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With the rapid development of mobile wireless technology, mobile social networks 

play a key role in people’s online life. However, a large amount of data containing indi-

vidual relationship information in mobile social networks will result in the leakage of in-

dividual privacy. Therefore, how to prevent privacy disclosure of these network data 

while sharing them to improve services for users is urgent. In order to improve the effec-

tiveness of differential privacy, an uncertain graph method based on the shuffle model is 

proposed. Especially, the shuffle model is introduced to modify the relationships of 

nodes, which not only provides differential privacy preserving for the link privacy of 

nodes, but also improves the data utility of differential privacy. Moreover, node differen-

tial privacy is utilized to inject uncertainty on edges, which can reduce perturbations 

caused by differential privacy. In addition, the exponential mechanism is used to restrict 

the edge modification in the original graph. The theoretical analysis shows that the un-

certain method satisfies differential privacy. The results of experiments show that the 

uncertain method can effectively preserve link privacy of nodes and maintain data utility. 

  

Keywords: mobile social networks, link privacy, differential privacy, shuffle model, un-

certain graph 

 

 

1. INTRODUCTION 
 

Over past several years, with the fast development of wireless network technologies, 

such as 4G and 5G [1], mobile social networks (MSNs) have made great progress. First 

of all, the popularity of MSNs has increased significantly. For example, monthly active 

users in Facebook, the largest MSN platform in the world, have reached 1.23 billion [2]. 

Furthermore, all kinds of MSN platforms have transformed from a single interactive 

platform to a multi-functional service platform, which provides many facilitating services 

including location service, recommendation service, payment, office, and so on. In the 

foreseeable future, with the wide application of Internet of Things [3], 6G and other tech- 

nologies in MSNs, MSNs will be closely related to our life and make it more and more 

convenient. 

However, MSNs also bring a great challenge concerning individual privacy for us 

[4]. Due to the continuous activities of users on MSNs, MSNs generate a large amount of 

data about users, which contains a great quantity of sensitive information, such as demo- 
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graphics, diseases, religious/political views, etc. If this sensitive information is leaked or 

illegally used, the privacy of user will be breached, which results in serious security 

problems. For instance, in 2018, exceeded individual information of 50 million users in 

Facebook was leaked, which led to the privacy disclosure of 87 million users. As a result, 

Facebook had to face its damaged reputation as well as a fine of more than $1.6 billion 

[5]. Thus, when a large amount of data in MSNs is released and used, it is urgent for us 

to take measures for individual privacy in MSNs. 

In general, an MSN usually is described as a social graph, in which a node repre-

sents a user while an edge denotes the relationship between two users. Compared with 

the tabular data, the graph data is more complex, containing a lot of information about 

the network structure. Especially, if the sensitive relationship of the node is disclosed, the 

attacker can not only identify the sensitive attributes of the node, but also conduct infer-

ence attacks [6]. To tackle the link privacy problem, many graph modification methods 

have been proposed, including edge and node modification methods, generalization 

methods [7] and uncertain graph methods [8]. Moreover, to improve data utility, k-anony- 

mity methods are designed to achieve graph modification. In [9], an anonymity frame-

work was proposed for the large-scale graph data, in which a k-anonymity algorithm 

based on k-decomposition was presented. Unfortunately, these graph modification meth-

ods mainly rely on the assumption of adversary’s knowledge and are not able to resist 

attacks based on background knowledge. 

As a gold-standard notion of privacy [10], differential privacy can provide strict ma- 

thematical guarantee and resist the attacks based on background knowledge. Accordingly, 

differential privacy has been widely adopted for privacy preserving in graph data [11]. 

According to application scenarios, there are usually two types of differential privacy: 

centralized differential privacy (CDP) and local differential privacy (LDP) [12]. In CDP, 

differential privacy is usually employed to preserve various sensitive values of graphs, 

including degree distribution [13], graph eigenspectrum [14], and graph centrality mea- 

sures [15]. Furthermore, to preserve sensitive relationships in graph data, differential pri- 

vacy is also used to generate a synthetic graph which can better preserve the original 

graph than these modification methods [16]. However, since CDP requires a trusted third- 

party information collector, CDP is vulnerable to network attacks or internal attacks [17]. 

In contrast with CDP, LDP directly adds perturbations on data before data collection, 

which provides stronger privacy preserving than CDP [18]. As a result, LDP is intro-

duced to preserve social graphs [19, 20]. In particular, the random response mechanism is 

utilized to generate a synthetic graph which achieve privacy preserving for link privacy 

[21, 22]. Nevertheless, these synthetic graph generation methods based on LDP fail to 

preserve important graph properties due to excessive perturbation, thus the adoption and 

applicability of LDP are limited.  

Especially, to overcome the shortcomings of CDP and LDP, a new technology call- 

ed shuffle model has been developed. Compared with CDP, the shuffle model is able to 

provide better privacy. Moreover, the shuffle model can achieve better data utility than 

LDP. Therefore, the shuffle model well realizes the trade-off between privacy protection 

and data utility and is widely used for tabular data [23] and gradients in federated learn-

ing [24]. In [25], the shuffle model is first applied to accomplish privacy preserving of 

sub-graph counting. Especially, to address the issue caused by high-dimensional data, a 

wedge shuffling is introduced for triangle and 4-cycle counting tasks. Although, the shu- 
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ffle effectively preserves the statistic information of graph data, it is a great challenge to 

generate a synthetic graph through the shuffle model.  

Motivated by the work in [25], we focus on utilizing shuffle model to generate a 

synthetic uncertain graph, which can preserve the sensitive relationship information in 

original graph while being released for data analysis. In order to achieve this goal, there 

are some challenges that should be solved. First of all, we must find a way to encode 

nodes according to their structure and avoid excessive coding dimensions. Then, it is also 

a difficult task to keep the synthetic uncertain graph similar to the original graph. Thus, 

we propose an uncertain graph method based on shuffle model. In this method, to achi- 

eve privacy preserving, the shuffle model modifies the relationships of nodes, and node 

differential privacy injects uncertainty on edges of the modified graph. Meanwhile, for 

maintaining data utility, the privacy amplification of shuffle model is utilized to reduce 

edge modification and the uncertainty edges can keep the structure of original graph. By 

far, the exponential mechanism is applied to limit graph modification. Consequently, the 

uncertain graph method based on shuffle model achieve the link privacy preserving while 

retaining data utility. 

