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Courtois-Finiasz-Sendrier (CFS) digital signature algorithm, which proposed in 

2001, is the most important code based digital signature algorithm and can resist the 
known attack of quantum algorithms such as Shor algorithm and Grover algorithm. But 
the efficiency of CFS is very low because of the extremely low signing speed and the 
large public key size. In this paper, a variation of CFS algorithm is presented. Instead of 
the Goppa code and the Patterson decoding algorithm, the new algorithm selects the 
Quasi-Cyclic Low Density Parity Check (QC-LDPC) code and the Belief Propagation 
(BP) decoding algorithm in the signing process. Compared with CFS algorithm, the new 
algorithm greatly reduces the storage space of public key and improves the efficiency of 
signature without compromising the security.  
 
Keywords: code based cryptography, digital signature, QC-LDPC code, decoding algo-
rithm, CFS algorithm 
 
 

1. INTRODUCTION 
 

Digital signature technology, used to authenticate the identity of users and ensure 
the integrity of data, is an important aspect of public key cryptography which has be-
come one of the important technologies in the fields of modern communications, com-
puters and other information technologies. The security of widely used digital signature 
algorithms, such as Rivest-Shamir-Adleman (RSA) signature algorithm, Digital Signa-
ture Algorithm (DSA) signature algorithm and ElGamal signature algorithm, are based 
on mathematical difficult problems. However, the quantum attack algorithms proposed 
by Shor [1] and Grover [2] can effectively break the difficult problems these digital sig-
nature algorithms depend on, so these algorithms were seriously threatened. Four types 
of cryptography are considered resistant to the quantum attacks at the first post-quantum 
cryptography conference [3] in 2006, in which the code based cryptography received 
extensive attention from many researchers. 

CFS digital signature algorithm, proposed by Courtois, Finiasz and Sendrier [4], is 
the first secure digital signature algorithm based on binary Goppa codes. CFS algorithm 
is constructed on the basis of the Niederreiter algorithm [5], an important code based 
public key encryption algorithm. The efficiency of CFS algorithm is very low because of 
its large public key overhead and the extremely low probability of successful signature. 
On average, the success probability of signing a random message is only 1/t!, which t is 
the error correcting capability of the Goppa code used in CFS algorithm. 

Low Density Parity-Check (LDPC) codes was proposed by Gallager [6] in 1962, 
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which is a type of linear block code in which the parity-check matrix is sparse. Gallager 
proved that it is a good code with asymptotic behavior and the performance approaches 
the Shannon limit. However, due to the limitations of the computational capabilities at 
that time, the LDPC code was considered as an impractical code and was ignored for a 
very long time. Until 1996, MacKay and Neal proved that LDPC codes are a valuable 
code [7], and Gallager’s probability iterative decoding algorithm was extended. At the 
same time, Belief Propagation (BP) algorithm used to decode LDPC code was discussed, 
which greatly promoting the development of LDPC codes. In 2007, Baldi [8] constructed 
a new code based public key cryptosystem using QC-LDPC codes instead of Goppa 
codes. The quasi-cyclic structure of the QC-LDPC codes compensates for the large key 
overhead of the code based cryptographic scheme based on the Goppa code, and effec-
tively reduces the key storage space.  

This paper presents a variation of CFS signature algorithm based on QC-LDPC for 
the first time. Compared with the Goppa code, the parity-check matrix of the LDPC code 
is sparse, which can greatly reduce the key storage space. The quasi-cyclic structure of 
the QC-LDPC code makes its decoding complexity lower than that of the Goppa code. In 
addition, the BP decoding algorithm can be implemented in parallel in hardware, which 
can increase the decoding speed, thereby improving the signature efficiency of the CFS 
algorithm. The blind signature [9], ring signature [10], and group signature [11] algo-
rithms, which were constructed based on the CFS signature algorithms using Goppa 
codes, can also be improved by the new scheme proposed in this paper. 

2. PRELIMINARIES 

In this section, we give some basic knowledge and conclusions of error correcting 
code firstly. Then the hard problems in this field and the most important code based dig-
ital signature algorithm, CFS algorithm, are given. 

2.1 Linear Block Codes 

Let F2 represents the finite field of order 2. A (n, k) linear block code C on F2 is a 
k-dimensional subspace of an n-dimensional linear space over F2. The vectors in F2

n are 
called word and the vectors in C are called codeword. n is the code length, and k is the 
dimension of the code. 

