
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 471-484 (2019)
DOI: 10.6688/JISE.201903_35(2).0013

471

Short Paper__

An Efficient Search Algorithm for Fingerprint Databases*

GUANG-HO CHA

Department of Computer Engineering
Seoul National University of Science and Technology

Seoul, 139-743 Korea

In this paper, we present an efficient search algorithm for fingerprint databases that

store songs or data with a similar structure. A song is represented by a high dimensional
binary vector using the audio fingerprinting technique. Audio fingerprinting extracts
from a song a fingerprint which is a content-based compact signature that summarizes an
audio recording. A song can be recognized by matching an extracted fingerprint to a da-
tabase of known audio fingerprints. In this paper, we are given a binary fingerprint data-
base of songs and focus our attention on the problem of effective and efficient database
search. However, the nature of high dimensionality and binary space makes many mod-
ern search algorithms inapplicable. The high dimensionality of fingerprints suffers from
the curse of dimensionality, i.e., as the dimension increases, the search performance de-
creases exponentially. In order to tackle this problem, we propose a new search algorithm
based on inverted indexing, the multiple sub-fingerprint match principle, the offset match
principle, and the early termination strategy. We evaluate our technique using a database
of 2,000 songs containing approximately 4,000,000 sub-fingerprints and the experimental
result shows encouraging performance.

Keywords: fingerprint database, binary database, audio fingerprint, similarity search, au-
dio identification

1. INTRODUCTION

Large digital music libraries are becoming popular on the Internet and computer
systems, and with their growth our ability to automatically analyze and interpret their
content has become increasingly important. The ability to find acoustically similar, or
even duplicate, songs within a large music database is a particularly important task with
numerous potential applications. For example, the artist and title of a song could be re-
trieved given a short clip recorded from a radio broadcast or perhaps even sung into a
microphone. Broadcast monitoring is also the most well known application for audio
fingerprinting. It refers to the automatic playlist generation of radio, TV or Web broad-
casts for, among others, purposes of royalty collection, program verification and adver-
tisement verification.

Due to the rich feature set of digital audio, a central task in this process is that of
extracting a representative audio fingerprint that describes the acoustic content of each
song. Fingerprints are short summaries of multimedia content. Similar to a human fin-

Received April 6, 2012; revised June 19, & August 29, 2012; accepted October 23, 2012.
Communicated by Hsin-Min Wang.
* This research was supported by Basic Science Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03036561).

GUANG-HO CHA

472

gerprint that has been used for identifying an individual, an audio fingerprint is used for
recognizing an audio clip. An ideal fingerprinting system should fulfill several require-
ments. It should be able to accurately identify an item, regardless of the level of com-
pression and distortion or interference in the transmission channel. We hope to extract
from each song a feature vector that is both highly discriminative between different
songs and robust to common distortions that may be present in different copies of the
same song.

Haitsma and Kalker’s fingerprinting [1-3] is the seminal work on fingerprinting. It
extracts 32-bit sub-fingerprints for every interval of 11.6 milliseconds from a song and
the concatenation of 32-bit sub-fingerprints extracted constitutes the fingerprint of the
song. Each sub-fingerprint is derived by taking the Fourier transform of 5/256 second
overlapping intervals from a song, thresholding these values, and subsequently compu-
ting a 32-bit hash value. This technology was acquired by Gracenote, a music database
company in Emeryville, California [4]. Wang's fingerprinting [5, 6] is also the seminal
work on fingerprinting and known to be very robust against noise and distortion caused
by using a mobile phone connection and added background noise. His algorithm was
employed in the Shazam music recognition service [7]. Shazam’s audio fingerprinting
first generates a spectrgram for a song. The spectrogram is a 3 dimensional graph with
time, frequency, and intensity. Each point on the graph represents the intensity of a cer-
tain frequency at a specific point in time. The Shazam algorithm identifies peak intensi-
ties (called anchor points) and zones in the vicinity of them (called target zones). For
each point in the target zone, it creates a hash value that is the aggregation of the follow-
ing: the frequency at which the anchor point is located (f1) + the frequency at which the
point in the target zone is located (f2) + the time difference between the time when the
point in the target zone is located in the song (t2) and the time when the anchor point is
located in the song (t1) + t1. In this paper, we adopt an audio fingerprinting technique of
Seo et al. [8] based on the normalized spectral subband moments in which the fingerprint
is extracted from the 16 critical bands between 300 and 5300 Hz. Therefore, fingerprint
matching in out work is performed using the fingerprint from 20-second music clips that
are represented by about 200 subsequent 16-bit sub-fingerprints.