1.1 Our Contribution 

In this paper, the main contributions are as follows, 

(1) We propose an uncertain graph method based on shuffle model to preserve the graph 

structure data in mobile social networks. Especially, the shuffle model and the uncer-

tainty are combined to achieve the trade-off between privacy and data utility. 

(2) We present an uncertain graph method based on shuffle model (UGSM) algorithm, 

which can preserve the link privacy in graph data with effective data utility. 

(3) We perform experiments using synthetic and real data sets to demonstrate the effec-

tiveness of the proposed algorithm. Compared with other algorithms, the result de- 

monstrates that the proposed algorithm can preserve link privacy of original social 

graph with a high level of data utility. 

1.2 Paper Outline 

The organization of this paper is described as follows: In Section 2, we concentrate 

on the graph modification methods and differential privacy-based methods. Some basic 

knowledge and definitions are introduced in Section 3. In Section 4, we mainly demon-

strate an uncertain graph method based on shuffle model, and describe the algorithms in 

detail and explicitly analyze the privacy guarantees of the proposed algorithms. Section 5 

shows the performance of the proposed method in privacy preserving and data utility. 

Finally, the conclusion is drawn and the future work is presented in Section 6. 

2. RELATED WORK 

To preserve graph data, many graph modification methods were firstly presented, in- 

cluding edge and node modification methods, generalization methods, uncertainty graph 

methods. Then, differential privacy-based methods were also developed, which provided 

strict privacy guarantee while maintaining data utility.  
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In edge and node modification methods, in order to maintain the structure of the 

ori-ginal graph, many k-anonymity based methods were presented. In [26], R. Mortazavi 

developed a (k, l) graph anonymization method based on edge addition, which achieved a 

desired data utility. In addition, [27] designed a graph partition-based privacy-preserving 

scheme, named GPPS, in which the k-anonymity was implemented to achieve graph mo- 

dification by node clustering. In [28], a NaFa algorithm was applied to select all the most 

appropriate edges and add them to the graph. Therefore, the runtime was effectively re-

duced and the graph utility was improved simultaneously. Moreover, [9] devised an an-

onymity framework based on k-decomposition, which was specially applied to the pro-

tection of the large-scale graph data. 

In generalization methods, the structure entropy, which combines data mining with 

the structural information theory, was adopted by a graph clustering method in [29]. In 

this method, the correctness and similarity degree of clustering results was an analyzed 

by normalized structural information and network node partition similarity. To improve 

privacy preserving, [30] utilized node-LDP to present a privacy-preserving graph clus-

tering method, obtaining more robust privacy preserving while maintaining a higher clu- 

stering quality. Compared with two methods mentioned above, uncertainty graph meth-

ods were able to provide better data utility for graph modification [31]. Moreover, J. Hu 

in [32] developed an uncertainty graph method based on edge-differential privacy which 

enhanced privacy preserving while meeting the requirements of data utility. By far, the 

random response mechanism was used to get an uncertain graph method, which had more 

robust privacy preserving [33].   

In comparison with the graph modification methods, it was noted that the differen-

tial privacy had some advantages that could stop an attack based on background know- 

ledge and provide the rigorous mathematical proof. In CDP, many methods based on 

differential privacy were widely used to preserve specific sensitive information of graphs 

and publish private graphs. To publish edge triangle counting under differential privacy, 

[34] proposed an edge-removal projection algorithm based on edge triangle count sorting 

and given two methods based on this projection algorithm. In [35], a privacy-preserving 

mechanism under personalized differential privacy was developed to publish network 

statistics, such as degree distribution. Due to the application of personalized differential 

privacy, the data utility of the proposed approach was greatly enhanced. In order to pub-

lish a differential private graph, [36] utilized differential privacy to generate a synthetic 

graph which could preserve the original graph while approximating all cuts of it. Moreo-

ver, [37] devised a graph publishing algorithm based on node differential privacy, which 

maintained the utility on the community structure while providing sufficient privacy pre-

serving. 

Particularly, to overcome the weakness of central differential privacy, local differ-

ential privacy was applied to preserve graph data [38]. For graph statistics, such as k-stars, 

triangle, 4-cycles, etc., [39] designed a one-round algorithm that was order optimal to 

count k-stars. In addition, a one-round algorithm based on random response was used to 

preserve triangles. In [40], the first LDP enabled graph metric estimation framework was 

presented for graph analysis, in which the privacy budget between the two atomic metrics 

was optimally allocated during data collection. To publish a synthetic Graph, [41] de-

veloped a hierarchical random graph model based on local differential privacy, which 

used the Monte Carlo Markov chain to enhance efficiency and accuracy. 
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To solve the problem about privacy and utility in CDP and LDP, a new shuffled 

model was developed in [42, 43]. In [44], a distributed differential private algorithm 

based on shuffled model was proposed to achieve privacy preserving. Furthermore, the 

network shuffle based on random walk was proposed in [45], which greatly enhanced the 

privacy preserving of shuffle model. Especially, the shuffle model was firstly applied to 

preserve graph data in [25], and it achieved a good trade-off between privacy preserving 

and data utility in sub-graph counting. In this paper, we utilized the shuffle model to 

generate a synthetic uncertain graph, which could effectively preserve the link privacy in 

original graph while retaining data utility. 

3. PRELIMINARIES 

In this paper, a mobile social network is abstract as a simple undirected graph G = (V, 

E), where V denotes nodes in G and E represents edges between nodes. 

 

Definition 1 (Differential Privacy [10]): Let   0, a randomized algorithm Z is -dif- 

ferential privacy if for any two neighboring data sets D and D and all S  Range(Z), the 

following holds, 

Pr[Z(D)S] < e  Pr[Z(D)S],     (1) 

where there is one different record between D and D,  


is a privacy budget. In order to 

achieve -differential privacy, there are two ways: Laplace mechanism and Exponential 

mechanism. 