If C is a (n, k) linear block code, the matrix G is named a generator matrix for C, 
having size k  n. It should be noted that any k  n linearly independent codewords can be 
used to form a generator matrix, so G is not unique for a given code. 

The matrix H is denoted as the parity check matrix of the (n, k) code C and the size 
of H is (n  k)  n. HGT = O expresses the link between G and H, and it is not unique too. 
Every codeword c of C must satisfy HcT = 0 and HcT is called syndrome for any word c. 

2.2 Hard Problems 

Syndrome Decoding (SD) 
For a binary (n  k)  n matrix HFq

n, a vector sFq
n-k and an integer  > 0, is there a 

word xFq
n that satisfies HxT = s and w(x)  .  
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The SD problem is NP-complete. 
 
Goppa Code Distinguishing (GCD) 

For a binary (n  k)  n matrix HFq
n, it is determined whether H is a check matrix 

of (n, k) Goppa codes or a random (n, k) codes. 
Although there is no rigorous proof yet, most researchers believe that the GCD 

problem is difficult. 

2.3 CFS Signature Scheme 

The CFS signature algorithm is the first code based digital signature scheme that 
can be proved security, and it is constructed based on the Niederreiter public key cryp-
tosystem. Security of the classical CFS signature scheme relies on SD problem and the 
GCD problem. The specific process of CFS algorithm can be expressed as follows. 
 
(A) Initialization 

Randomly select an irreducible Goppa code C with parameters (n, k, t), of which the 
error correction capability is t, described by its parity-check matrix (n  k)  n H1, a 
non-singular matrix SF2 of order (n  k)  (n  k), an n  n permutation matrix PF2 and 
a hash algorithm h. Let  represents a valid syndrome decoding algorithm for Goppa 
codes. The public key is Hpub = S  H1  P, and the private key is S, H1, P, . 
 
(B) Signature  

Calculate z = (S-1h(h(m)||i)), where i is the smallest natural number that makes de-
coding successful. The signature of message m is  = [z|i]. 
 
(C) Verification 

Compute s1 = HpubzT, s2 = h[h(m)|i]; If s1 is equal to s2, the signature  is valid; oth-
erwise,  is invalid. 

3. QC-LDPC CODES 

The (n, k) LDPC codes CF2 is a special kind of linear block codes defined by a (n  

k)  n parity check matrix H. The number of non-zero elements in H is particularly small, 
and ‘1’ is randomly arranged. That is to say, LDPC codes are a block code with a very 
low check matrix density. Where n denotes the length of code, k indicates the dimension, 
r is indicative of the check bit length, and satisfies r = n  k. 

3.1 Tanner Graph 

LDPC codes can be visually represented by the Tanner graph. The Tanner graph 
consists of n variable nodes and r check nodes. For example, the Tanner graph of a 
LDPC code with n = 7, r = 3 is illustrated in Fig. 1, where vj(j = 0, 1, …, 6) represent the 
variable nodes and ci(i = 0, 1, 2) represent the check nodes. 

The parity check matrix H corresponding to the Tanner graph in Fig. 1 is expressi-
ble as follows: 
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Fig. 1. Tanner graph of a (7,4) LDPC code. 
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There is an edge between ci and vj in the Tanner graph if and only If hij = 1 in the 
check matrix H, which also means that the component at position j of a codeword partic-
ipates in the ith parity check equation. 

3.2 QC-LDPC Codes 

We use quasi-cyclic low-density parity-check codes to represent a special class of 
LDPC codes. Its check matrix has the characteristics of block cycling. Let C be a QC- 
LDPC code of length n = n0  p and dimension k = k0  p, and the parity check matrix can 
be described as follows: 

0

0

0 0 0 0

0,0 0,1 0, 1

1,0 1,1 2, 1

1,0 1,1 1, 1
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   
 
  




  


   (1) 

The parity check matrix HQC is arranged from k0  n0 sub-matrices. Aij(1  i  m, 1    
j  n) are zero matrixes or circulant matrixes of order p  p. Due to the block-cyclic 
characteristic of the check matrix of the QC-LDPC code, only the position and cyclic 
shift bits of each non-zero sub-matrix need to be stored, which significantly reduces the 
key storage space required in the signing process. 