Given this fingerprint representation, the focus of our work has been to develop an
efficient search method for song retrieval. This problem can be characterized as a nearest
neighbor search in a very high dimensional (i.e., 3200 (= 200 × 16)) data space.

High dimensional nearest neighbor search (NNS) is a very well studied problem:
given a set P of points in a high dimensional space, construct a data structure which,
given any query point q, finds the point p closest to q under a defined distance metric.
The NNS problem has been extensively studied for the past two decades. The results,
however, are far from satisfactory, especially in high dimensional spaces [9]. Most NNS
techniques generally create a tree-style index structure, the leaf nodes represent the
known data, and searching becomes a traversal of the tree. Specific algorithms differ in
how this index tree is constructed and traversed. However, most tree structures succumb
to the curse of dimensionality, that is, while they work reasonably well in a 2 or 3 di-
mensional space, as the dimensionality of the data increases, the query time and data
storage would exhibit an exponential increase, thereby doing no better than the brute-
force sequential search [9]. Recent work [10-12] appears to acknowledge the fact that a
perfect search that guarantees to find exact nearest neighbors in a high dimensional space

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 473

is not feasible. However, the aforemention methods cannot be extended to the finger-
printing system which deals with the binary vectors and the Hamming distance metric.
That is, in the fingerprinting system, the bit error rate between two binary vectors is used
as a distance metric rather than Euclidean distance. In addition, the objective of the fin-
gerprinting system is not to search the object most similar to the query object but to iden-
tify the query object with errors. Therefore, the above approaches cannot be applied to
the fingerprinting system. Moreover, the big limitation of their work [10-12] is that it
often needs to search a significant percentage of the database.

In this paper, we adopt the inverted file [13] as the underlying index structure and
develop not only the technique to apply the inverted file indexing to high dimensional
binary fingerprint databases but also the efficient search algorithm for fast song retrieval.
Though our work focuses on searching songs based on audio fingerprints, the devised
technique is generally applicable to other high dimensional binary vector search do-
mains.

The organization of the paper is as follows. We begin by discussing the related
work in Section 2. Section 3 is the heart of the paper where we prersent our indexing and
search algorithm. We present a performance evaluation in Section 4 and conclusion is
made in Section 5.

2. RELATED WORKS

The problem we investigate is: given a 3200-bit vector (200 16-bit sub-fingerprints)
with errors, how to quickly find its nearest neighbor in the 3200-dimensional Hamming
space.

Haitsma and Kalker [1-3] proposed an indexing scheme that constructs a lookup ta-
ble (LUT) for all possible 32-bit sub-fingerprints and lets the entries in the LUT point to
the song(s) and the positions within that song where the respective sub-fingerprint value
occurs. Since a sub-fingerprint value can occur at multiple positions in multiple songs,
the song pointers are stored in a linked list. Thus one sub-fingerprint value can generate
multiple pointers to songs and positions within the songs. By inspecting the LUT for
each of the 256 extracted sub-fingerprints, a list of candidate songs and positions is gen-
erated. Then the query fingerprint block (i.e., 256 sub-fingerprints) is compared to the
positions in the database where the query sub-fingerprint is located.

The first problem of the Haitsma-Kalker method is that the 32-bit LUT containing
232 entries is too large to be resident in memory. Furthermore, LUT is very sparsely
filled because only a limited number of songs reside in comparison with the size of LUT.
By adopting inverted file indexing we resolve this problem.

In an inverted file index, a list of all indexing terms is maintained in the search
structure called a vocabulary, and the vocabulary is usually implemented by the B-trees.
However, in our approach, we employ a hash table instead of the B-trees as the vocabu-
lary in order to accomplish the lookup time of O(1) rather than O(log n). Contrary to
large text databases that widely use the inverted file index where the number of query
terms is a few, in fingerprint querying, the number of query terms (i.e., query sub-finger-
prints) is several hundred when we assume the duration of the query song clip is several
seconds. Therefore, the lookup time of O(1) is crucial.