 

Definition 2 (Local Differential Privacy [38]): For n users, each user has a record. Let  

 0, a randomized algorithm Z is -differential privacy if the probability of Z obtaining 

the same output result t(tRan(Z)) on any two records t and t (t, tDom(A)) satisfies 

Pr[Z(t)t*] < e  Pr[Z(t)t*],     (2) 

where Ran(Z) and Dom(Z) are the input and output domains of algorithm Z. 

 

Definition 3 (Privacy amplification by shuffling [42]): Let nN, LR0, X is a set of 

input data for each user, xiX is the input data of the ith user, and. X1:n = (x1, x2, …, xn) 

Xn. Let R : X → Y be a local randomizer providing -LDP. Let Ms: Xn → Yn be an algo-

rithm that given a dataset x1:n, computes yi = R(xi) for i[n], samples a uniform random 

permutation  over [n], and outputs y(1), y(2), …, y(n). Then for any [0,1], such that L 

 log(n/16log(2/)), Ms provides (, )-DP, where  = f(n, L, ) and  

8 log(4 )1 8
( , , ) log(1 ( )).

1
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e nn

 




 

−
= + +

+
    (3) 

Duo to the shuffling, the shuffled data y(1), y(2), …, y(n) sent to the data collector 

provides (, )-DP, where   L.  
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Definition 4 (Uncertain graph): Given a graph G = (V, E), a function P: EP→[0, 1], 

which assigns probabilities to edges, an uncertain graph G = (V, E, EP) is obtained by 

using P, where E is attained by modifying the E, and EP represents the probabilities of 

edges. Compared with graph G, the uncertain graph G has the same nodes as G and has 

different edges from G. In a deterministic graph, the probabilities of all edges are 1. 

 

Definition 5 (Neighboring graphs): Given two graphs Ga = (Va, Ea) and Gb = (Vb, Eb), if 

there is one different node between Ga and Gb, |Va| = |Vb| + 1, Eb  Ea, Ga and Gb are 

neighboring graphs. 

    In addition, if there is one different edge between Ga and Gb, |Ea| = |Eb| + 1, Ga and 

Gb are also neighboring graphs. 

 

Definition 6 (Sensitivity): Given two graphs Ga and Gb which are neighborhoods, F is a 

sequence of queries: G→E, the sensitivity of F is, 

1,
max ( ) ( ) .

a b

a b
G G

f F G F G = −     (3) 

The Hamming distance is used to calculate the sensitivity of F. If Ga is different 

from Gb by one node, the sensitivity of F is dmax, where the dmax is the maximum degree 

of nodes in the graph G. 

Definition 7 (Laplace Mechanism): Given a sequence of queries F: G→E, algorithm Z 

satisfies -differential privacy if the following holds, 

Z(G) = F(G) + lap(f/)  (5) 

where lap(f/) represents the Laplace noise with  = 0, b = f/, the way that makes an 

algorithm Z satisfy -differential privacy by adding Laplace noise is the Laplace mec- 

hanism. In the Laplace mechanism, the Laplace noise distribution is shown as follows, 

n(x) = 1/2b  exp(−|x − |/b)  (6) 

where  is a position parameter, b denotes a scale parameter and x is a random variable. 

Definition 8 (Exponential Mechanism): Given a data set D, an output range T, a privacy 

budget , and a utility function U: (D, t)→R, a mechanism M that selects an output tT  

with probability proportional to  )
2

),(
exp(

U

tDU





 

satisfies -differential privacy. 

 

Definition 9 (Randomized Response): The randomized response mechanism is defined 

as follows, 

P(yi = k | xi = j) = Pij  (7) 

where xi is an input which equals j, the probability to output that yi equals k is Pij. When 

the value ranges of j and k belong to {0,1}, i  [1, n], n is the number of the inputs. The 

design matrix Pm of the randomized response is defined as follows,   

00 01

10 11

.m

p p
P

p p

 
=  
 

 (8) 
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In the design matrix, the sum of probabilities of each row is 1. Therefore, the design 

matrix Pm is simplified to 

00 00

11 11

1
.

1
m

p p
P

p p

− 
=  

− 

 (9) 

Definition 10 (Randomized Response Satisfying -Differential Privacy): Given a pa-

ra- meter , if max {P00/P10, P00/P01, P01/P11, P10/P11} < e, the randomized response 

scheme following the design matrix Pm satisfies -differential privacy. 

 

Definition 11 (Post-Processing): Assuming a randomized algorithm A that satisfies -di- 

fferential privacy, given a data set D, thus D is preserved by the algorithm A and D is 

gained, which is the output of the algorithm A. Let N be an arbitrary randomized map-

ping, when N is applied on D to get D, the algorithm A◦N: D→D satisfies -differen- 

tial privacy. 

 

Definition 12 (Parallel Composition Properties): Given a sequence of algorithms {A1, 

A2, ..., An}, and each algorithm Ai satisfies i-differential privacy, if these algorithms are 

applied respectively on n disjoint subsets of the input database D, this process is called 

the parallel composition properties of differential privacy, which satisfies Max i differ-

ential privacy. 

 

Definition 13 (Sequential Composition Properties): Given n privacy algorithms A1, 

A2, …, An, if each Ai (1< i < n) satisfies i-differential privacy, a sequence of A1, A2, …, An 

over the same database D satisfies 

=

n

i

i

1

 differential privacy. 

4. MODEL AND ALGORITHM 

In this section, we first introduce the method based on shuffle model to generate an 

uncertain graph. Then, we propose an algorithm to fulfill the method. Finally, we present 

the theoretical analysis of this algorithm in detail.  

4.1 The Method based on Shuffle Model  

In this method, the key task is to utilize shuffle model to generate an uncertain graph 

which preserves the link privacy of original graphs while providing effective data utility.  

In particular, the shuffle model realizes the balance between privacy and utility in edge 

modification. To accomplish privacy preserving, the randomized response mechanism 

based local differential privacy is introduced for edge modification, which provides str- 

onger privacy preserving than the central differential privacy. On the other hand, the 

shuffle model uses privacy amplification to improve data utility.  