3.3 BP Decoding Algorithm  

The Belief Propagation (BP) decoding algorithm of a LDPC code, also called a 
sum-product algorithm (SPA), is the best-known iterative decoding algorithm for LDPC 
codes. The main idea is used by the information received during each iteration to con-
tinuously transfer information and iterative operations between variable nodes and check 
nodes for decoding. Compare with other decoding algorithms, the BP decoding algo-
rithm has many advantages. 

 
(1)  The BP decoding algorithm can be implemented in parallel. Compared with the Pat-
terson decoding algorithm used by Goppa code, this parallel feature can greatly improve 
the decoding speed.  
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(2) The computational complexity of the BP algorithm does not increase rapidly as the 
code length increases. The longer the code length of the LDPC code, the better the per-
formance of the BP decoding algorithm. Because with the code length increases, the dis-
tance between the variable nodes increases, the check matrix becomes more and more 
sparse, the correlation between the nodes decreases and the decoding performance can be 
improved. 
 
(3) The BP decoding algorithm is divided into a probability domain BP algorithm and a 
Log-Likelihood Ratios (LLR) BP algorithm [12]. The difference is that the message of 
the probability domain BP algorithm is expressed in the form of probability, and the 
LLR-BP algorithm is represented by the log likelihood ratio. Compared with the proba-
bility domain BP algorithm, LLR-BP algorithm converts a large number of multiplica-
tion operations into additional operations, which reduce the decoding complexity. 
LLR-BP algorithm is used in our algorithm.  

The decoding processes of BP algorithm are shown in Fig. 2. 
 

0 ?THx   

Fig. 2. Flow diagram of BP algorithm. 
 

We first explain the meaning of the symbols used in the LLR-BP algorithm. Let us 
consider a LDPC code with codeword length n and dimension k and redundancy length r, 
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having a Tanner graph with n variable nodes {v0, …, vn-1} and r check nodes {c0, …, cr-1}. 
A(k) represents the set of all variable nodes connected with the check node ck; A(k)\i is 
the set of all variable nodes connected with ck, except the variable node vi; B(i) is the set 
of all check nodes connected with the variable node vi; B(i)\k represents the set of all 
check nodes connected with vi without the check node ck. 

Let qik(x), x{0,1} be the probability information that the node vi sends to the 
node ck according to B(i)\k and rki(x), x(0,1) be the probability information that the 
node ck sends the node vi according to A(k)\i. 

In the LLR-BP algorithm, the probability information of the messages sent from 
variable nodes to check nodes are expressed in logarithmic form, as follows: 

(0)
( ) ln .

(1)
i k

i k i
i k

q
x

q





 
   

 
   (2) 

The logarithmic form of the probability information sent from the check nodes to 
the variable nodes, as follows: 

(0)
( ) ln .

(1)
k i

k i i
k i

r
x

r





 
   

 
   (3) 

In the following, the specific steps of the LLR-SPA are reviewed. 
 
 Initialization 
i, kR, an edge exists in the Tanner graph connecting nodes ck and vi, in Binary Sym- 
metric Channel (BSC), 

ik(xi) = LLR(xi) (4) 

ki(xi) = 0 (5) 

In Eq. (4), LLR(xi) indicates the initialization probability information of a variable 
node, given received signal, i.e. 

( 0 | )
( ) ln .

( 1| )
i i

i
i i

P x y y
LLR x

P x y y

  
    

   (6) 

According to the BSC channel and the Bayes theorem, we find 

1
( | 0) ln ln ,i i

p n t
LLR x y

p t

        
  

   (7) 

( | 1) ln ln .
1i i

p t
LLR x y

p n t

           
   (8) 

 Check nodes update 
In the second step, the messages sent from the check nodes to the variable nodes are 

computed by the following formula: 
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( ) \

1
( ) 2 tanh tanh ( ) .

2k i i j k i
j A k i

x x
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

           
   (9) 

 Variable nodes update 
The messages sent from the variable nodes to check nodes are computed by the fol-

lowing formulas:    

( ) \

( ) ( ) ( )i k i i j i i
j B i k

x LLR x x 


       (10) 

( )

( ) ( ) ( )i i i j i i
j B i

x LLR x x


       (11) 

Eq. (11) will be used in the last step. 
 
