
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 1-26 (2024)
DOI: 10.6688/JISE.202401 40(1).0001

BCS: Blockchain-based Ciphertext Storage Scheme
Supporting Data Hierarchical Management

YUXIANG CHEN1,2, YAO HAO2, ZHONGQIANG YI2,
XIAOYU GUO2 AND CHUNXIANG XU1,+

1School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu 611731, P.R. China
2Science and Technology on Communication Security Laboratory

Chengdu 610041, P.R. China

As file management is widely used in e-government and enterprise office, the file ex-
change, as the main means of sharing and collaborating in office, has been far from able to
meet the needs of data security. Encrypted Storage can be a solution to the limitations of
existing authority control services. However, during the data sharing and exchange, the file
is separated from the owner, which has the problem of insufficient or over-authorization. In
this article, we propose a blockchain-based hierarchical management and control scheme for
encrypted storage combined with ciphertext retrieval. It supports traceability and top-down
privilege division without increasing the number of managed keys, all data are processed
and authorized strictly, solving data leakage caused by over-authorization. Through per-
formance and security analysis, we demonstrate that the scheme can better meet the data
security and precise authorization requirements.

Keywords: blockchain, ciphertext storage, data sharing, fine-grained encryption, hierarchi-
cal management

1. INTRODUCTION

1.1 Background

More and more enterprise organizations choose cloud services in order to reduce
computing and storage costs, document management is one of the widely used, but the
security problems are becoming increasingly prominent, and security incidents are emerg-
ing one after another, resulting in economic losses and adverse effects. For example,in
September 2020, United States Department of Commerce announced the removal of the
application “Tik Tok” and Wechat, for their collection of citizens’ data [1]. In September
2022, Northwestern Polytechnical University was attacked by the NSA (National Security
Agency) for a long time and lost more than 140GB of data [2], including accounts, pass-
words, office-used documents and private documents, etc. In July 2022, service provider
Didi Taxi was fined more than 8 billion yuan for leaking user data and destroying user pri-
vacy [3]. The claimed most secure cloud backup provider SOS was attacked and leaked
more than 150 million users’ data [4]. The security team UpGuard found that S3 storage

Received July 13, 2022; revised September 6, 2022; accepted October 20, 2022.
Communicated by Xiaohong Jiang.
+ Corresponding author.

1

2 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

on Amazon Cloud leaked more than 50 thousands core documents such as voter data and
national strategy [5]. From statistics on data breaches in 2021, RBS (Risk Based Security)
reported more than 22 billion data records leakage, and it is estimated to increase more
than 5 percent in 2022 [6], the average cost will also reach a new high [7, 8].

One typical cloud storage scenario is e-enterprise, which contains several hierarchies
(shown in Fig. 1). Basic employees (e.g. designers) can only access the data of their own
class, director can access the data of their class and all their subordinate classes, and
so on. Data sharing and collaboration occur frequently under such hierarchies, to make
better use of data value, there often exists over-authorization in this procedure, causing
data leakage, that is, users may get information of the superior classes. All in all, it is
of great significance to ensure both data confidentiality and availability when users are
organized in such hierarchical structures.

director

finance

developers

human resource

manufactory deliverydesigners auditors

sales

Department manager

Research & Development

Basic employees

……

…
…

staffs

Upper level

……

CEO

Fine-grained control and
collabration

Fine-grained control and
collabration

Fig. 1. Data collaboration and hierarchy.

1.2 Related Work in Ciphertext Storage

Obviously, encrypted storage will effectively alleviate data leakage problem above, a
typical cloud storage structure is shown in Fig. 2, application of front-end receive request
from client end and process, then store the data in database. Encryption methods can be
classified into 3 categories according to the execute positions.

Position A between user and client: Position A means data will be encrypted before
transmitting to client. PGP (Pretty good privacy) [9] is a typical processing method of this
kind, it encrypts file data locally before uploading, but the key management is complex,
users need to manually use this tool to encrypt the files before using cloud applications,
which affects user experience. S. Ruoti [10] put forward secure middle layer, use UI
(user interface) middle layer to cover original UI of application program, encrypt in
the middle layer to replace the original function and achieve the effect of transparent

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 3

Fig. 2. Data encryption position in typical cloud server storage.

encryption. MessageGuard and Virtru [11, 12] make use of component iFrame to realize
a UI middle layer, which can replace the original upload function of application to
protect file, but need an extra-server to store ciphertext and lost original search function.
ShadownCrypt [13] constructed a secure isolated text input/output environment based
on ShadowDOM mechanism of browser. ShadownHPE [14] further put forward more
stable encryption method that support text format preservation. M-Aegis [15] created a
transparent middle layer to intercept and encrypt user text without affecting user’s habits,
but they both only support text encryption, not file encryption.

Position B between client and network: The typical representative tool for position B is
CASB(Cloud Access Security Broker) [16–19], CASB encrypt and protect data uploaded
to cloud, but the technology needs developers to perform reverse analysis and adaptation
of the cloud service protocol, which wastes a lot of time. Once the protocol is renewed,
CASB cannot identify and analyze renewed protocol, causing failure of data encryption,
which is unstable.

Position C between front-end and databases: CryptDB [20] is an agent server deployed
between database server and front-end, it encrypts data before uploading to database and
can execute query operations directly on encrypted data, preventing malicious intenal
administrators from stealing data. ARX [21] put forward database encryption system for
MongoDB, supporting complicated ciphertext computing function, but both of them [20,
21] cannot prevent malicious cloud server from stealing data. Mylar [22] provides a
Web framework based on Meteor JavaScript, the cloud service provider calls encryption
interface of this framework to encrypt users’ data. The framework assumes that service
provider is trustworthy, thus cannot prevent malicious service provider. DataBlinder [23]
provides distributed data access middleware for cloud service provider, still untrustworthy
to users. The above protection methods make encrypted data lose availability, which is
difficult to develop and utilize, further, from the perspective of information security, the
current management and control of data still faces a series of challenges.