Furthermore, to improve data utility of uncertain graph, the exponential mechanism 

is applied to select some nodes and only these nodes are modified by shuffle model. 

Moreover, the uncertainty is injected into the modified graph to keep the structure of 

original graph. Therefore, the proposed method can effectively realize privacy preserving 

for original social graphs while maintaining data utility. 
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Uncertain graph

Set of sub-
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sub-graphs

Phase 5 merging

Phase 2 selecting nodes

Selecting based on 
exponent mechanism

Phase 3 edge modification

Modifying edges based on
Shuffle model

Phase 4 injecting uncertainty

Injecting based on 
Node differential privacy

 
Fig. 1. The model of proposed method. 

 

The model of proposed method describes in Fig. 1, including five phases. First of all, 

the original graph is decomposed into many sub-graphs in Phase 1. After all sub-graphs 

are converted into uncertain sub-graphs, Phase 5 merges them into an uncertain graph. 

The important part of this method consists of three phases. At the first phase, the key 

nodes in a sub-graph are selected through exponential mechanism. Then, each key node 

is encoded according to its 2-hop sub-graph and input into shuffle model, its link rela-

tionships are modified by shuffle model. At the last phase, node differential privacy in-

jects uncertainty on edges of the modified sub-graph to get an uncertain sub-graph. 

4.2 UGSM Algorithm 

To generate an uncertain graph, the UGSM (uncertain graph based on shuffle model) 

algorithm is presented as follows. In Line 1, a graph G is decomposed into a set of sub- 

graphs Ss. Then, each sub-graph SGi is modified by three algorithms from Lines 4 to 7. 

SNEM (selecting node based on exponential mechanism) algorithm selects important 

nodes NGi from SGi in Line 4. Line 5 modifies the edges of nodes NGi by using GMSM 

(graph modification based on shuffle model) algorithm, and UNDP (uncertain graph 

based on node differential privacy) algorithm generates an uncertain sub-graph SmGi in 

Line 6. After that, all uncertain subgraphs in SGu are merged to get an uncertain graph Gu 

in Line 8. Finally, a differential private uncertain graph is generated. 

 

Algorithm 1: UGSM algorithm 

Input: G = (V, E), privacy budget 1, 2, 3 

Output: an uncertain graph Gu 
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1. a set of sub-graphs Ss  decomposing graph G 

2. a set of SGu = {}  

3. for SGi in Ss:        

4.     a set of nodes NGi  SNEM algorithm (SGi, 1)  

5.     SnGi  GMSM algorithm (SGi, NGi, 2) 

6.     SmGi  UNDP algorithm (SnGi, 3) 

7.     SGu adding SmGi  

8. Gu  merging SGu 

9. Return an uncertain graph Gu 

4.2.1 SNEM algorithm 

In each subgraph SGi, there are many nodes with different degrees. When noise is 

added on these nodes, the perturbation of each node is different. For the nodes with small 

degrees, they suffer more perturbation than those with a big degree. Therefore, when 

noise is added on the degree value sequence, to reduce the perturbation caused by noise, 

these nodes with small degrees are deleted and noise is added on nodes with a big degree. 

In this way, there are two types of disturbances: One is disturbances caused by the dele-

tion, the other is Laplace noise added on the degree value. Given a privacy budget, the 

exponent mechanism is utilized to get a parameter m, which is used to truncate the degree 

value sequence, so that the minimum noise is added on the degree value sequence. 

 

Algorithm 2: The SNEM algorithm  

Input: a subgraph SGi, the privacy budget 1 

Output: a set of nodes NGi 

1. dsSGi    dvds  

2. n|dv| 

3. for m in n: 

4.     scoring function 

11

2 **2||),(


f
mdmGU

n

mi

vi


+=− 

+=

          

5. selecting m with probability )
*2

),(
exp()( 1

U

mGU
mPr


−
  

6. dvttruncating dv with m 

7. a set of nodes NGiselecting nodes according to dvt  

8. Return NGi 

 

In SGi, the degree sequence is ds and the degree value sequence sorted from largest 

to smallest is dv:[dmax, ..., dmin]. Then, if dv is truncated and Laplace noise is added on the 

truncated dv, there is a perturbation Error(dv), which is illustrated as follows, 

 

Error(dv) = DE(dv) + LE(dv)  

 

where DE(dv) represents the perturbation caused by the deleted units, LE(dv) is the La-

place noise added 
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Here, a query function is f: f(G) → dv  

 

f = |f(G) − f(G)| = |dv − dv| = dmax 

 

where f is the sensitive of a query function f, dmax is the maximum degree of nodes in G 

and there is only one node difference between G and G. 

Thus, a scoring function U is set up:  



f
mdmGU

n

mi
iv


+=− 

+=

2),(
1

2  

In this algorithm, the node differential privacy is applied to achieve differential pri-

vacy. Therefore, the U is: 

 

U = U(G, m) − U(G, m) = RE + LE 
 

the U is: 

max

max

1 1
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The probability that the parameter m can be selected is   

 

 

 

 

 
 

Then the parameter m is used to truncate dv and dvt is obtained. According to dvt, a 

set of nodes NGi is gained, which can be utilized to realize the minimal noise perturbation 

in the original graph. 

In Algorithm 2, Line 1 gets the degree value sequence dv which is sorted from larg-

est to smallest. Then, the number of dv is obtained in Line 2. From Lines 3 to 5, the ex-

ponent mechanism is used to gain a parameter m. According to the m, Line 6 truncates dv 

and Line 7 selects nodes according to dvt. In the end, a set of nodes NGi is obtained. 
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4.2.2 GMSM algorithm 

As shown in Fig. 2, a shuffle model for graph modification is proposed. In this 

model, each node firstly gives its subgraph information to a randomizer. After disturbing 

this information through randomized response mechanism, the randomizer sends the ob-

fuscated data to a shuffler in this model. Then, the shuffler randomly permutes the re-

ceived obfuscated data and releases the shuffled data to the data collector. Finally, this 

shuffle model provides (, )-differential privacy for all nodes. In addition, the 2-hop sub- 

graph of each node is encoded as a binary sequence, where 1 represents this node con-

nects one node in this subgraph and 0 denotes there is no edge between this node and an- 

other node. When the binary values in the sequence are modified in the model, it means 

that the edges of the subgraph are added or deleted. Therefore, the shuffle model can 

achieve graph modification for the input graph. 
    

node 2-hop subgraph Randomizer

randomized responserandomized responseV1 [1,1,1,,0,…,0,1]

Vk [1,0,1,,0,…,1,1] randomized responserandomized response

...... ... ShufflerShuffler Data collectorData collector

obfuscated
data

obfuscated
data

shuffled data

 
                     Fig. 2. The shuffle model for graph modification.  