 Decision 

In the last step, the value calculated by Eq. (11) is used to obtain an estimated value 
x̂  = {x̂ 0, …, x̂ n} of the reliable codeword component xi, according to the following deci-
sion rule: 

0, if ( ) 0
ˆ

1, if ( ) 0
i i

i
i i

x
x

x

 
   

   (12) 

Syndrome of the estimated codeword x̂  by the matrix H is computed. If Hx̂ T = 0, the 
decoding is successful and  x̂  is given as the result; otherwise, we need go back to the up- 
dated check notes. If the maximum number of iterations is reached and Hx̂ T = 0 is not 
satisfied, the decoding has failed and the algorithm stops. 

4. A QC-LDPC BASED CFS DIGITAL SIGNATURE  

4.1 Analysis of CFS signature algorithm  

Although the security of the CFS algorithm based on Goppa code is high, the sig-
nature rate is particularly low because multiple decoding attempts are required at the 
signing process.  

Given a (n, k) Goppa code, in which n = 2m, k = n  mt, the number of decodable 
syndromes is:  

1

.
!

tt

d
i

n n n
N

t t t

   
     

   
    (13) 

The total number of syndromes is: 

Nt = 2n-k = 2mt = nt. (14) 

The probability that a random syndrome can be decoded is: 

1
.

!
d

t

N
p

N t
     (15) 
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Therefore, the probability of successful signature of the CFS algorithm is 1/t!. When 
t = 9, we need try 9! = 362880 times to get a signature in average [13]. However, it has 
been proved in [14] that this parameter is no longer safe, and it is suggested that the pa-
rameter can take m = 15, t = 12 or m = 16, t = 10. With the continuous updating of attack 
methods, the value of t will continue to increase, which makes the number of attempts to 
decode increase exponentially, the signature speed becomes lower and lower, and the 
signature efficiency of the CFS algorithm also becomes lower and lower.  

The public key amount of the classical CFS signature algorithm is (n  k)  n bit, 
which requires a large key storage space, making the algorithm rarely used in practice. 
The sparseness and blocking cycle characteristics of the check matrix H of the QC- 
LDPC code can greatly reduce the key storage space and improve the defects of the clas-
sic CFS algorithm. Therefore, a CFS signature algorithm based on QC-LDPC code is 
presented in next section. 

4.2 QC-LDPC based CFS Digital Signature Algorithm 

The classical CFS signature algorithm uses the Goppa codes. A new signature 
scheme based on LDPC codes is proposed in this section, where the Goppa codes is re-
placed by the QC-LDPC codes and the BP decoding algorithm replaces the decoding 
algorithm of the Goppa codes in the CFS algorithm. We replace the permutation matrix 
P with the reversible transformation matrix Q so that it can resist the density reduction 
attack [15]. Because the length of the message digest s is r(r < n) in the classical CFS 
algorithm, but the input sequence length of the BP decoding algorithm of the LDPC code 
is n, therefore, the following improvements have been made in this paper. The message 
digest s is converted into a sequence of length n. For the specific process, see Algorithm 
1, in which the matrix H is the check matrix of the LDPC code. 

Given an r  n matrix H and r-dimensional vector v, we can calculate HvT = s (v is 
not limited by weight). If the weight of v is limited to t, it is a SD problem. 

 
Algorithm 1: 
Input: Message digest s of length r and parity check matrix H. 

(a) Transforming the matrix H into row simplest H using row transformation, that is, 
there is an invertible matrix M so that M  H = H and H = M-1

  H; 
(b) According to H = M-1

  H and H  vT = s, we can get M-1
  H  vT = s. Then, both 

sides of the equation are left-multiplied by an invertible matrix M simultaneously. 
That is, M  M-1

  H  vT = M  s, H  vT = M  s; 
(c) Since H, M and s are known, v can be satisfied; 

Output: Sequence v of length n. 
 
Algorithm 2 is the specific process of a QC-LDPC based CFS signature algorithm. 

 
Algorithm 2:        
(a) Initialization: Randomly select a (n, k) QC-LDPC code C with error correction capa-

bility t, described by its parity-check matrix H1, an invertible matrix SF2 of order (n 

 k)  (n  k), an n  n reversible transformation matrix QF2. Q is a diagonal block 
matrix, and its weight of row and column w > 1. Computing Hpub = S  H1  Q. Let  
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represent the BP decoding algorithm of LDPC codes and  represent Algorithm 1, 
which is an algorithm for converting a message of length r into a sequence of length 
n. Select the public security hash function h: {0,1}*F2

n-k. The public key is Hpub, 
and the private key is S, H1, Q, . 