The second problem of the Haitsma-Kalker method is that their search algorithm is

GUANG-HO CHA

474

built on the “single match principle”. That is, their method assumes that if two finger-
prints are similar, they would have a relatively high chance of having at least one “mat-
ching” identical sub-fingerprint, and therefore their method fetches the full fingerprint of
the song matched from a database and compares it with the query fingerprint as soon as
it finds a single sub-fingerprint matched to a certain query sub-fingerprint. They ignore
the multiple occurrences of matching. However, in fact, multiple occurrences of sub-
fingerprint matched are common and many candidates with multiple matches are found
during the search. Therefore, if the multiple occurrences of matches are not considered in
the query evaluation, the search wastes much time to inspect the candidate songs which
are eventually judged to be incorrect even though they have several matches to the query
sub-fingerprints. We tackle this spurious match problem and improve the search perfor-
mance by introducing the “multiple sub-fingerprints match principle”. It means that the
full fingerprint of the candidate song should be retrieved only when the number of ac-
cumulated matches of it meets a specified threshold.

We also introduce the “offset match principle” in the search. It means that if two
fingerprints are similar and there are multiple occurrences of sub-fingerprint matches
between them, they might share the same relative offsets among the occurrence positions
of matches. This offset match principle improves the search performance greatly by ex-
cluding the candidates that do not share the same relative offsets of match occurrence
positions with the query fingerprint. This reduces the number of random database ac-
cesses remarkably.

In searching the database, the Shazam algorithm [5, 6] is the extreme opposite of
the Haitsma-Kalker algorithm because it selects the candidates to fetch their full finger-
prints from the database according to the order of scores based on the number of match-
ing and time-aligned sub-fingerprints. But it is similar to our method that employs the
multiple match principle and the offset match principle. However, Shazam fails to im-
prove the search performance by not considering the fact that the search can be termi-
nated earlier without scanning the full query sub-fingerprints. Although this approach
actually reduces the number of full fingerprint fetches due to spurious matches, it misses
the chance of early termination because it has to compute the similarity scores of every
candidate and determine the order of fetching their full fingerprints from a database. We
improve the search performance by applying the “early termination strategy” to the
search algorithm.

Miller et al. [14] assumed the fingerprint representation of 256 32-bit sub-finger-
prints of Haitsma and Kalker [1-3] and proposed the 256-ary tree to guide the fingerprint
search. Each 8192(= 32  256)-bit fingerprint is represented as 1024 8-bit bytes. The
value of each consecutive byte in the fingerprint determines which of the 256 possible
children to descend. A path from the root node to a leaf defines a fingerprint. The search
begins by comparing the first byte of the query with the children of the root node. For
each child node, it calculates the cumulative number of bit errors seen so far. This is
simply the sum of the parent errors and the Hamming distance between the 8-bit value
represented by the child and the corresponding 8-bit value in the query. Then a test is
applied to each child, in order of increasing error, to determine whether to search that
child. If the best error rate seen so far is greater than the threshold, then the child is
searched. The search continues recursively and when a leaf node is reached, the error
rate associated with the retrieved fingerprint is compared to the best error rate seen so far.

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 475

If it is less, then it updates the best error rate to this new value and assigns this finger-
print as the best candidate nearest neighbor so far.

The first problem of Miller et al.’s method is that the size of the 256-ary tree is too
large and the depth of the tree is also too deep to be practical in the disk-based database
search. According to their experimental results [14], they search an average of 419,380
nodes, which is 2.53% of the nodes in the index tree that stores about 12,000,000 sub-
fingerprints.

Moreover, they assume that each song is also represented by a fingerprint with 8192
bits, i.e., the same number of bits as the query fingerprint. It means that the length of
each song in a database is assumed to be the same as that of the query song. It makes the
indexing and search problem simpler. But actually an individual song with an average
length of 4 minutes has approximately 10,000 sub-fingerprints in Haitsma-Kalker’s
method. Therefore, it is not practical to model a song with only an 8192-bit fingerprint
and thus this mechanism is not feasible to apply to real applications.