In a document, there are different authorization levels for different users. When the
file is shared, the content of the file will exist out of the control of the data owner. The
data of different authorization levels in the same file has hierarchical control requirements
in the process of data sharing, exchange, storage, etc. [24,25]. If there is insufficient pro-
tection of the data authorization scope, it will lead to the risk of data leakage. The current

4 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

encrypted storage is still based on the directory level and file level, it lacks metadata to
record the data blocks in the file. The same file can only be encrypted as a whole, but
different parts of the file cannot be distinguished and targeted to protect. This unified
coarse-grained encryption method encrypts all the data of the same file that has differ-
ent authorization categories, which wastes CPU computing resources and it also does not
meet the requirements of data hierarchical control. If it is necessary to divide ciphertext
permissions in different areas of a file, the existing method can only encrypt the file mul-
tiple times with different keys, thus generating multiple files, which is not conductive to
users and programmers to manage these files and wastes a lot of storage resources.

1.3 Blockchain-Based Security and Authorized Data Sharing

Blockchain is the underlying technology of crypto-currencies, first introduced by
Satoshi Nakamato [26]. It simplifies the transfer process of value and trust, makes data
records have the advantages of traceability and anti-tampering, which attracted a lot of
attentions, especially in the field of information security in different scenarios such as
artificial intelligence, edge computing, industrial internet, etc. [27,28,30], which demon-
strate the advantages and availability of applying blockchain to data security sharing and
exchange. Blockchain is a complicated system, which can be regarded as a fundamental
infrastructure, Many schemes use it as a trusted database to read and write data, whereas
it consumes much more computational overhead when it comes to writing including the
hash, signature, consensus algorithm, etc. Furthermore, multi-node back up means each
ledger stores multiple copies, and thereby also wastes storage resources compared with
normal storage. To sum up, even writing a small amount of data, the overhead increases
exponentially, resulting in a decline in the performance of data service, such as an in-
crease in response delay. Table 1 compares the differences of some typical works in the
field of (blockchain-enabled) data secure sharing.

Table 1. Related work on blockchain-based secure and authorized data sharing.
Reference Related work Authorized data sharing Blockchain-based security

He et al.,
2020 [31]

Access Control for sha-
ring the data

Attribute-based Hierarchical
scheme

None

Gao et al.,
2020 [32]

Trustworthy secure data
sharing

Fine grained based scheme None

Sun et al.,
2020 [33]

Data encryption scheme
for access

IPFS-based encryption
scheme

Generic blockchet al. evi-
dence for behaviors

Qin et al.,
2021 [34]

Access control strategy
for data sharing

Multi-authority by using
Shamir secret sharing

Consortium blockchain
supporting multi-authority

Zuo et al.,
2021 [35]

Sharing data securely in
cloud without any trust-
worthy parties

Ciphertext policy attribute
based encryption scheme

Generic blockchain for
traceability

Athanere et
al., 2022 [36]

Hybrid approach for
multi-authority data
sharing

Multi-authority attribute-
based encryption approach

Blockchain-based cross
domain collaboration

Zhang et al.,
2022 [37]

Encrypt speech data
based on blockchain in
a distributed way

Ciphertext policy hierarchi-
cal attribute-based encryp-
tion to support data sharing

Generic blockchain for
traceability and controlla-
bility in a distributed way

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 5

1.4 Problem Statement and Our Contributions

1.4.1 Problem statement

We aim at typical scenes such as e-office, e-government, and so on, which contain
several hierarchies as shown in Fig. 1. The security issues for encryption methods are
subdivided as follows,

• The simple overall encryption method in file management has the problem of too
coarse granularity, which leads to over-authorization in the data flow and increases
the risk of data leakage.

• In the current application scenarios such as e-government, corporate office, etc.
It is difficult to divide ownership and security responsibilities in data circulation,
which makes participating entities “unwilling” and “dare” to share data, hindering
the value of data.

• Existing methods to solve data encryption and authority management have the prob-
lem of wasting computing and storage resources, which is not conductive to users
and programmers to manage data.

1.4.2 Our contributions

We proposed blockchain-based ciphertext storage scheme supporting data hierarchi-
cal management, its novelty is under the background of e-government, e-enterprises, etc.,
where data sharing and collaboration is frequent between different departments, superi-
ors and subordinates, but users at different levels in different departments have different
read permissions in the data collaboration, there is often the problem of excessive autho-
rization, thus causing data leakage. How to balance accurate fine-grained authorization
and prevent excess information leakage is one of the difficulties, our contributions are
threefold below:

• Firstly, based on random keys and data tags, we implemented key-based hierarchi-
cal management of different data blocks of files. Random keys are derived from
root keys, random numbers and file attributes, data blocks with different permis-
sions are used different keys to encrypt.

• During data transferring, authorized high-security users can derive keys of low-
security data blocks to decrypt the data, but they cannot derive the keys of higher-
privileged data blocks, thus realizing top-down authority division. Further, users
don’t need to store multiple keys, preventing uncontrollable data leakage and reduc-
ing key management costs. Metadata like data tags are organized in a tree structure
to quickly extract and process ciphertext blocks.

• In order to enhance the trust of the system, we introduce blockchain to store me-
tadata of ciphertext, data confirmation and circulation information. Under the
premise of taking into account the efficiency, prevent the loss of ciphertext data
caused by single point of failure, and divide the data responsibility to assist the
confirmation of rights.

6 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

The rest of the paper is organized as follows: we first present an introduction to
blockchain-based ciphertext storage system. Then a fine-grained access control encryp-
tion based on key derivation is presented. We further present the effect of hierarchical
control of data transfer, efficiency of encryption and blockchain operation, and provide
security analysis of our schema. Finally, the conclusion will be drawn.

2. APPLICATION BACKGROUND AND MODEL

2.1 Structure of Ciphertext Search System

The structure of blockchain-based ciphertext search system is shown in Fig. 3. The
client of ciphertext file system uploads and downloads files to the ciphertext file stor-
age system, and performs encryption and decryption operations in the background of the
client during uploading and downloading. When the client uploads the ciphertext, it also
establishes a cipher index of keywords list in the cipher file system processing layer for
searching the ciphertext.

When the client initiates the sharing operation, it distributes the file key to the shared
user’s client through the secure channel and notifies the shared user’s client. After the
shared user’s client receives the sharing, its client updates the cipher index to the cipher
file processing layer. The cipher file processing layer establishes a cipher index for the
client, provides storage, update and query of the index list.

When user register, the key management sub-system provides initial keys such as
master key, search key, etc. Meanwhile, it provides the file key to the shared user when
the client(user) executes the sharing operation.