(b) Signature: The message to be signed is m. 
 The signer hashes m using the hash function h to get the message digest s: s=h(m); 
 Signer uses Hash function h to calculate si = h(s|i), i = 0, 1, 2, …; 
 Convert si to a sequence vi of length n by the  algorithm. 
 Try to decode vi using the algorithm  and find the smallest i that makes (vi) exist, 
this i is denoted as i0. And si0 denotes si corresponding to i0, z is the translated word, 
satisfies HzT = si0, w(z) = t. 
The signature of message m is  = [z|i0] and the message-signature pair is (m, ). 

(c) Verification: Suppose the verifier receives the message-signature pair (m, ). 
 Using z and public key Hpub calculate s1 = HpubzT; 
 According to message digest h(m) and i0 calculate s2 = h[h(m)|i0]; 
 If s1 is equal to s2, the signature  is valid; otherwise,  is invalid. 

5. ANALYSIS OF SECURITY  

5.1 Theoretical Analysis 

In this scheme, the unidirectionality of the hash function h depends on the SD prob-
lem, and the hash value of the message m is the syndrome of the LDPC code. By at-
tempting to decode, the relationship between the translatable code si0 and z can be inter-
preted as the syndrome and the error vector. From the public key H and si0, directly solve 
the equation HzT = si0, where w(z)  t. According to theory of the error correction code, 
this is an NPC problem that can resist existing attacks of quantum algorithm such as the 
Shor algorithm and the Grover algorithm. Therefore, the proposed scheme can resist the 
existing attacks of quantum algorithms.  

5.2 Stern’s Attack 

For the improved CFS algorithm, attacks can be performed against the low-density 
characteristics of the LDPC code. According to the Stern algorithm [16], the attacker 
obtains the message directly. According to the Stern algorithm of the (n, k) LDPC code 
proposed in [17], the probability that a codeword of weight w is found in one iteration by 

2 2

2 2
.

2

2 2

w

w n w w p n w k p n k w p

p k p p k p l

n n k n k

k k l



             
              

     
    
    

   (16) 

The p and l are two parameters for optimal performance, and their specific selection 
method is described in reference [16], so the average number of iterations required to 
find a low-weight codeword is w

-1. 
To find the minimum distance efficiently, we can use Stern’s algorithm instead of 
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the random codewords choice, and repeat the Stern’s algorithm until the error probability 
is less than . The code words obtained for each iteration is independent. Therefore, after 
r iterations, the probability of failing to find the codeword of weight w is (1  w)r. 

The average number of bit operations is approximately the following form: 

23
2 / 2 / 2( )

( ) 2 2 ( )
2

.
2l

k kn k
k n k pl p n k

p p
N

   
       

       (17) 

Generally, it is believed that the total work factor W satisfies W  280, the scheme is 
safe. The total work factor W for finding a low weight code word is W = w

-1  N. When 
we have the classical system parameters n = 4096, k = 2048, d = 82, p = 3 and l = 36, the 
minimum work factor is W = 298.39, so the theme can resist Stern’s attacks. 

5.3 OTD Attacks 

The attacker also exploits the sparseness of the check matrix. Both the matrix S and 
Q are composed of p  p-order cyclic blocks and are sparse, which reduces decoding 
complexity. Let their generator polynomials be si,j(x) and qi,j(x). Q be a diagonal form, 
satisfying qi,j(x) = 0(i  j), can be expressed as 

0

0

1

1n

Q

Q
Q

Q 

 
 
   
 
  


.   (18) 

According to the last n  k columns of the parity check matrix H1 and H = S  H1  Q, 
we can obtain 

0

1
0

1
11

1
1

n k

n

Q

Q
H S

Q











 
 
    
 
  


.   (19) 

The circulant block of H-
n
1
-k at (i, j) is QiSi,j, where Si,j is the circulant block at posi-

tion (i, j) in S. Therefore, H-
n
1
-k is still a circular matrix, its polynomial is expressed as hi,j(x) 

= qi(x)si,j(x)mod(xp  1). Because of both S and Q are sparse, its row and column weight 
satisfying w  n/n0. The highest power of hi,j(x) is w2. The attacker can enumerate all the 
polynomial subsets of hi,j(x), and finally receive the secret key. 

The descriptions of the OTD attacks are as follows: 
 

(a) Let Ri represents the ith row of H-
n
1
-k, i.e. 