 

Algorithm 3: GMSM algorithm 

Input: SGi, NGi, 2 

Output: a modified subgraph SnGi 

1. L  2 

2. for vi in NGi  

3.     2-hop subgraph SGvi  generating from SGi and vi      

4.     a sequence Svi  encoding SGvi 

5.     SRvi  randomized response on Svi 

6.     a set S  SRvi  

7. a set P in Data collector  a random permutation over S  

8. for vi in NGi 

9.     modified 2-hop subgraph SmGvi  pvi in P 

10.    modifying SGi according to SmGvi 

11. SnGi  SGi 

12. Return a modified subgraph SnGi 

 

Especially, although each node uses a large privacy budget L to achieve local dif-

ferential privacy for itself, owing to the privacy amplification in shuffler, this model pro-

vides differential privacy with a small privacy budget  for all nodes. Since L is far larg- 

er than , each node can improve data utility of randomized response when  is given. 
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Moreover, the shuffle model only randomly permutes the obfuscated data from random-

ized response. Thus, the shuffle model can provide effective data utility as the data utility 

of randomized response is improved. 

In Algorithm 3, given a privacy budget 2, the privacy budget of randomized re-

sponse L is obtained in Line 1. From Lines 2 to 6, the information of each node is pre-

served by randomized response mechanism based local differential privacy. After a 2- 

hop subgraph SGv is got from SGi and vi, it is encoded into a sequence Svi in Lines 3 and 4. 

Line 5 applies randomized response on Svi, the result is put into a set S in line 6. Then, 

the shuffler randomly permutes obfuscated data in a set S and sends the result to a set P 

in Line 7. From Lines 8 to 10, by using pvi in P, modified 2-hop subgraph SmGvi is got and 

it is used to modify SGi. In the end, a modified subgraph SnGi is obtained in Line 12. 

4.2.3 UNDP algorithm 

As shown in Fig. 3, the UNDP algorithm consists of three steps. First of all, the La-

place noise is added on each edge of a graph SnGi according to the node differential pri-

vacy. In particularity, the node differential privacy is applied to provide better privacy 

preserving than edge differential privacy. After that, a graph SnGi is transformed into a 

noised subgraph by adding noise on each edge. Finally, the noise value on each edge is 

calculated based on the modulo operation. After the calculated result is assigned on this 

edge, an uncertain graph SmGi is generated. In this algorithm, the modulo operation is to 

modulo 1 then taking the remainder, so the result of this operation is in [0,1], which is 

regarded as a probability value.  

 

Modified 
subgraph

Modified 
subgraph

Injecting 
uncertainty

Based on 
modulo 

operation

Injecting 
uncertainty

Based on 
modulo 

operation

Adding Laplace noise
      based on 

node differential privacy

Noise 
graph

Uncertain 
sub-graph

                          
Fig. 3. The UNDP algorithm. 

 

Algorithm 4: UNDP algorithm  

Input: SnGi, 3  

Output: an uncertain subgraph SmGi 

1. the maximum degree dmax in SnGi  f 
2. a Laplace noise sequence En  Lap(f /3)  

3. for ei in SnGi 

4.         ei  Eni 

5.         pi  the modulo operation (Eni) 

6.         if pi < 0.5 

7.           pi = 1 − pi 

8.         ei  pi 

9. Return an uncertain subgraph SmGi 
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4.3 The Analysis of UGSM Algorithm 

Theorem 1: The SNEM algorithm satisfies -differential privacy. 

 

Proof: Given an original graph G, the probability of m to being selected is 
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If G and G are neighborhood graphs, where there is one node difference between 

them, for any variable m, according to the exponential mechanism, the results are shown 

as follows, 
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It is clear that the process of selecting the threshold m satisfies differential privacy. 

Therefore, the SNEM algorithm satisfies differential privacy. 

 

Theorem 2: The GMSM algorithm satisfies ε-differential privacy. 

 

Proof: In the GMSM algorithm, the randomized response mechanism is used to modify 

the edges of each selected node, so that the process of edge modification satisfies -dif- 

ferential privacy. 

Let R denotes a randomized response mechanism, Pr[x→y] represents the probabil-
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ity that x{0,1} changes to y{0,1}. Given q = 1 − p = e/1+e, when  > 0, so that q > 1 − 

p. For each node, a binary sequence is obtained according to the 2-hop subgraph of each 

node. Let two binary sequences Se1(e1, e2, …, en) and Se2(e1, e2, …, en) be neighbor se-

quences of one node. In addition, there is one different element between them. Without 

loss of generality, let M(m1, m2, ..., mn) be any output of R, the result is as follows, 
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Therefore, no matter Se1 or Se2 is input, the randomized response achieves the dif-

ferential privacy.  

After all nodes are modified by the randomized response, the shuffle model handles 

the results of the randomized response by using a shuffler. According to the post-process- 

ing, the GMSM algorithm satisfies -differential privacy.  

Theorem 3: The UNDP algorithm satisfies -differential privacy. 

Proof: In this algorithm, the Laplace Mechanism is used to added noise on edges. 