Blockchain exists as a trust enhancement facility in the structure, user client writes
the metadata of encrypted files into the blockchain in case he loses encrypted files stored
on big data platform, further, he can publish the data fingerprints to the blockchain to con-
firm data asset right. Meanwhile, the authority(key management) write the data transfer
record into the blockchain to support follow-up traceability and division of responsibili-
ties.

To better make use of advantages of the blockchain and take into account the practi-
cality, we actually divide data storage into on-blockchain and off-blockchain storage, of
which metadata belongs to the on-blockchain storage for its relatively small size, large-
size file data remain in off-blockchain storage.

2.2 Fine-Grained Encryption Model of Files

In the design of data hierarchical management and control model, we consider per-
sonnel authority, data authorization and data owner’s control authority over published data
at the same time. The encryption model is shown in Fig. 4. When data owner uploads a
file, the client’s background divides the file data into blocks according to the data labels,
judge the data tags and deriving corresponding data block key. Finally, encrypt blocks of
data with different classified labels separately before uploading.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 7

Fig. 3. Structure of blockchain-based ciphertext search system.

2.3 Fine-Grained Authorization and Decryption Model of Files

When the encrypted data block is shared to users with different permissions. Autho-
rized users can only decrypt data blocks of the same and lower security level. As shown in
Fig. 5, take the management with 4 class data block permissions as an example. The 1st
authorized user has the readable permission of all 4 types of data blocks. 2nd authorized
user has the readable permission of level 2 and below security level data blocks, totally 3
kinds and so on.

3. FILE HIERARCHICAL MANAGEMENT AND CONTROL
SCHEME BASED ON RANDOM KEY

3.1 Hierarchical Key Management

In terms of key management, personnel authority, data security level, authorization
authority and data owner’s control authority over published data are considered at the
same time. The key derivation and management relation is shown in Fig. 6, Each user
has a self-registered random root key RK generated by the function Rand, which can be
self-generated or issued by an authority, the RK can be used to derive the file key FK
(FK = Hash(RK∥ f ilename)) of the published file. At the same time, the user obtains
corresponding level of authorized key LKn (n = 1, 2, ..., n) from an authoritative cen-
ter (key management sub-system), the key is transmitted through a secure channel such
as digital envelope, HTTPS, etc. The user only needs to store the personal root key RK
and his highest-level authorized key, and does not need to store other keys. The sec-
ondary authorization key, file key, and authorization data block key can all be generated
through derivative calculations. The derivation method of the nth level authorized key
is LKn = Hash(LKn−1∥n− 1), and the corresponding derivation method of the nth level

8 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

Fig. 4. Fine-grained encryption model.

data block key is FKn = Hash(LKn−1∥LKn∥DataLale), where LKn is the corresponding
authorization key, FKn−1 is the upper-level data block key. DataLable is the security level
identification of the nth level data block, and Hash is the hash function. It can be seen
that when the user has the root key and the authorized key LKn, only the data block key
of the same level or lower security level can be calculated to process corresponding data,
and the key of higher security level data cannot be calculated. When a user authorizes the
specified data content of a file to other users, only the data block key of the corresponding
level needs to be given through the secure channel to realize the data authority division.

3.2 Hierarchical Encryption of File Content

In terms of file encryption, the file security level is equal to the highest security level
of its content. We still take 4 level data block authority management as an example(shown
in Fig. 4). A 1st level authorized user needs to upload files with different levels of infor-
mation. Assuming that he has three different levels of files (FileA, FileB, FileC) needs
to upload, which correspond to the file keys FKA (1st level), FKB (2nd level), and FKC
(3rd level). According to the operating rules, 1st level files can contain 1st, 2nd, 3rd and
public data blocks. 2nd level files can contain 2nd, 3rd and public data block. 3rd level
files can only contain 3rd and public data block. The user first calculates the file key of
each file according to the key derivation step to get file keys (FKA, FKB, FKC). For a 1st
level file FileA, the hierarchical encryption key of each data block inside it is generated
by the file key FKA (FKA = Hash(RK∥Filename)). There can be up to 4 levels of data
blocks in FileA, 1st, 2nd, 3rd and public information. The user then further calculates the
hierarchical keys of the three data block levels:

FKA1 = Hash(FKA∥LK1∥Datalable1), (1)

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 9

Fig. 5. Fine-grained decryption model.

FKA2 = Hash(FKA1∥LK2∥Datalable2), (2)

FKA3 = Hash(FKA2∥LK3∥Datalable3). (3)

In the above calculation, the user holds the level key LK1 issued by the authority, and
derive the subsequent level key by using the formula LKn = Hash(LKn−1∥n− 1) shown
in Fig. 6.

Finally, the user encrypts the contents of FileA,

AC = (CA1,CA2,CA3)

= (Enc(FileA1,FKA1),Enc(FileA2,FKA2)

Enc(FileA3,FKA3)).

(4)

For the 2nd file FileB, there can be at most 3 types of data blocks with different
security levels, namely, secondary, tertiary and public, the user calculate hierarchical keys
of two data block levels respectively:

FKB2 = Hash(FKB∥LK2∥Datalable2), (5)

FKB3 = Hash(FKB2∥LK3∥Datalable3). (6)

Then encrypt the contents of FileB:

BC = (CB2,CB3)

= (Enc(FileB2,FKB2),Enc(FileB3,FKB3))
(7)

10 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

Fig. 6. Key derivation relation and management.

Similarly, for 3rd level file FileC, only 2 types of blocks exist, i.e., 3rd level and
public data blocks, so calculate the corresponding 3rd level key,

FKC3 = Hash(FKC∥LK3∥Datalable3) (8)

and then encrypt the contents of FileC:CC = Enc(FileC3,FKC3) In the above calculation,
the 4th type data (public data block) is not processed and still kept in plaintext.

When sharing files to different authorized users, the sharer only needs to give the
corresponding data block key FKi (i = 1, 2, ..., n) with the highest authority through the
secure channel.

3.3 Metadata Organization and Management Structure

When the file is encrypted in blocks by the creator, because the size of each file
data block is variable, in order to facilitate recovery, the metadata information of the
entire file is organized hierarchically in a tree structure and stored independently (such as
metadata management server, independent area in file header, etc.) for query, when the
user decrypts the file blocks, he will find the corresponding permission data block and
derive the correct key to decrypt. The metadata mainly includes data lable, authorization
range, offset address, encryption algorithm, etc. as shown in Fig. 7.