The third problem is that Miller et al.’s 256-ary tree uses a probabilistic method
based on a binomial distribution to estimate the bit error rate (BER) in each tree node.
This BER is used to determine whether to search that node. However, it is difficult to
predict the exact BER in advance, and therefore, the correct rate to find the most similar
fingerprint is at most 85% in Miller et al.’s method [14]. In order to increase the correct
rate, the expected BER in each node should be determined more conservatively, and in
that case, the search performance may degenerate to be worse than that of the brute-force
sequential search. Therefore, it is difficult to reduce the search space to find the nearest
neighbor in a high-dimensional space using the k-ary tree. Furthermore, if the k-ary tree
tries to reduce the search space more, the error rate increases inevitably. It means that the
k-ary tree approach cannot overcome the curse of dimensionality problem.

Keeping those limitations in mind, in this paper, we propose a new indexing and
search algorithm that resolves the limitations explained above.

3. INDEXING AND SEARCH ALGORITHM

We now describe a new indexing scheme and a new search algorithm for song da-
tabases implemented with audio fingerprints. The underlying structure of our indexing is
based on the inverted file that has been widely used for text query evaluation such as
Google [15]. Searching an audio fingerprint database to identify a song is similar to
searching a text database for documents because a song is represented by a sequence of
16-bit sub-fingerprints and it can be found using some of the sub-fingerprints, and simi-
larly, documents in a text database are represented by multiple keywords and they can be
searched by keyword matching. This is the reason why we adopt the inverted file as the
underlying index structure in our work. However, there are also many differences be-
tween them and they make the fingerprint search problem more difficult.

In the fingerprint search, the query fingerprint may not match any fingerprint in a
database because the fingerprint extracted from a query song may have bit errors due to
distortions to the query song. In other words, contrary to the text database search where
only exact matching is supported, the fingerprint search should identify the correct song
in a database even though there is a severe signal degradation of the query song. This
means that the fingerprint search must support imperfect matching or similarity search.

GUANG-HO CHA

476

Individual bits in a fingerprint have their own meaning, and therefore, the Hamming
distance between two fingerprints is used as a dissimilarity metric. This means that the
search problem is: given a 3200 (= 16  200)-bit vector with errors, how to find the vec-
tor most similar to that in the 3200-dimensional binary space. However, the high-dimen-
sional similarity search is known to suffer from the dimensionality curse. As aforemen-
tioned, the indexing method such as the k-ary tree approach cannot avoid the dimension-
ality curse problem.

The query fingerprint is assumed to be 200 16-bit sub-fingerprints in our work.
However, assuming that the duration of the average song is 4 minutes, then the number
of sub-fingerprints in a song is approximately 2,000 in our system. This difference of
lengths between the query song and songs in a database makes the search problem more
difficult.

We resolve the problems explained above by adapting the inverted file index suita-
bly to our high dimensional binary database and creating the search algorithm with sev-
eral sophisticated strategies.

3.1 Index Structure

An inverted file index works by maintaining a list of all sub-fingerprints in a col-
lection, called a vocabulary. For each sub-fingerprint in the vocabulary, the index con-
tains an inverted list, which records an identifier for all songs in which that sub-finger-
print exists. Additionally, the index contains further information about the existence of
the sub-fingerprint in a song, such as the number of occurrences and the positions of
those occurrences within the song.

Specifically, the vocabulary stores the following for each distinct 16-bit sub-finger-
print t,
 a count ft of the songs containing t,
 the identifiers s of songs containing t, and
 the pointers to the starts of the corresponding inverted lists.

Each inverted list stores the following for the corresponding sub-fingerprint t,

 the frequency fs,t of sub-fingerprint t in song s, and
 the positions ps within song s, where sub-fingerprint t is located.

Then the inverted lists are represented as sequences of <s, fs,t, ps> triplets. These

components provide all information required for query evaluation. A complete inverted
file index is shown in Fig. 1.

Fig. 1. Inverted file index. The entry for each sub-fingerprint t is composed of the frequency ft,

song identifiers s, and a list of triplets, each consisting of a song identifier s, a song fre-
quency fs,t, and the positions ps within song s, where sub-fingerprint t is located.