 Given two graphs Ga and Gb which are neighbors, the Hamming distance between 

Ga and Gb is the maximum degree of nodes in these two graphs. Let F(.) be some identity 

mapping F : G→E. so F(Ga)→Ea, F(Gb)→Eb, the sensitivity of F: 

1,
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Then according to the Laplace Mechanism, the Laplace noise is added to the output 

of F, where LM denotes the Laplace Mechanism, Ln represents the Laplace noise and Z 

is the result.  
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Let Pn [Z(Ga)] represent the probability density function of LM (Ga, F, ), and Pn 

[Z(Gb)] denotes the probability density function of LM (Gb, F, ), the proof is shown as 

follows. Therefore, the process of adding noise on edges satisfies differential privacy. 

Then, according to the post-processing, the noised graph is converted to an uncer-

tain graph, so the UNDP algorithm satisfies -differential privacy. 

 

Theorem 4: The UGSM algorithm satisfies -differential privacy. 

 

Proof: In this algorithm, the SNEM algorithm, the GMSM algorithm and the UNDP al-

gorithm are utilized to generate an uncertain graph. In particular, these three algorithms 

all satisfy differential privacy. According to the parallel composition properties and Se-
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quential Composition properties, it is evident that the UGSM algorithm satisfies -dif- 

ferential privacy.  
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5. ALGORITHM ANALYSIS 

The proposed algorithm is evaluated in this section. First, the experiment data sets 

are introduced. Then, the proposed algorithm is analyzed in preserving privacy and data 

utility. Finally, the proposed algorithm is compared with other algorithms. 

5.1 Data Sets 

In our experiments, two kinds of experiment data are utilized, which include the 

synthetic data sets and the real data sets. The synthetic data sets are obtained from ER 

graphs, which contain 500 and 1000 nodes. The real data sets contain Facebook data with 

4039 nodes and 63731 nodes, and Enron email network with 36692 nodes. 

To evaluate the proposed algorithm, (k, l)-obfuscation algorithm [8], Rand-Walk 

algorithm [31], UGDP algorithm [32] and LDPGen algorithm [19] are adopted for com-

parison. All simulation experiments run on an HP computer, which has Intel Core i5- 

8500 with 3.00GHz and 12GB memory. For programming, Python is used on the Mi-

crosoft Windows 7 operating system. 
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5.2 Privacy Evaluation 

In this section, in order to evaluate the privacy preserving, we present the expecta-

tion of editing distance (EED) to test the uncertain algorithms.  

5.2.1 Privacy measurement  

When a graph is converted into an uncertain graph, there is a certain gap between 

them which can be measured by the editing distance. Because the edge in uncertain 

graphs is uncertain, the expectation of editing distance is introduced to measure the gap 

between an original graph and an uncertain graph. Moreover, it also can be used to eval-

uate preserving privacy. 

The larger EED, the better privacy preserving.  

It is well-known that the definition of edit distance between two deterministic gra- 

phs G1, G2 as follows, 

 

D(G1, G2) = |E1 \ E2| + |E2 \ E1|    

 

According to the formula above, the expected edit distance between the uncertain 

graph G and the deterministic graph G as follows, 

 

1

1 1[ ( , )] ( ) ( , ) (1 )+
i i

r i i

G e G e G

EED D G G P G D G G P P
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where G1 is sampled from G, Pr(G) indicates the probability of obtaining G1 from the 

uncertain graph G. 

In UGSM algorithm, when an uncertain graph Gu is obtained, the expected edit dis-

tance between Gu and the graph G is, 

 

EED[D(G, Gu)] = EED[D(G, G)] + EED[D(G, Gu)]  

 

where G is obtained by the GMSM algorithm, Gu is generated by the UNDP algorithm. 

 

EED[D(G, G)] = ek 

 

where ek equals the edit distance between two deterministic graphs G and G, which is 

calculated by the following formula,  

 

ek = |Ea| + |Ed|.   

 

where |Ea| denotes the number of edges which are added in G, where |Ed | is the number 

of edges which are deleted from G. 

Then there are no edges added and removed in the UNDP algorithm, thus, the ex-

pected edit distance between Gu and the graph G is 

 ( , ) (1 )
i u

u i

e G

EED D G G P


 = −  

where ei belongs to the edges set of Gu, pi is the probability of the edge ei. 
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The expectation of editing distance (EED) between Gu and the graph G is shown as 

follows,   

 ( , ) (1 ).
i u

u k i

e G

EED D G G e P


= + −
 

5.2.2 Privacy analysis 

In order to evaluate the different uncertain graphs algorithm, we use the EED to 

measure the privacy preserving. The greater EED, the better privacy preserving this un-

certain graph algorithm achieves. We execute all data sets 10 times by using our algo-

rithm and other algorithms to average out the results. 

In the comparative experiments, the parameter of three algorithms is showed in Ta-

ble 1. In (k, l)-obfuscation algorithm, the obfuscation level k belongs to 10, 20, the tol-

erance parameter l equals 0.1, the multiplier factor c is 1 and the white noise q is equal 

to 0.01. In Rand-Walk algorithm, the parameter t denotes the size of noise. In addition, 

the privacy budget  in UGDP algorithm, LDPGen algorithm and UGSM algorithm is 0.2, 

0.5, 1, 1.5, 2 ( = 1 = 2 = 3). 

 

Table 1. The EED values of five algorithms in different data sets. 

Algorithm  ER 500 ER 1000 
Facebook 

4039 

Enron  

36692 

Facebook 
63731 

UGSM 

 = 0.2 20187 73943 75864 304737 648567 

 = 0.5 19243 71165 74132 298765 626787 

 = 1 17634 70497 73654 283098 615143 

 = 1.5 16823 68155 72234 276879 604735 

 = 2 15654 67975 70925 266581 589347 

(k, l)-obfuscation 
k = 10 13243 43512 48934 197865 457783 

k = 20 13654 43876 49263 198243 458495 

Rand-Walk 
t = 5 24754 81654 80432 357784 704356 

t = 10 24421 81243 79894 356465 703218 

UGDP 

 = 0.2 17023 67889 62785 257863 572742 

 = 0.5 16593 67254 61523 256890 571465 

 = 1 16298 66865 60231 256135 569243 

 = 1.5 15753 66734 59643 255764 568786 

 = 2 15597 66452 59132 255365 568215 

LDPGen 

 = 0.2 26876 83243 85832 374733 728577 

 = 0.5 24975 81764 84231 358776 706786 

 = 1 22154 78499 81654 333054 685156 

 = 1.5 21065 77843 79239 316776 664798 

 = 2 19853 76478 78092 308378 659823 

 

