use libexif-0.6.22 as the benchmark program. The engi-

neer uses FuzzInspector and other well-known software testing tools to help fuzz perform

fuzz testing more effectively. The test engineer is currently an information security engi-

neer.

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1056

We first define three steps to improve the fuzzer:

• Find the bottleneck of the fuzzer.

• Find the location of the bottleneck branch.

• Identify the relationship between inputs and branches.

In the first step, since afl++ cannot provide information on which branch conditions

the fuzzer cannot pass. Therefore, the engineer uses GDB and r2 to obtain this information.

As shown in Fig. 25, we first execute afl with gdb, then set a breakpoint at _afl_maybe_log,

and obtain the execution path of the fuzzer each time. Then use the afb command of Ra-

dare2 to obtain the basic block address, as shown in Fig. 26. Finally, all the paths that the

fuzzer has traveled are processed by the above method, and the memory address of the

branch that the fuzzer cannot pass can be obtained. In the second step, when the branch

memory location is found, the engineer must analyze the code through reverse engineering

before they can understand the logic of the branch.

Fig. 27 shows that the engineer performed reverse engineering through the well-

known software IDAPro [5], decompiled the source code, and found that the fuzzer could

not generate a string like 0x4D4C4946494A5546LL, which is “FUJIFILM”.

In the final step, the engineer must analyze the relationship between the fuzz seed and

the string “FUJIFILM”. As shown in Fig. 28, the seed is related to the register rdx. The

engineer must gradually find the final relationship between the seed byte and the branch

condition through the debugger and static analysis tools. The engineer might takes several

hours or days to complete the above steps, depending on the complexity of the test program.

However, during the execution of the fuzzer, there will be many bottlenecks. If the engi-

neer uses traditional methods to deal with it, it will take a lot of time. Compared with our

tool, FuzzInspector obtains the bottleneck location address through Qiling and directly

finds the relationship between the input and memory through the relation function. It also

provides a user-friendly interface for the engineer to create constraints directly, and

FuzzInspector will automatically generate seeds that can pass the branch.

Fig. 25. Using breakpoint on GDB. Fig. 26. Using afh command on Radare2.

Fig. 27. The reverse code in IDAPro. Fig. 28. The relationship between input and pro-

gram register.

FUZZ TESTING PROCESS VISUALIZATION

1057

Fig. 29. Manually directed effects. Fig. 30. Difficult conditions.

5. CONCLUSION

In this study, we developed FuzzInspector, which can analyze the behavior of a fuzzer

without the source code and provides visual and interactive interface functions. FuzzIns-

pector provides engineers with sufficient information to help them readily identify pro-

gramming errors. The experimental results indicate that the visual interface enables en-

gineers to clearly identify which branches the fuzzer cannot pass through and compare the

path exploration capabilities of multiple fuzzers. Finally, the developed interactive inter-

face can help engineers understand the program logic and mark controllable data to assist

in the exploit development. The FuzzInspector enables the users to understand and guide

the fuzzer using a visual interface. With this tool, the fuzzer is no longer just an individual

running instance but can interact and communicate with humans.

REFERENCES

1. M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/, 2014.

2. B. Almende, “vis. js-a dynamic, browser based visualization library,” http://visjs. org/.

Acesso em, Vol. 1, 2016.

3. S. Diehl, “Past, present, and future of and in software visualization,” in Proceedings

of International Joint Conference on Computer Vision, Imaging and Computer Graph-

ics − Theory and Applications, 2015, pp. 3-11.

4. A. Hussain and M. A. Alipour, “FMViz: Visualizing tests generated by AFL at the

byte-level,” arXiv Preprint, 2021, arXiv:2112.13207.

5. I. Guilfanov, “The best-of-breed binary code analysis tool,” https://www.hex-rays.com

/ida-pro/.

6. R. Rohleder, “Hands-on ghidra-a tutorial about the software reverse engineering frame-

work,” in Proceedings of the 3rd ACM Workshop on Software Protection, 2019, pp.

77-78.

http://lcamtuf.coredump.cx/afl/
http://visjs/
http://www.hex-rays.com/ida-pro/
http://www.hex-rays.com/ida-pro/

HAN-LIN LU, REN-JIE ZHUANG, SHIH-KUN HUANG

1058

7. C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “REDQUEEN:

Fuzzing with input-to-state correspondence,” in Proceedings of Network and Distrib-

uted Systems Security Symposium, Vol. 19, 2019, pp. 1-15.