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 477

The vocabulary of our indexing scheme is maintained as a hash table instead of the
B-trees in order to achieve the lookup time approaching O(1) rather than O(log n). Typi-
cally, the vocabulary is a fast and compact structure that can be stored entirely in main
memory.

For each sub-fingerprint in the vocabulary, the index contains an inverted list. The
inverted lists are usually too large to be stored in memory, so a vocabulary lookup re-
turns a pointer to the location of the inverted list on disk. We store each inverted list con-
tiguously in a disk rather than construct it as a sequence of disk blocks that are linked.
This contiguity has a range of implications. First, it means that a list can be read or writ-
ten in a single operation. Accessing a sequence of blocks scattered across a disk would
impose significant costs on query evaluation. Second, no additional space is required for
next-block pointers. Third, index update procedures must manage variable-length frag-
ments that vary in size, however, the benefits of contiguity greatly outweighs these costs.

3.2 Indexed Search

The query evaluation process is completed in two stages. The first stage is a coarse
index search that uses the inverted file index to identify candidates that are likely to con-
tain song matches. The second stage is a fine database search that fetches each candi-
date’s full fingerprint from a song database and then computes the similarity between the
query fingerprint and the song’s fingerprint fetched. The fine search is more computa-
tionally expensive because it requires the random disk access. Therefore, our strategy is
to avoid the expensive random disk accesses as possible as we can.

To conduct the coarse index search, we use a ranking structure called accumulator.
The accumulator records the following:

 the accumulated occurrences of the song identifiers (IDs) matched,
 the matching positions both within the query and the matched song IDs, and
 the accumulated number of matches that have the same relative offsets between the

matching positions within the query and the candidate songs when there are multiple
matches. We call this offset-match-count.

Ultimately, the information that we need is the offset-match-count for every candi-
date of a search. If a specific song ID has been encountered and its offset-match-count
has reached a certain threshold, then we load the full fingerprint from database using the
retrieved song ID. The subsequent comparison is based on the Hamming distance be-
tween the query fingerprint and the song fingerprint on their matching positions. Compu-
ting the Hamming distance involves counting the bits that differ between two binary
vectors.

In practical applications, many search candidates that have a single match or even
multiple matches with query sub-fingerprints are generated even though they are not the
correct object that we are looking for. Therefore, a significant percentage of a database
needs to be searched if the search algorithm loads the full fingerprint of a candidate as
soon as it encounters the candidate whose sub-fingerprint matches a certain query sub-
fingerprint. In other words, a search strategy such as the Haitsma-Kalker method based
on the single match principle is inevitably inefficient in disk-based applications although
this problem may be less evident if all data are resident in memory. In fact, the candidate

GUANG-HO CHA

478

whose offset-match-count has reached a certain threshold (e.g., 3) has a great possibility
of being the correct object that we are seeking and there are almost no candidates that
have their offset-match-count reach the threshold and are not the correct answer. If two
fingerprints are similar and there are multiple occurrences of sub-fingerprint match be-
tween them, they may share the same relative offsets among the occurrence positions of
matches.

The search algorithm using an inverted file index is illustrated in Fig. 2 and de-
scribed in Fig. 3. There are six cost components in the fingerprint search, as summarized
in Table 1. The first one is to initialize the array accumulator that records the accumu-
lated number of matches that have the same relative offset between the matching posi-
tions of the query and the retrieved song IDs. The second one is to compute n sub-fin-
gerprints from a query song clip. These two operations are computed very quickly. The
third one is to retrieve the index information about songs stored in the inverted file index.
This I/O operation is fast because the index information is lightweight and several in-
verted lists can be read in a single operation since they are contiguously stored in a disk.
The fourth one is to count the accumulated occurrences of the IDs and their offset-
match-counts. This simply involves read/write accesses to the memory array. The fifth
operation is to fetch the full fingerprints of the candidate songs. This is the most expen-
sive I/O operation that includes the random disk accesses to the candidate song’s finger
print database. The final one is to fully compare the retrieved candidate fingerprint with

Table 1. Cost components in fingerprint search.
No Components Computation Operation Cost
1 Initialize accumulator O(1) memory very fast
2 Compute n sub-fingerprints O(1) memory fast
3 Retrieve song IDs O(n) disk lightweight
4 Count occurrences O(n) memory very fast
5 Load full fingerprint O(n) disk heavyweight
6 Compute Hamming Distance O(n) memory fast

Fig. 2. Using an inverted file index and an accumulator to calculate song’s similarity score.