The result of EED values are shown in Table 1. In Table 1, the EED values in the 

UGSM algorithm is shown from the first to the five rows. Moreover, the EED increases 

as the value of  decreases, which means that the privacy preserving of the UGSM algo-

rithm becomes stronger. For example, in FaceBook data set with 4039 nodes, when  is 2, 

the value of EED is 70925. As  ascends to 0.5, the value of EED rises to 75864, which 
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means that the privacy preserving of UGSM algorithm is improved. Additionally, as the 

number of nodes in original graph increases, we can see that the EED of UGSM algo-

rithm rises simultaneously, which indicates that the UGSM algorithm can provide priva-

cy preserving for the different social networks. For instance, in Table1, when  is 1, it is 

clear that the EED of UGSM algorithm increases from 17634 to 615143 as the number of 

nodes changes from 500 to 63731, which illustrates this algorithm can be applied in dif-

ferent social networks. 

 As shown in Table 1, the EED of (k, l)-obfuscation algorithm is shown from the 

seventh row to the eighth row while the rows from the ninth to the tenth indicate the 

EED values of Rand-walk algorithm. In addition, the details of UGDP algorithm and 

LDPGen algorithm are described in the rest rows. Moreover, in the same data set, the 

value of EED obtained by UGSM algorithm is greater than that in (k, l)-obfuscation 

algorithm and UGDP algorithm, but it is smaller than that in Rand-Walk algorithm and 

LDPGen algorithm. For example, in the FaceBook data set with 4039 nodes, when  is 

0.5, the value of EED in UGSM algorithm is 74132, while that in (k, l)-obfuscation al-

gorithm with k = 10 and UGDP algorithm are 48934 and 61523 respectively. Meanwhile, 

that in Rand-Walk algorithm with t = 10 is 79894 and that in LDPGen algorithm with the 

same  is 84231. In particularity, the results show that the shuffle model applied in UG- 

SM algorithm takes effect on the value of EED. Therefore, according to the definition of 

EED, it is clear that UGSM algorithm can provide stronger privacy preserving than (k, 

l)-obfuscation algorithm and UGDP algorithm, but it is weaker than Rand-Walk algo-

rithm and LDPGen algorithm. 

  
(a) The comparison of EED in Er500.         (b) The comparison of EED in Facebook. 

Fig. 4. The comparison of algorithm in EED. 

   

As shown in Fig. 4, where Fig. 4 (a) shows the values of EED in three differential 

privacy algorithms in the data set ER500, while Fig. 4 (b) gives the values of EED in 

three differential privacy algorithms in the data set Facebook (63731). In Fig. 4, the val-

ues of EED in UGSM algorithm, UGDP algorithm and LDPGen algorithm all raise as  

increases, which indicates that the larger , the better privacy preserving of three algo-

rithms. Given a fixed , compared with UGDP algorithm, the value of EED in UGSM 

algorithm is greater, so the result shows the local differential privacy in this algorithm 

plays a role in privacy preserving. In addition, the value of EED in UGSM is smaller than 



UGSM TO PRESERVE LINK PRIVACY OF MSN 143 

that in LDPGen algorithm, which points out that UGSM algorithm has better data utility 

than LDPGen algorithm because the shuffle model can improve data utility. Thus, with 

the application of the shuffle model in UGSM algorithm, UGSM algorithm achieves the 

trade off between privacy preserving and data utility. 

5.3 Utility Evaluation 

5.3.1 Utility metrics 

In order to evaluate the data utility, the NE, AD and DV are used in our experiments. 

Due to the uncertainty of edges in an uncertain graph, the degree of a node in an uncer-

tain graph is the expected degree which is equal to the sum of probabilities of its adjacent 

edges. Therefore, the definitions the NE, AD and DV are shown as follows: 
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In addition, the diameter (SDiam) which denotes the maximum distance among all 

path-connected pairs of nodes is adopted. The second measure is the average distance 

(SAPD) which is the average shortest distance among all path-connected pairs of nodes. 

Furthermore, we can measure data utility of each algorithm through Utility (func-

tion) defined as follows. Note that the greater the Utility, the better the data utility of this 

algorithm. 

%100)1( 
−

−=
RV

RVUV
Utility  

where UV is the graph metrics in uncertain graphs achieved by different algorithms, RV 

is the real metrics in the original graphs. 

Finally, to compare the UGSM algorithm with other three algorithms in the data 

utility, we utilize the error on one graph metric which is described as follows, 

)()(),( uu GqGqGGq −=  

where q represents one graph metric.  

5.3.2 Utility analysis 

To evaluate the data utility of the uncertain graph algorithm, we get the experi-

mental results by averaging the results 10 times and taking the final value. Table 2 illus-

trates the graph metrics in original graph and the UGSM algorithm. 

As shown in Table 2, the value of NE in five data sets decreases as the  rises, so 

does the value of AD. For instance, in the Facebook data set with 4039 nodes, the value 

of NE descends from 71648 to 69395 with the  changing from 0.2 to 2, while the value 

of AD decreases from 35.65 to 33.76. In addition, the value of DV descends from 

4567.76 to 3978.23, while the SAPD rises to 2.25. In the UNSM algorithm, the smaller , 

the more edges are modified in the original graph, so the greater the value of NE and AD. 



JUN YAN, WEN-LI WANG, ZHEN-QIANG WU, LAI-FENG LU, YI-HUI ZHOU 

 

144 

 

On the contrary, the larger , the fewer edges are modified, thus the value of DV becomes 

smaller and the SAPD is closer to that of original graph. Therefore, the UGSM algorithm 

can provide sufficient data utility by regulating the privacy budget . 