It is worth noting that metadata occupies far more less space than ciphertext itself.
We encrypt it with the corresponding file key and store it on the blockchain, thus taking
advantage of its multi-node backup feature to prevent ciphertext data from being unrecov-
erable due to the loss of metadata.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 11

Fig. 7. Metadata management structure.

3.4 Hierarchical Decryption of File Content

When the shared user needs to decrypt, he can retrieve file’s metadata from block-
chain and verify its validity, then he can recover all the encryption keys (including
FKi+1,FKi+2,...,FKn) of the lower-level data blocks in the file according to the key LKi of
his authorized level and shared data block key FKi. The specific process is as follows:
Step 1: Meta-data parsing process The user queries the blockchain for meta-data infor-
mation based on the unique identifier of the file. Firstly, he/she verifies the creator’s sig-
nature of the metadata returned by the blockchain, after that, he parse the meta-data to ob-
tain the data block information at all levels of the file, including the identification of each
ciphertext block, the algorithm used(encryption mode), security level, starting/ending po-
sitions, etc. Extract the public parameters required for decryption for subsequent steps to
call.
Step 2: Key derivation process The user with class i already has his level key LKi when
register. After receiving and parsing the file, he/she gets the public parameters of the file
data block and shared file class key FKi through secure channel(such as digital envelope) ,
and uses these parameters to calculate the lower-level key LKn =Hash(LKn−1∥n−1),n=
i+1, i+2, ... locally step by step.

After getting all the authorized level keys LKn,n = i, i+ 1, ..., l (l is the number of
classifications in the system, and satisfy i < l). He/she further calculate the data block
keys FKn = Hash(FKn−1∥LKn∥DataLable),n = i+1, i+2, ..., l (already has FKi). After

12 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

getting all the data block key FKn,n = i, i+ 1, i+ 2, ..., l, the key derivation process is
over.

Step 3: Local decryption in the client After the above preparation, the user can decrypt
the data blocks one by one with his key collections, suppose the received File consists of
l encrypted data blocks with level identification (f ile =C1,C2, ...,Cl , 0 < i≤ l, Ci means
the encrypted data block i while Pi corresponds to the plaintext of the data block i). He/she
can decrypt the encrypted data blocks,

f ile = (C1,C2, ...,Ci−1,Dec(Ci,FKi),Dec(Ci+1,FKi+1), ...,Dec(Cl ,FKl))

= (C1,C2, ...,Ci−1,Pi,Pi+1, ...,Pl).
(9)

From Eq. (9), we can see that the user can only decrypt the data blocks (Ci,Ci+1, ...,Cl) he
has been authorized, while the rest blocks of the file (C1,C2, ...,Ci−1) remain encrypted,
because he can’t reversely derive the superior class keys (LKi−1,LKi−2, ...,LK1) of higher
security level through key derivation mechanism shown in Fig. 6.

Finally, the shared user can use the metadata management structure to extract all
the authorized ciphertext blocks and use the recovered data block key FKi to decrypt the
file data blocks (File = Dec(Ci,FKi)) within his authorization. A case of authorization
and reorganization of data blocks in a file is shown in Fig. 5, that is, the user’s readable
permissions are not higher than the authorized permissions of the file data blocks.

4. PERFORMANCE AND ANALYSIS

4.1 Performance

We verified our scheme from the perspective of engineering, based on the structure
of ciphertext search system shown in Fig. 3, we further integrate our hierarchical man-
agement scheme into the prototype.

We take markdown, a lightweight markup language and one of the most commonly
used document types, as an example and parse it. Fig. 8 shows that we login into a client
and uploads a markdown file test yzq.md. We can see that the plaintext is divided into
4 parts, that is, 4 types of data blocks, the security level from high to low are level 1,
2, 3, 4, of which level 4 belong to public block. if the user needs to upload, each block
except the head metadata will be encrypted with a different key, the keys are organized as
shown in Fig. 6. Finally, the uploaded file in the cloud (storage system) will be completely
garbled except metadata. So we don’t show the demonstration effect of full ciphertext data
(garbled). We select 2 level 2 shard user ID in the client interface, at this time, the trusted
key management center and cloud storage will authorize the shared user. We log into the
shared user’s account on another terminal, accept and download the markdown file. The
decryption effect is shown in Fig. 9. It can be seen that the 2nd shared user can only
decrypt the 2nd level data block and below.

Similarly, the 3rd level shared user can only decrypt the 3rd level block and below
(shown in Fig. 10). The rest higher level blocks are still presented in ciphertext garbled.

To sum up, we have realized the hierarchical control of ciphertext data flow.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 13

Fig. 8. Original plaintext file before uploading.

4.2 Efficiency Analysis

The efficiency of the scheme is mainly affected by the following aspects: efficiency
of encryption algorithm, writing and query efficiency of blockchain.

4.2.1 Encryption efficiency

The technical route we choose is symmetric encryption algorithm, we noticed that a
fair amount of encrypted storage work is based on ABE (Attributed based encryption),for
example, shown in Table 1. ABE is essentially an extension of public key encryption,
for example, schemes base on RSA [35, 36], ECC (Elliptic Curve Cryptography) algo-
rithm [34, 37,38], etc. Since the security assumptions of symmetric encryption, RSA and
ECC are different, the key lengths are also different under the same security level. Ac-
cording to the judgment of NIST (National Institute of Standards and Technology) [39],
there is an approximate analogy between the key strength of asymmetric encryption and
symmetric encryption, shown in Table 2, that is, the difficulty of brute force cracking of
data encrypted with different key lengths of each line is equivalent. For example, a 1024-
bit RSA key has the same strength as an 80-bit symmetric encryption key or a 160-bit
ECC key. At present, the commonly used RSA secret key security strength is 2048 bits,
and NIST suggests that after 2030, at least 3072-bits of RSA secret keys (corresponding
to 128-bit symmetric keys or 256-bit ECC keys) should be used to ensure the security.

From the comparison shown in Table 2, our route is superior to other schemes in
terms of security and key length. In fact, whether it is ECC or RSA, it is mostly used
for handshake-exchange session keys and authentication, such as TLS (Transport layer
security)/ssl(Secure sockets layer) authentication or encrypting symmetric key data by
means of digital envelope method, which is a typical kb-level data processing. Once MB
or even GB-level file data is involved, efficient symmetric encryption is usually adopted.

14 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

Fig. 9. 1st level authorization decryption after data sharing.