 
Ri = [QiSi,j|QiSi,j|…|QiSi,n-1]; 
 

(b) The parity check of the linear code is expressed as 
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1 1 1
3 , , , 1 , , 1( ) | | ... |OTD i i k i i k i k i k i nH Q S R I S S S S  

       ; 

(c) The parity check matrix HOTD3 converts to the form  

3 , 3 , , 1 , 1| | ... |OTD i k OTD i k i k i nH S H S S S        ; 

Due to S is sparse, the code contains low weight codewords. The row weight of 
HOTD3 equals w  (n  k), that is very small compared to the code length. We use the Stern’s 
algorithm to find the low-weight codeword, and then recover the [Si,k|Si,k+1|…|Si,n-1]. 
However, if the matrix S is dense, the workload of the attack will become very large and 
the attacker will have difficulty obtaining information about the secret key, thus the solu-
tion is safe. 

6. ANALYSIS OF KEY COST 

The public key cryptosystem has the disadvantages of large key storage and low 
information transmission rate, making it rarely used in practice. The key cost of the clas-
sical CFS algorithm based on Goppa code is (n  k)  n bit. For example, the typical pa-
rameter of the Goppa code [15] is code length n = 1024 and the error correction capabil-
ity t = 50. When the parity matrix is in system form, the key cost approximately is 262  

103 bits. For n = 2048 and t = 92, the key cost approximately is 31048 10 bits. Although 
the security of classical CFS algorithm is higher, the key storage space is larger, and the 
efficiency of the algorithm is also reduced.  

The CFS signature scheme based on QC-LDPC codes proposed in this paper ex-
ploits the sparseness of the parity check matrix. It can greatly reduce the key storage 
space, only need to store the number of non-zero elements in the H matrix and the loca-
tion of each non-zero element. The cyclic characteristic of the QC-LDPC code parity 
check matrix not only reduces the amount of key storage, but also makes the information 
bits of the codeword larger, error correction capability enhanced, and the information 
transmission rate increased. The public key is a quasi-cyclic matrix in this scheme. It 
only needs to store the first row of each cyclic block.  

For (n, k) LDPC codes with the parity matrix in system form, the size of public key 
is (n  k)  (np  1)log2k, in which p represent the average probability of nonzero entries 
in each row, while the size of public key is k0  n0  q when using QC-LDPC codes. 

For the typical parameters of QC-LDPC codes: n0 = 4, k0 = 3, q = 4096, n = n0  q = 
16384 and k = k0  q = 12288, the size of public key is k0  n0  q = 49152 bit = 6144 byte, 
while this number is 1133794 byte in LDPC code with p = 0.01.  

Obviously, the QC-LDPC code reduces the key storage space of the classical CFS 
signature algorithm very well. The performance of CFS signatures algorithm based on 
different error correction codes is shown in Table 1. 

From Table 1, we observe that using the QC-LDPC code greatly reduce the key size 
of the CFS algorithm. Due to the structural characteristics of the QC-LDPC code, the 
information bits of the codeword are larger, which effectively improves the transmission 
rate. 
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Table 1. Data analysis. 
Codes Parameters Key size/Bytes Information rate 
Goppa (1024,524) 32750 0.51 
Goppa (2048,1036) 131054 0.51 
Goppa (4096,2056) 524280 0.50 
LDPC (4096, 2048) 112640 0.50 

QC-LDPC (4096, 2048) 1024 0.50 
Goppa (8192,4097) 2097151 0.50 
LDPC (8192, 4096) 497664 0.50 

QC-LDPC (8192, 4096) 2048 0.50 
Goppa (16384,12296) 6283256 0.75 
LDPC (16384,12288) 1133794 0.75 

QC-LDPC (16384,12288) 6144 0.75 

7. CONCLUSIONS 

The classical CFS algorithm is one of the important digital signature algorithms 
based on error correction codes. Due to its high security, it has been widely concerned 
and studied since it was proposed. However, this algorithm has the disadvantages of 
large key size and the rapid drop in the signature with the increase of Goppa code error 
correction capability t. The QC-LDPC code-based CFS signature algorithm is proposed 
in this paper. This algorithm takes advantage of the sparseness and circularity of the 
QC-LDPC code parity check matrix, which effectively improves the shortcomings of the 
classic CFS signature algorithm. The LLR-BP decoding algorithm improves the signa-
ture efficiency without reducing the security. This algorithm, which still falls into the 
code based digital signature algorithm, can also resist the existing quantum algorithm 
attacks. 
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