Then we use the Utility to evaluate the data utility of UGSM algorithm. As shown in 

Fig. 5 (a), the maximum Utility of NE is 86%. In Fig. 5 (b), the highest Utility of AD can 

reach 88%, the lowest is 76%, so the average Utility of AD is about 82%. According to 

the results in Table 2, in the Facebook data set with 4039 nodes, the highest Utility of 

SDiam is about 76%, while that of SAPD is 73%. Especially, the highest Utility of SAPD can 

reach 85% in the Facebook data set with 63731 nodes. Therefore, the data utility of 

UGSM algorithm is feasible.  

In addition, we utilize the q to measure the comparison of data utility among UGS- 

M algorithm, (k, l)-obfuscation algorithm, Rand-walk algorithm, UGDP algorithm and 

LDPGen algorithm. In the Facebook data set with 63731 nodes, the NE of the original 

graph is 817090, the NE obtained by UGSM algorithm is 686091 while the NE of the 

other four algorithms is 816286 (k = 10), 425702 (t = 5), 612833 ( = 0.2) and 401253 ( = 

0.2) respectively. Thus, the value of the q of NE obtained by UGSM algorithm is larger 

than that in (k, l)-obfuscation algorithm, but it is less than that in UGDP algorithm, the 

Rand-walk algorithm and LDPGen algorithm. The result indicates that UGSM algorithm 

 

Table 2. The metrics in UGSM algorithm. 

Data Sets Metrics 
Original 
Network 

 = 0.2  = 1  = 2 

ER graph 500 
 

NE 24844 19638 18534 17776 
AD 99 77.52 75.31 74.87 
DV 2607 3132.41 2971.28 2786.87 

SDiam 4 2.34 2.46 2.63 
SAPD 1.80 1.53 1.67 1.74 

ER graph 1000 

NE 99902 77476 76649 75958 
AD 199 154.85 153.29 150.91 
DV 8376 9828.26 9542.69 9476.32 

SDiam 4 2.46 2.78 2.86 
SAPD 1.80 1.57 1.70 1.93 

Facebook 4039 
 

NE 88234 71648 70732 69395 
AD 44 35.65 34.76 33.76 
DV 3262 4567.76 4132.89 3978.23 

SDiam 4 2.76 2.92 3.10 
SAPD 3 2.12 2.23 2.25 

Enron 36692 
 

NE 183831 151457 149323 147032 
AD 10 8.21 8.12 7.93 
DV 1328 1963.34 1786.48 1623.32 

SDiam 4 2.86 3.12 3.21 
SAPD 33.9 26.4 27.9 28.3 

Facebook 63731 
 

NE 817090 686091 672766 668876 
AD 25 21.65 21.52 21.37 
DV 1785 4134 3365 2956 

SDiam 4 2.75 2.86 2.95 
SAPD 1.32 1.12 1.16 1.18 
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(a) The Utility of NE.                     (b) The Utility of AD. 

Fig. 5. The Utility of NE and AD in UGSM algorithm. 

 

is not better than (k, l)-obfuscation algorithm in the data utility, but it has better data 

utility than UGDP algorithm, the Rand-walk algorithm and LDPGen algorithm. Addi-

tionally, we describe the detail of the q of other graph metrics in Fig. 6, where Fig. 6 (a) 

shows the q about AD in different algorithms, while Fig. 6 (b) demonstrates the q 

about SAPD. According to the results, UGSM algorithm has better data utility than Rand- 

walk algorithm and LDPGen algorithm. In particular, UGSM algorithm is better than 

UGDP algorithm in some graph metrics, such as NE and AD. 

 

  
(a) The comparison of algorithms in AD.      (b) The comparison of algorithms in SAPD. 

Fig. 6. The comparison of different algorithms. 

Furthermore, as shown in Fig. 7, where Fig. 7 (a) describes the Utility of the triangle 

count in UGSM algorithm, UGDP algorithm and LDPGen algorithm in the data set En-

ron, while Fig. 7 (b) shows the Utility of the global clustering coefficient in these three 

algorithms in the data set Facebook (63731). In Fig. 7 (a), the Utility of the triangle count 

in UGSM algorithm increases as  rises, so does LDPGen algorithm. However, the Utili-

ty of the triangle count in UGDP algorithm changes little with  increasing. In Fig. 7 (b), 

the change trend of the global clustering coefficient in three algorithms is similar to that 

of the triangle count. According to the results in Fig. 7, the data utility of UGSM algo-

rithm between UGDP algorithm and LDPGen algorithm, which illustrates the shuffle 

model can improve the data utility of UGSM algorithm.   

In summary, the performance of experiments shows that the UGSM algorithm can 

not only provide sufficient privacy preserving, but also maintain data utility. 
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(a) The comparison of triangle count in Enron. (b) The comparison of clustering coefficient in 

Facebook. 

Fig. 7. The comparison of utility in different algorithms. 

6. CONCLUSION 

The rapid development of mobile wireless technology facilitates the popularization 

of mobile social networks, which makes our daily life more and more convenient. How-

ever, the individual privacy problem in the mobile social network has become an urgent 

problem because a large amount of data containing individual privacy information is 

collected to the mobile social network. In order to solve this problem, many methods 

have been proposed, including graph modification methods, differential privacy based 

methods. Recently, although differential privacy methods have been widely used for 

graph data, how to realize the effective protection of differential privacy to graph data is 

a very urgent problem   

To solve the problem, we combine shuffle model with the uncertainty graph method 

to protect link privacy in social networks. In this method, the shuffling model realizes the 

edge modification of the original graph, which can not only protect the sensitive rela-

tionships of nodes, but also improve the insufficient utility of LDP. At the same time, the 

uncertain method preserves the sensitive relationships of nodes by injecting uncertainty 

on edges while maintaining the structure of original graph. In addition, the exponential 

mechanism is utilized to select nodes, which reduces the interference caused by differen-

tial privacy and effectively improves the data utility. The theoretical analysis shows that 

the proposed method satisfies the differential privacy. In addition, the results of experi-

ments demonstrate that the proposed method can effectively provide strict privacy guar-

antee and maintain data utility. 

In the future, as this method achieves a better balance between privacy and utility, 

how to apply shuffle model to complex networks, such as distributed networks and di-

rected networks, is our next work. 
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