We have not seen the use of asymmetric encryption to process large file data (MB-level
or above) in practical scenarios yet.

Table 2. Key length corresponds to security level.
Security level (bits) of
symmetric key length
(our scheme)

Key length (bits) of
RSA mechanism [35,
36]

Key length (bits)
of ECC mecha-
nism [34, 37, 38]

Key length
comparison: our
scheme/RSA/ECC

56 512 112 1:10:2
80 1024 160 1:14:2
112 2048 224 1:20:2
128 3072 256 1:24:2
192 7680 384 1:40:2
256 15360 512 1:60:2

We adopted the most commonly used commercial cryptographic algorithm SM4
(block cipher algorithm) and SM3(Hash algorithm) to demonstrate the encryption effi-
ciency of our hierarchical scheme. Considering that encrypt/decrypt operation is executed
on user client, the computer we use is configured as Intel-i7 with 16GB memory. The
consuming of encryption is shown in Table 3, and the average time consuming is 305.67
Mbps. Consider that an English letter occupies 1 byte of space (while a Chinese character
occupies 2 bytes), files with more than 50 million English letters can be encrypted in one
second. Therefore, client-side encryption won’t affect user experience.

Further, consider the most extreme case in Fig. 6, if a 1st class authorized user needs
to decrypt the nth class data block, it takes 2n times hash operations and one decryption

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 15

Fig. 10. 2nd level authorization decryption after data sharing.

Table 3. Encryption efficiency of 100M data.
Times Time consum-

ing (ms)
Times Time consum-

ing (ms)
1st 396 6th 314
2nd 330 7th 336
3rd 341 8th 308
4th 308 9th 310
5th 343 10th 324

operation from key derivation to decryption. The length of sm4 key is only 128 bits, hash
calculation overhead can be approximately ignored.

4.2.2 Blockchain efficiency

Considering that in the data security sharing and exchange, it is necessary to ensure
the credibility of the authority, as well as the distributed consensus and ledger’s authoriza-
tion of reading and writing, we adopt the typical alliance blockchain [27,28], hyperledger
fabric. The platform not only meets the authorization of writing and reading, but also has
strong scalability and high efficiency in the consensus algorithm when compared with
public chain and private chain. We constructed the blockchain experimental environment
to verify the feasibility of the scheme, the test environment of the blockchain is shown in
Table 4, which includes 3 servers with 16GB memory, containerized services are deployed
on each server, each has an endorser and an orderer node.

The reproduction of this part is easy to implement. “Hyperledger fabric” [29] can be
easily downloaded from the Internet together with coursebook, readers just need to deploy

16 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

it according to the instructions, find its read/write interface, and can further simulate the
reading, writing and querying of metadata (usually kB-level).

Table 4. Test environment of blockchain.
Server CPU Memory(GB) Containerized service

Server 1 4 16 1 endorser and 1 orderer node

Server 2 4 16 1 endorser and 1 orderer node

Server 3 4 16 1 endorser and 1 orderer node

In the above experimental environment, we call the read/write interface to realize the
functions of publishing(sharing) and querying data on the blockchain. We use Jmeter test
tool to encapsulate the data release and query interfaces with HTTP, and simulate user
writing and query behavior with 50 and 100 concurrent calls respectively, the test results
are shown in Table 5, which is in line with expectations.

Table 5. Latency of client user/authority requests.
Operation Number of

concurrent
users

TPS (Trans-
actions per
second)

average la-
tency (ms)

Data release
50 94.5 529
100 174 574

Data retrieval
50 55.8 896
100 108.3 923

Fig. 11 compares our BCS scheme with other blockchain-based data sharing sys-
tem [40, 41]. With the number of concurrent user requests increases, so does the av-
erage latency, and the magnitude of the delay is basically the same. However, the
storage resources of blockchain are limited by computational overhead. Unlike other
schemes [40, 41], which store plaintext or ciphertext of equivalent size, our scheme costs
less, it only stores metadata information and share credentials of ciphertext, which is su-
perior to schemes [40, 41] in security, further, we can see our scheme has lower delay
when concurrent requests are large (100 users), so it is more effective in handling large
amounts of data.

4.3 Security Analysis

We think that the fine-grained hierarchical data should meet 3 basic security needs:
confidentiality, integrity and availability. Confidentiality guarantees that only authorized
users can read. Integrity indicates that the data is not tampered with in the exchange.
Availability denotes that data services are available when users need them. In relation
to typical security models, we assume that an adversary can’t break an encryption or
signature, then discuss the threat models, including threats to confidentiality, availability
and analyze whether these models threats to our design.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 17

Fig. 11. Latency comparison of different scheme.

4.3.1 Hash function and security model analysis

As we designed in Fig. 6, we use hash function to realize the top-down authorization
logic in the process of key derivation to fit the application scenario. Hash function is a
one-way function, given an input x, it will calculate the corresponding output H(x). The
main characteristics of hash function are:

• The input x can be a string of any length.

• The length of the output result H(x) is fixed.

• The process of calculating H(x) is efficient, that is, the time complexity of calcu-
lating H(x) is O(n) for string x with length n.

Further, hash function has the following security properties:
Unidirectional: For any given hash value h, it is computationally infeasible to find

x that satisfies H(x) = h.
Weak collision resistance: For any given message x, find a message y (y ̸= x and

satisfying H(x) = H(y)) is not feasible in calculation.
Strong collision resistance: It is computationally infeasible to find any pair message

(x,y),x ̸= y satisfying H(x) = H(y).
Theorem: If an internal adversary can destroy the confidentiality and integrity of

the upper-class data in a file by obtaining the upper-level key, then the hash function’s
resistance property is broken.

Proof : Assume that an adversary A can forge a hash value without knowing the
input key details; Then, we construct another algorithm to break hash function’s collision
resistance property.

We regard hash function H as an oracle with randomness. Each encrypted data block
Enc(FileBlock,FK) (with level key LK) can only query H once.

18 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

Initialization: Input a secure parameter λ , the challenger C generates public param-
eter “para”(includes class, data label, etc), send them to the adversary A.

Query: Adversary A adaptively issues the query to challenger C as follows: A can
ask for information about any data, such as j− 1th encrypted data blocks Enc(File
Block j−1,FK j−1) and the hash value of the superior class LK j (LK j = Hash(LK j−1
∥ j−1)). C generates hash j, sends it to A.