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 479

the query fingerprint and this operation is also computed fast. Therefore, our strategy is
to make the best use of the fast operations 3 and 4 while avoiding the most expensive
operation 5 and the operation 6.

In the search algorithm, the query sub-fingerprints are all generated at a time. Ini-
tially each song has a similarity of zero to the query, this is represented by creating the
array accumulator A initialized by zero. The count of song occurrences and offset-mat-
ch-count of A[j] are increased whenever the match of song j and the match of position
offset are found, respectively. Contrary to the Haitsma-Kalker method that fetches the
full song fingerprint from a database and compares it with query as soon as it finds a
candidate matched to a query sub-fingerprint, our search algorithm postpones it until the
offset-match-count of the candidate reaches a certain threshold (EncounterThreshold in
the algorithm of Fig. 3) in order to avoid the expensive operations 5 and 6 in Table 1 as
much as possible. Based on our experimental results, EncounterThreshold = 3 shows a
suitable trade-off between speed and accuracy. Without considering the offset match
principle and the multiple match principle, the search algorithm would be similar to the
Haitsma-Kalker method.

Fig. 3. Indexed computation of similarity between a query Q and a fingerprint database.

Besides the multiple match principle and the offset match principle, another method
to hasten our search algorithm is the “early termination strategy” shown in steps 10 and
11 in the algorithm of Fig. 3. The fewer errors in a query, the more likely the match is
found at an early stage. Even before the full search of n (e.g., n = 200) sub-fingerprints is
completed, if a song’s offset-match-count meets the condition of EncounterThreshold,
then the song is fully compared with query and it can be reported as a match if its Ham-
ming distance to the query is less than a certain threshold (MatchThreshold in the algo-
rithm of Fig. 3). This early search termination also contributes to the speedup. Without
considering the early termination strategy and marking the similarity score of all candi-
date matches, the search algorithm may be similar to the Shazam algorithm.

GUANG-HO CHA

480

Fig. 4. Histogram of the experimental database (2,000 songs).

4. EXPERIMENTAL RESULTS

In order to evaluate our indexing scheme and search algorithm, we digitized 2,000
songs and computed about 4,000,000 sub-fingerprints from the songs. In our experi-
mental database containing 2,000 songs, the size of inverted file index is about 3 GB,
which is more than many computers can afford to put it into memory. For the applica-
tions we envision, e.g., music search and identification, the database must be very large,
perhaps one million songs. If we assume approximately 2,000 unique sub-fingerprints
per song, this means we may wish to search through about 2 billion sub-fingerprints.
Under this case, all the inverted lists cannot reside in memory.

For experiments, 1,000 queries were generated by randomly selecting 20-second
portions from the song database and playing them through inexpensive speakers attached
to a PC. These song snippets were then digitized to be used as queries using an inexpen-
sive microphone. For each query, we know the answer, i.e. correct song, because we
know which song each query is derived from. Therefore, we can compute the error rate
that could not identify the correct song. In addition, we generated 100 queries from songs
not stored in a database to evaluate the performance when a search returns no match.

We compared our method with the Haitsma-Kalker method [1-3] and the Shazam
method [5, 6] to assess the performance of ours. We simulated the Haitsma-Kalker
method by using the offset-match-count = 1 based on the fact that it is built on the single
match principle. The experiments of our algorithm was conducted using offset-match-
count = 3, i.e., EncounterThreshold = 3 in the algorithm in Fig. 3. The effect of various
values of EncounterThreshold is reported in Table 2.

Moreover, in the experiment, the matching threshold (MatchThreshold) is set at 0.3.
Fig. 4 shows the distribution of the normalized Hamming distances for our experimental
database based on 2000  (2000  1) / 2 = 1,999,000 cross comparisons among 2,000 dif-
ferent songs in the database. In the experiment, the normalized minimum Hamming dis-
tance among 2,000 different songs is 0.31, the maximum distance is 0.72, and the mean
is 0.52. Based on this experimental results, we adopt the value of 0.3 as MatchThreshold.
According to this experimental result, if we use the larger value of MatchThreshold, the
false positive rate may increase, on the other hand, the smaller value of MatchThreshold
may increase the false negative rate.