8. C. Zhou, M. Wang, J. Liang, Z. Liu, C. Sun, and Y. Jiang, “Visfuzz: understanding

and intervening fuzzing with interactive visualization,” in Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering, 2019, pp.

1078-1081.

9. A. Fioraldi and L. P. Pileggi, “Fuzzsplore: Visualizing feedback-driven fuzzing tech-

niques,” arXiv Preprint, 2021, arXiv:2102.02527.

10. M. C. Saputra and T. Katayama, “Code coverage visualization on web-based testing

tool for java programs,” Journal of Robotics, Networking and Artificial Life, Vol. 2,

2015, pp. 89-93.

11. C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring deep state sp-

aces via fuzzing,” in Proceedings of IEEE Symposium on Security and Privacy, 2020,

pp. 1597-1612.

12. P. Opmanis, R. Kikusts, and M. Opmanis, “Visualization of large-scale application

testing results,” Journal of Modern Computing, Vol. 4, 2016, p. 43.

13. H. Wang, X. Zhang and M. Zhou, “MaVis: Feature-based defects visualization in soft-

ware testing,” in Proceedings of Spring Congress on Engineering and Technology,

2012, pp. 1-4,

14. Z. Zuo, “Research on visual analysis method of software function testing process,” in

Proceedings of International Conference on Computer Graphics, Artificial Intelli-

gence, and Data Processing, Vol. 12168. 2022, pp. 150-158.

15. F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX Annual Tech-

nical Conference, FREENIX Track, Vol. 41, 2005, p. 46.

16. N. A. Quynh and D. H. Vu, “Unicorn: Next generation CPU emulator framework,”

BlackHat USA, Vol. 476, 2015, pp. 63-72.

17. N. Voss, “afl-unicorn: Fuzzing arbitrary binary code,” https://github.com/Battelle/afl-

unicorn, 2017.

18. A. Fioraldi and D. Maier “unicornafl: Unicorn engine for aflplusplus,” https://github.

com/AFLplusplus/unicornafl, 2020.

19. L. Kaijern, “Qiling framework: Advanced binary emulation framework,” https://gith

ub.com/qilingframework/qiling, 2019.

20. A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining incremental

steps of fuzzing research,” in Proceedings of the 14th USENIX Workshop on Offensive

Technologies, 2020, p. 10.

21. M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as

markov chain,” in Proceedings of ACM SIGSAC Conference on Computer and Com-

munications Security, 2016, pp. 1032-1043.

22. C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah, “MOPT: Optimized

mutation scheduling for fuzzers,” in Proceedings of the 28th USENIX Security Sym-

posium, 2019, pp. 1949-1966.

23. Pancake, “Unix-like reverse engineering framework and command-line toolset,” http:

//github.com/radareorg/radare2.

FUZZ TESTING PROCESS VISUALIZATION

1059

Han-Lin Lu received the BS degree in the Department of Tran-

sportation Technology and Management, and MS degree in Com-

puter Science and Engineering from National Chiao Tung Univer-

sity, Taiwan in 2010, and 2012 respectively. He is currently pursu-

ing the Ph.D. degree at the Institute of Science in Computer Science

and Engineering of National Chiao Tung University. His research

interests include software quality, software security, and fault local-

ization.

Ren-Jie Zhuang is a senior vulnerability researcher in TeamT5.

He received his BS degree in Computer Science from National Kao-

hsiung University of Science and Technology in 2019, MS degree

in Cyber Security from National Yang Ming Chiao Tung University

in 2021. His research interests include software quality, software se-

curity, and network security. Recently, his research focuses on IoT

security and mobile security.

Shih-Kun Huang received his BS (1989), MS (1991), and

Ph.D. (1996) in Computer Science and Information Engineering

from the National Chiao Tung University. Currently, he is the Dep-

uty Director of the Information Technology Service Center, and

jointly with the Department of Computer Science, National Chiao

Tung University. Dr. Huang’s research integrates software engineer-

ing and programming languages to study cyber security and soft-

ware attacks.