End: Receiving a set of key information other than Lki−1, the adversary A outputs a
hashi under the ith class information. A wins if hashi sent by A is valid and differs from
that of A while the challenger C doesn’t reject it.

The outcome denotes that the adversary can destroy the confidentiality and integrity
of upper class key Lki−1, and can further decrypt data blocks of higher class, this obvi-
ously contradicts the anti-collision property of hash function.

4.3.2 Security of hierarchical data control and key management

In order to make the encrypted data hierarchical management and control more in
line with application scenarios, for example, in companies, department members collabo-
rate to process and store data in the cloud, the leader needs to be able to decrypt and view
all the files of his subordinates under his jurisdiction on the cloud disk, but not vice versa.
As mentioned in the background of the paper, considering that data is not stolen by the
management party, all data is stored in the cloud managed by third parties in an encrypted
way. Considering the problem of data leakage caused by over-authorization, it leads to
the fine grained permission division and cooperation requirements based on encryption.
Different types of data need to take into account availability while being classified and
protected. In order to realize fine-grained authority division, key management is divided
into two lines: user level and data level, corresponding to the left column and middle
column in Fig. 6 and random factors are introduced(That is, data labels with path). The
data block key can only be derived from top to bottom based on the input of superior data
block, user authorization key and random factor, but can not be reversed. In this way, en-
cryption of each block with different keys can be realized without storing a large number
of keys, which increases the difficulty of adversary cracking, prevents data leakage from
getting out of control when a single key is cracked. When sharing, only the authorized
block key needs to be given through secure channel and the shared user can calculate the
low-level authorized key by himself, but can not deduce keys beyond the authorization,
thus laying a foundation for accurate authorization.

In terms of one-way privilege division from top to bottom, privilege division based
on key means that superior users can get subordinate keys, while subordinate users cannot
get superior keys. Traditional methods will make users with higher authority get all the
block keys, which will cause huge management and storage overhead in big data scenar-
ios. In view of the above properties of hash function, key derivation management will be
unidirectional from top to bottom. That is, the superior key can deduce the subordinate
key, but the subordinate key cannot deduce the superior key, which is valuable in use.

4.3.3 Trust enhancement and traceability

Besides, we realize data confirmation, behavior traceability, multi-node backup, in-
tegrity, accuracy and timeliness by virtue of blockchain [26, 27]. The key to the anti-

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 19

tampering of blockchain lies in the chain structure of its data layer, shown in Fig. 12,
which supports conformation, traceability, etc. The basic unit of the chain structure is
block, which contains block header and block itself. The block stores transactions like
metadata, “ransfer voucher” submitted by user, authority, etc, while block header contains
hash of previous block, which can be understand as a pointer to the parent block, besides,
it contains merkleroot, production time of current block (time stamp), etc. Merkleroot
summarized the transactions in current block through hash function step by step, which
can be used to quickly verify the contents in the future. The security of chain structure
can also be reduced to the unidirectional, weak collision resistance and strong collision
resistance of hash function shown in Section 4.3.2.

Fig. 12. Latency comparison of different scheme.

The security analysis of hierarchical data circulation is specifically as follows:

1. Metadata of files is written into the blockchain by each user as a backup to effi-
ciently restore the ciphertext. Moreover, considering blockchain node is relevant
public, user encrypt each metadata with corresponding file key FK, which can only
be retrieved by userID and file unique identifier.

2. Every time a user initiates a sharing operation, the “transfer voucher” (including
key distribution, time, etc.) is endorsed(signed) by the key management (authority)
and written into the blockchain, so that the traceability of data flow behavior has
credibility.

20 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

3. Blockchain has the characteristic of multi-node backup, it will decentralize man-
agement pressure such as query, insert when compared with TTP (Trusted Third
Party), each node can provide basic metadata management service. The scheme
can also partly get rid of single point failure faced by TTP in terms of metadata
management, and divide the data responsibility to assist the confirmation of rights.

To sum up, we realize the accurate authorization, responsibility division and man-
agement of data, guarantee the security.

4.4 Application and Advantages

The method designed above only encrypts plaintext itself, which can be summarized
as,

c← SKE.Enc(K,d). (10)

K stands for key set, SKE is the abbreviation of key encryption, and Enc means
encryption, c represent ciphertext result. However, encrypted data storage faces problem
of availability, if download the encrypted data to the client and then decrypt and search, the
search efficiency will be low. If decrypt the ciphertext and search plaintext on the server
will reduce security. It is usually combined with searchable encryption technology to
balance security and availability [42–45]. That is to say, several keywords of a document
are set or extracted, and the keywords are processed by a searchable encryption algorithm
to generate the ciphertext index, which is a mapping from keywords to document ID.
Only the encrypted search token generated by keywords searches the cipher index and
successfully obtains the file ID, users can download the ciphertext file and then decrypt
the corresponding data block according to their own authority.

The distributed security storage system for big data platform, which is characterized
by fine-grained control, ciphertext storage and processing, is to be explored and demon-
strated in the fields with big data platform such as e-office and medical data sharing. Take
e-office data sharing as an example, the cloud big data storage platform provides fine-
grained encryption storage protection and controlled sharing mechanism for user data in
scenarios such as e-office, as shown in Fig. 13.

Table 6 shows the comparison between our hierarchical ciphertext storage scheme
and other typical methods. Our tool can be integrated in the user client in the form of
SDK, won’t effect user experience like PGP. The user is in full control of his own key,
without worrying about integrity of the agent bringed by CASB. Further, it combined with
searchable encryption, won’t affect data availability like MessageGuard. Moreover, we
management behavior data based on blockchain, which makes the scheme traceable, thus
improves security.

To sum up, in terms of user management and data authorization, the key management
center only needs to issue the root key to users, and users can derive the sub-encryption
key by himself, which reduces the cost of key management, it realize flexible secure key
and user authority management at the file block level. It provides technical safeguards for
clarifying the ownership of files, data, identifying security responsibilities, supervising the
use of files and data. It relieves the worries of document providers, document demanders
and managers, and creates safe convenient conditions for all units and departments to
actively participate in data sharing and exchange.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 21

Fig. 13. Schematic diagram of data sharing application in company e-office.