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 481

Table 2. Search ratios, search time and false negative error rate depending on the off-
set-match-count in our algorithm (offset-match-count = 3), Haitsma-Kalker’s
(offset-match-count = 1), and Shazam’s algorithm.

offset-match-count
(EncounterThreshold)

1
(Haitsma-Kal
ker algorithm)

2
3

(our algo-
rithm)

4
Shazam

algorithm

search
ratio

when no matches
are found

0.58 0.0700 0.0053 0.0007 0.0007

when matches
are found

0.45 0.0017 0.0006 0.0005 0.00049

average search time (msec) 3220 140 30 35 59
false negative error rate 0.0048 0.0063 0.0075 0.0098 0.0049

We define the search ratio as the proportion of full fingerprints retrieved for com-
parison to the whole database size. The search ratio in our algorithm is less than 0.001 in
most cases and it means that our algorithm retrieves only a fraction of the whole database.
This is due to the multiple match principle and the offset match principle. On the other
hand, the Haitsma-Kalker method based on the single match principle could not achieve
this performance. Although the Shazam algorithm is comparable to ours with respect to
the search ratio, its search speed is not better than that of ours because it does not make
advantage of the early termination strategy.

First, we study the performance when a search returns no match, hence has no early
termination. We conducted the experiment using the songs not stored in the database. In
our algorithm, there is scarcely the case to load the full fingerprints of candidates from
the database when a match is not found. This is mainly due to the offset match principle.
However, in the Haitsma-Kalker method, a significant percentage of the database needs
to be searched even though there is no match, i.e. its search size may approach the data-
base size. This inefficiency is caused by the single match principle that retrieves the full
fingerprint of the candidate from the database as soon as it finds a single sub-fingerprint
match.

Table 2 reports the search ratios of the competitors and the effect of the Encounter-
Threshold. When we use the offset-match-count (EncounterThreshold in the algorithm in
Fig. 3) = 3, our algorithm reports the average search time of 30 msec. This is achieved
because the algorithm checks only 0.06% of the database. When offset-match-count = 1,
a significant percentage (from 45% to 59%) of the database need to be searched. It is
particularly inefficient to retrieve sporadically dispersered data from disk. Fingerprints in
a database are actuallly retrieved randomly and it is very costly. On the other hand, when
offset-match-count  2, only a small fraction of the database are read. When offset-
match-count = 4, only 0.05% of the database are checked. However, its gain is offset by
the search speed. This is caused by the delayed early termination. As a result, the value
offset-match-count = 3 becomes a suitable trade-off between speed and accuracy. The
search ratio of the Shazam algorithm is almost the same as the case of offset-match-count
= 4. It means that the candidate with offset-match-count = 4 is almost the song we want
to find.

Second, let us study the effect of early termination on the speedup. In fact, the fewer
errors in a query, the more likely the match found at an early stage. Fig. 5 plots the av-
erage percentage of having early termination at each sub-fingerprint position in query

GUANG-HO CHA

482

fingerprints. It shows that most matches are found by scanning no more than 60 sub-
fingerprints (about 30%) in a query fingerprint. This demonstrates that early termination
contributes to the speedup.

Fig. 5. Percentage of early termination at each sub-fingerprint in a query.

Third, let us consider the false negative error rate in the search. Compared with the
case of offset-match-count = 1, the degradation of false negative error rates when when
offset-match-count  2 is negligible, i.e., from 0.0048 to 0.0098 as shown in Table 2. It
means that the false negative error rate of our algorithm is less than 1% although we
adopt the offset match principle to avoid the expensive operation of retrieving full fin-
gerprints. In effect, the fewer error bits in a query, the more likely the false negative er-
ror is reduced.

Fourth, In order to experiment the case of the frame-drop situation in our search al-
gorithm, we intentionally omitted random 5% and 10% of sub-fingerprints in a query
fingerprint and evaluated the experimental results. In this case, the number of sub-finger-
prints in a query fingerprint decreases by 5% to 10%. The experimental results under this
noisy condition show that the false negative rate, i.e., the error rate that incorrectly re-
ports “no match found”, increases up to 4.8% (in the case of 10% time scaling) com-
pared to the cases using original query fingerprints. Fig. 6 shows the false negative error
rate in the case of the frame-drop situation. It demonstrates that our approach is still ro-
bust under high noisy condition.