Table 6. Comparison of related work.
Related
work

Encrypted po-
sition in Fig. 2

Transparent
encryption

Support
general app

Key manage-
ment position

Categories Traceability

PGP [9] A(Client) ×
√

User File encryp-
tion tool

×

Message-
Guard [11]

A(Browser)
√ √

Key manage-
ment server

secure mid-
dle layer

×

CASB [18,
19]

B(Gateway)
√

× Gateway Cloud
Access
Security
Broker,
gateway

×

CryptDB [20] C(Agent
server)

√
× Agent Server Trusted

agent
×

BCS(Ours) position be-
tween A and
B (Client/
Browser)

√ √
User and Key
management
server

Encryption
tool(SDK)

√

22 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

5. CONCLUSIONS

In this paper, we realize blockchain-based hierarchical access control in terms of
encrypted storage by classifying users, distributing corresponding master keys and auth-
level keys, the keys of file contents are derived from users’ master keys, file unique identi-
fiers and data lables. Hierarchical and fine-grained control is realized through hierarchical
keys, thus, users of corresponding levels can complete file encryption, upload and sharing
only by holding encryption keys of corresponding levels, which is simple and conve-
nient, effectively solve the content security problem caused by traditional simple whole
encrypted storage, that is, the risk of large-scale data leakage caused by excessive autho-
rization and single key leakage in data flow. Further, we use blockchain as a means of
trust enhancement and backup, greatly balanced security and efficiency. We analyze and
evaluate the scheme, and the application results show the efficiency in terms of authority
division and security. As far as we know, we are the first to propose top-down key man-
agement and block-level fine-grained precise encryption authorization scheme to support
e-government and e-office.

In our future work, we will continue to research the ciphertext computing in a cipher-
text retrieval system on the basis of ensuring efficiency and continue to pay attention to
the empowerment of blockchain to data security. We will also study the secure multi-party
computation in cloud-edge collaborative distributed storage.

ACKNOWLEDGMENT

This work is supported by the Sichuan Science and Technology Program (2021
JDRC0077), the Sichuan Province’s Key Research and Development Plan “Distributed
Secure Storage Technology for Massive Sensitive Data” Project (2020YFG0298), and
Applied Basic Research Project of Sichuan Province (No. 2018JY0370).

REFERENCES

1. Commerce Department Prohibits, “WeChat and TikTok transactions to protect the
national security of the United States,” https://2017-2021.commerce.gov/news/press-
releases/2020/09/commerce-department-prohibits-wechat-and-tiktok-transactions-pr
otect.html, 2020.

2. One of the investigation reports of the NSA cyber attack on NPU, http://www.china-
daily.com.cn/a/202209/06/WS631691c6a310fd2b29e761a2.html, 2022.

3. Didi was fined over 1 billion for violating laws, http://www.chinadaily.com.cn/a/2022
07/21/WS62d8e932a310fd2b29e6da1d.html, 2022.

4. Safe cow, large-scale face-beating scene, Ultra-large-scale data leakage in the world’s
safest cloud backup, https://aqniu.com/news-view/66379.html, 2020.

5. InfoQ, “The data leakage of year 2019 was shocking,” https://cloud.tencent.com/de-
veloper/news/561392, 2020.

6. Cyber Risk Analytics (CRA) and Risk Based Security (RBS), “2021 data breach qu-
ick view report,” https://pages.riskbasedsecurity.com/hubfs/Reports/2021, 2021.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 23

7. A Study Conducted by Ponemon Institute and Sponsored, Analyzed, Reported by
IBM Security, “2021 cost of a data breach report,” https://branden.biz/wp-content/
uploads/2021/08/Cost-of-af-DATA-Breach-Report-2021.pdf, 2021.

8. Alarming Cyber Security Facts to Know for 2021 and Beyond, https://www.cyber-
talk.org/2021/12/02/alarming-cyber-security-facts-to-know-for-2021-and-beyond/,
2021.

9. Symantec, “Symantec desktop email encryption end-to-end email encryption soft-
ware for laptops and desktops,” http://www.symantec.com/desktop-email-encryption,
2016.

10. S. Ruoti, K. Seamons, and D. Zappala, “Layering security at global control points
to secure unmodified software,” in Proceedings of IEEE International Conference on
Cybersecurity Development, 2017, pp. 42-49.

11. S. Ruoti, J. Andersen, T. Monson, et al., “MessageGuard: A browser-based platform
for usable, content-based encryption research,” arXiv Preprint, 2016, arXiv:1510.
08943.

12. Terms V C. Virtru: Email encryption and data security for business privacy, https://
www.virtu.com, 2019.

13. W. He, D. Akhawe, et al., “ShadowCrypt: Encrypted web applications for every-
one,” in Proceedings of ACM SIGSAC Conference on Computer and Communication
Security, 2014, pp. 1028-1039.

14. X. Guo, Y. Huang, J. Ye, et al., “ShadowFPE: New encrypted web application solu-
tion based on shadow DOM,” Mobile Networks and Applications, 2020, pp. 1-14.

15. B. Lau, S. P. Chung, C. Song, et al., “Mimesis Aegis: A mimicry privacy shield-A
system’s approach to data privacy on public cloud,” Georgia Institute of Technology,
2014, pp. 33-48.

16. Gartne, “Market guide for cloud access security brokers,” https://www.gratner.com/
document/3488119, 2016.

17. Gartner, “Top 10 security projects for 2019,” https://www.gratner.com/en/documents
/3900996/top-10-security-projects-for-2019, 2019.

18. NETWORK S. Skyhighnetworks, https://www.skyhighnetworks.com/, 2019.
19. Ciphercloud, https://www.ciphercloud.com/, 2019.
20. R. A. Popa, C. M. S. Redfield, N. Zeldovich, et al., “CryptDB: Protecting confiden-

tiality with encrypted query processing,” in Proceedings of ACM Symposium on Op-
erating Systems Principles, 2011, pp. 85-100.

21. R. Poddar, T. Boelter, and R. A. Popa, “ARX: an encrypted database using semanti-
cally secure encryption,” in Proceedings of the VLDB Endowment, Vol. 12, 2019, pp.
1664-1678.

22. R. A. Popa, E. Stark, et al., “Building web applications on top of encrypted data
using Mylar,” in Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, 2014, pp. 157-172.

23. E. H. Beni, B. Lagaisse, W. Joosen, et al., “DataBlinder: A distributed data protection
middleware supporting search and computation on encrypted data,” in Proceedings
of the 20th International Middleware Conference Industrial Track, 2019, pp. 50-57.

24. S. Belguith, N. Kaaniche, M. Laurent, et al., “Phoabe: Securely outsourcing multi-
authority attribute based encryption with policy hidden for cloud assisted IOT,” Com-
puter Networks, Vol. 133, 2018, pp. 141-156.

24 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

25. G. Chen, T. H. Lai, M. K. Reiter, et al., “Differentially private access patterns for
searchable symmetric encryption,” in Proceedings of IEEE Conference on Comput-
er Communications, 2018, pp. 810-818.

26. N. Satoshi, “Bitcoin: A peer-to-peer electronic cash system,” Satoshi Nakamoto In-
stitute, https://nakamotoinstitute.org/bitcoin/, 2008.

27. M. Hao, et al., “Efficient and privacy-enhanced federated learning for industrial arti-
ficial intelligence,” IEEE Transactions on Industrial Informatics, Vol. 16, 2019, pp.
6532-6542.

28. F. Kai, et al., “A Blockchain-based clock synchronization scheme in IoT,” Future
Generation Computer Systems, Vol. 101, 2019, pp. 524-533.

29. Hyperledger, https://www.hyperledger.org/, 2020.
30. W. Jiang, H. Li, G. Xu, M. Wen, G. Don, X. Lin, “PTAS: Privacy-preserving thin-

client authentication scheme in blockchain-based PKI,” Future Generation Computer
Systems, Vol. 96, 2019, pp. 185-195.

31. H. He, L. Zheng, P. Li, L. Deng, L. Huang, X. Chen, “An efficient attribute- based
hierarchical data access control scheme in cloud computing,” Human-Centric Com-
puting and Information Sciences, Vol. 10, 2020, pp. 1-19.

32. S. Gao, G. Piao, J. Zhu, X. Ma, and J. Ma, “TrustAccess: A trustworthy secure ciph-
er-text-policy and attribute hiding access control scheme based on blockchain,” IEEE
Transactions on Vehicular Technology, Vol. 69, 2020, pp. 5784-5798.

33. J. Sun, X. Yao, S. Wang, and Y. Wu, “Blockchain-based secure storage and ac-
cess scheme for electronic medical records in IPFS,” IEEE Access, Vol. 8, 2020,
pp. 59389-59401.

34. X. Qin, Y. Huang, Z. Yang, and X. Li, “A blockchain-based access control scheme
with multiple attribute authorities for secure cloud data sharing,” Journal of Systems
Architecture, Vol. 112, 2021, p. 101854.

35. Y. Zuo, Z. Kang, J. Xu, and Z. Chen, “BCAS: A blockchain-based ciphertext-policy
attribute-based encryption scheme for cloud data security sharing,” International
Journal of Distributed Sensor Networks, Vol. 17, 2021, No. 1550147721999616.

36. S. Athanere and R. Thakur, “Blockchain based hierarchical semi-decentralized ap-
proach using IPFS for secure and efficient data sharing,” Journal of King Saud Uni-
versity – Computer and Information Sciences, Vol. 34, 2022, pp. 1523-1534.

37. Q. Zhang and Z. Zhao, “Distributed storage scheme for encryption speech data based
on blockchain and IPFS,” Journal of Supercomputing, Vol. 79, 2023, pp. 897-923.

38. F. Sammy, S. Vigila, et al., “An efficient blockchain based data access with modi-
fied hierarchical attribute access structure with CP-ABE using ECC scheme for pa-
tient health record,” Security and Communication Networks, Vol. 2022, 2022, No.
8685273.

39. NIST, https://csrc.nist.gov/publications/, 2022.
40. Q. Xia, E. B. Sifah, et al., “MeDShare: Trust-less medical data sharing via block-

chain,” IEEE Access, Vol. 5, 2017, pp. 14757-14767.
41. F. Kai, W. Shangyang, et al., “MedBlock: Efficient and secure medical data sharing

via blockchain,” Journal of Medical Systems, Vol. 42, 2018, pp. 1-11.
42. D. X. Song, D. Wagner, et al., “Practical techniques for searches on encrypted data,”

in Proceedings of IEEE Symposium on Security and Privacy, 2000, pp. 44-55.

BCS: BLOCKCHAIN-BASED CIPHERTEXT STORAGE SCHEME 25

43. W. Jianfeng, C. Xiaofeng, and S. Shifeng, et al., “Towards efficient verifiable con-
junctive keyword search forlarge encrypted database,” in Proceedings of the 23rd Eu-
ropean Symposium on Research in Computer Security on Computer Security, 2018,
pp. 83-100.

44. S. Shifeng, J. K. Liu, A. Sakzad, et al., “An efficient non-interactive multi-client
searchable encryption with supportfor boolean queries,” in Proceedings of the 21st
European Symposium on Computer Security, 2016, pp. 154-172.

45. W. Yunling, W. Jianfeng, S. Shifeng, et al., “Towards multi-user searchable encryp-
tion supporting boolean query and fast decryption,” The Journal of Universal Com-
puter Science, Vol. 23, 2019, pp. 222-244.

Yuxiang Chen received the BS degree from the University
of Electronic Science Technology of China, China in 2016, re-
ceived the MS degree from China Academic of Electronics and
Information Technology, China in 2019, and he is currently pur-
suing the Ph.D. with the School of Computer Science and Engi-
neering. His research interests include cryptography, cloud stor-
age, and blockchain technology.

Yao Hao is a Senior Engineer of Science and Technology
on Communication Security Laboratory, China and China Elec-
tronics Technology Cyber Security Co., Ltd. His research inter-
ests include applied cryptography, big data security and secure
storage.

Zhongqiang Yi is a Senior Engineer of Science and Tech-
nology on Communication Security Laboratory, China and Chi-
na Electronics Technology Cyber Security Co., Ltd. His research
interests include applied cryptography, big data security and se-
cure storage.

26 YUXIANG CHEN, YAO HAO, ZHONGQIANG YI, XIAOYU GUO, CHUNXIANG XU

Xiaoyu Guo is an Engineer of Science and Technology on
Communication Security Laboratory, China and China Electron-
ics Technology Cyber Security Co., Ltd. His research interests
include applied cryptography, and information security.

Chunxiang Xu received the BS, MS, and Ph.D. degrees
from Xidian University, China, in 1985, 1988, and 2004, respec-
tively. She is currently a Professor at the University of Electronic
Science Technology of China, where she is involved in informa-
tion security, cloud computing security, and cryptography.