Fig. 6. False negative error rate for the queries intentionally omitted 5% to 10% sub-fingerprints in

query fingerprints.

AN EFFICIENT SEARCH ALGORITHM FOR FINGERPRINT DATABASES 483

Finally, in the speed test, our method with offset-match-count = 3 is faster than the
Haitsma-Kalker method (offset-match-count = 1) and the Shazam method. This speedup
is achieved since our search algorithm checks only the most likely song to have a correct
match. This is due to employing the strategy of postponing the access of database to
fetch the full fingerprint of a song as well as the early termination strategy without con-
sidering all sub-fingerprints. The above experimental results show both of the effective-
ness and efficiency of our indexing and search strategy.

5. CONCLUSION

In this paper, we proposed a new search algorithm based on inverted indexing for
efficiently searching a large fingerprint database. The indexing method employs the in-
verted file as the underlying index structure to achieve the efficient song retrieval. The
search algorithm adopts the “multiple match principle”, the “offset match principle”, and
the “early termination strategy”, so that it postpones the fetch of full fingerprints and
therefore reduces the number of expensive random disk accesses dramatically.

The experimental result shows the performance superiority of our method to that of
Haitsma-Kalker’s and Shazam’s. This makes our new search strategy a useful technique
for efficient fingerprint database searches including the application of music retrieval.

REFERENCES

1. J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system with an effi-
cient search strategy,” Journal of New Music Research, Vol. 32, 2003, pp. 211-221.

2. J. Haitsma and T. Kalker, “Highly robust audio fingerprinting system,” in Proceedings
of International Symposium on Music Information Retrieval, 2002, pp. 107-115.

3. J. Oostveen, T. Kalker, and J. Haitsma, “Feature extraction and a database strategy
for video fingerprinting,” in Proceedings of International Conference on Visual In-
formation Systems, Vol. LNCS 2314, 2002, pp. 117-128.

4. http://www.gracenote.com.
5. A. Wang, “The Shazam music recognition service,” Communications of the ACM,

Vol. 49, 2006, pp. 44-48.
6. A. Wang, “An industrial-strength audio search algorithm,” in Proceedings of Inter-

national Symposium on Music Information Retrieval, 2003, pp. 713-718.
7. http://www.shazam.com.
8. J. S. Seo, M. Jin, D. Jang, S. Lee, and C. D. Yoo, “Audio fingerprinting based on

normalized spectral subband moments,” IEEE Signal Processing Letters, Vol. 13,
2006, pp. 209-212.

9. G.-H. Cha, X. Zhu, D. Petkovic, and C.-W. Chung, “An efficient indexing method
for nearest neighbor searches in high-dimensional image databases,” IEEE Transac-
tions on Multimedia, Vol. 4, 2002, pp. 76-87.

10. A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via
hashing,” in Proceedings of VLDB Conference, 1999, pp. 518-529.

11. P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric Space
Approach, Springer, 2006, pp. 145-159.

GUANG-HO CHA

484

12. C. C. Aggarwal and P. S. Yu, “On indexing high dimensional data with uncertainty,”
in Proceedings of SIAM Data Mining Conference, 2008, pp. 621-631.

13. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wes-
ley, 1999, pp. 192-198.

14. M. L. Miller, M. C. Rodriguez, and I. J. Cox, “Audio fingerprinting: Nearest neigh-
bor search in high dimensional binary spaces,” Journal of VLSI Signal Processing,
Vol. 41, 2005, pp. 285-291.

15. S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Computer Networks and ISDN Systems, Vol. 30, 1998, pp. 107-117.

Guang-Ho Cha received his Ph.D. degree in Computer Sci-
ence from Korea Advanced Institute of Science and Technology,
Daejon, South Korea in 1997. He is now a Professor at Department
of Computer Engineering, Seoul National University of Science
and Technology, Seoul, South Korea. His research interests include
content-based media retrieval, uncertain databases, and probabilistic
queries.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

