
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 1237-1254 (2017)
DOI: 10.6688/JISE.2017.33.5.8

1237

DROIT+: Taint Tracking for Storage Access on Android*

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG+ AND SHIUHPYNG SHIEH

Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
Email: {hsucw; changjh; ssp}@cs.nctu.edu.tw; cwwangabc@gmail.com+

The leakage of sensitive data has been a major concern in Android ecosystem. Ana-

lysts therefore propose dynamical taint tracking to effectively track the data flow of ac-
cessed data. However, the off-the-shelf taint tracking systems lack byte-granularity sup-
port for storage tracking. In this paper, we propose DROIT+ which uses the fine-grained
storage tracking technique to track data flow among Android storages. DROIT+ is able to
reveal the composition of data flows. Storage tracking on Android is difficult since data
flows of apps may span heterogeneous media including memory, SD cards, NAND Flash,
and network adapters. To capture a whole picture of data flows in storage, we formally
define data flow and propose our method from both logical and physical perspectives.
The method has also been implemented as an extension to the proposed tracking system,
DROIT. Two case studies and two benchmark tools are used for the evaluation in terms
of storage tracking ability, network tracking ability, and efficiency, respectively. The re-
sult shows that DROIT+ provides a better coverage using byte-granularity taint tracking.

Keywords: mobile security, information flow, Android, file system, taint tracking

1. INTRODUCTION

Android is the most popular mobile system occupying over 82% market share. At
the same time, it is exposed to malware attacks, mostly the data theft. Instead of breaking
the system, the personal data is more valuable to adversary [19]. Most of malicious be-
havior can be associated with storage access. Take Backdoor.AndroidOS.Obad.a (found
by Kaspersky in June 2013) as an example. It stealthily sends user contacts to remote
servers, and then downloads malware to infect neighbor devices via Bluetooth. These
stolen data or downloaded malware are usually encrypted or obfuscated to evade ele-
mentary detections such as pattern matching and packets sniffing. Therefore, analysts use
the dynamic information flow analysis [9, 17, 18], called taint tracking, to monitor the
data of interest. These taint tracking systems effectively uncover the malware behaviors
to analysts.

Based on object-level tracking, TaintDroid [3] tracks runtime data flow with high-
level semantics on Dalvik virtual machine. Tracking at the Java object level can be cir-
cumvented by launching the malicious behaviors in native code execution. To address
this issue, DroidScope [16] provides machine-level taint tracking for better code cover-
age. By running on top of an ARM emulator, it can analyze not only Java code but also
native code thereby extending the scope of observation. However, the machine-level

Received December 26, 2015; revised October 31, 2016; accepted November 11, 2016.
Communicated by Hung-Min Sun.
* This work is supported in part by Taiwan’s Ministry of Science and Technology, the National Security Coun-

cil of Taiwan, the Telecom Technology Center, Taiwan’s Ministry of Justice Investigation Bureau, Chunghwa
Telecomm, the Taiwan Information Security Center at NCTU, and Taiwan’s Ministry of Education.

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1238

taint tracking conducts semantics gaps such as process status, kernel objects, and net-
work packets, and to resolve this information from machine level, containing only the
values of registers and memory, costs much computing power and implementation effort.
To maintain better coverage and the high-level semantics simultaneously, DROIT [14]
proposes a dual-level taint tracking that dynamically switches the tracking layers. It can
use either object-level or machine-level tracking according to the executing instruction.

Conventional work aims to design taint propagation rules corresponding to the ex-
ecuted Dex bytecode or ARM instructions. They barely discuss the tracking on peripher-
al devices, and therefore do not support taint tracking on mobile storage. Storage access,
mostly the file modification, is a common program behavior for inter-process communi-
cation and data keeping. Conventional work perceives only the files being accessed but
missing the data sources of the modified bytes. Without the file composition, analysts
cannot distinguish the bytes of sensitive data from that of harmless data if they are in the
same file. This will cause a false positive in their system when bytes of harmless data are
leaked.

The goal of this paper is to uncover the data composition of the accessed files.
Some implementation challenges lie ahead of this work. First of all, the sematic gap be-
tween memory, and the secondary storage (SD cards, NAND FLASH) should be ad-
dressed [7, 8]. The tracking system does not know the correlation between the physical
objects (the bytes) and the logical objects (the files). Thus, we modify a file system par-
ser, unyaffs [20] that converts byte offsets into files to resolve the gaps. Moreover, the
taint sources should be dynamically selected because of the large number of files in
storage. Conventional tracking systems need to decide data of interest beforehand. This
requirement hinders themselves from performing either accurately or efficiently tracking
when the selected data types are insufficient or excessive, respectively. To eliminate this
restriction, we propose dynamic taint source selection that marks files when they are
accessed by the subject through the out-of-box hooking technique [13]. Similar to tradi-
tional system hooks, the out-of-box hooking can intercept some specific functions
through matching up constant code patterns of these functions. For example, if analysts
want to hooks the function fread(), the code comparison with the pre-defined code pat-
tern of fread() will be triggered every time code cache update, thereby stopping to exe-
cute the injected code. The injected code can acquire some runtime information extracted
from the parameters of the hooked program points.

This paper presents DROIT+, a fine-grain tracking system that is able to learn the
information about the data composition. DROIT+ is based on the proposed taint tracking
system [14, 15] for reducing implementation effort on taint tracking. We propose a byte-
granularity storage tracking method, and integrate the method into DROIT. The contri-
butions of this paper are three-folds.

 We propose a byte-granularity storage tracking which dynamically chooses taint

sources at runtime for efficiency and accuracy. The out-of-box hooking intercepts the
execution of processes, kernel, and emulated devices to obtain high-level semantics of
files. Once the data of interest are marked, we leave the taint propagation to our pre-
vious work.

 We make attempt to prove both the soundness and completeness of our method. The
file access on Android has been formally modeled in this paper.

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1239

 We implement our method and integrate into our previous work to provide the taint
tracking among storage resources, including memory, SD cards, NAND flash, and
network. DROIT+ gives a boarder profiling scope than the previous. The file related
behaviors are valuable to address security issues privacy leakage, for example.

The rest of this paper is organized as follows. Section 2 shows the methodology and

gives the formalism proofs. Section 3 represents our system design and implementation.
Section 4 performs the real world sample analysis, and evaluates DROIT+ by bench-
marks. Section 5 briefly introduces the related work. The last section concludes our work.

2. METHODOLOGY

The background knowledge relevant to file access will be formally described in this
section. Our formal models can illustrate the process of data access from function call,
for example fread(), to hard drive I/O operations. Each hard drive I/O operation may
trigger the propagation of the taint tags. Each tag is of distinct types of data source. A
byte with a non-zero value taint tag is tainted. The taint tags are kept in a bitmap in order
corresponding to the addresses in storage. In this paper, DROIT+ aims to reveal the file
composition, so each bit stands for an individual file.

Most of taint systems are built on top of emulators, mostly QEMU [1]. The program
execution on emulator may make a series of storage state transitions. The transition oc-
curs when a store or a load instruction is executed. Such instructions cause state transi-
tions of storage. Storage in the emulator includes memory, NAND Flash, and SD cards.
A state transition stands for a variation of a basic data unit. A basic data unit is indexed
by a physical address, and is usually part of file, from a logical perspective, residing in
secondary storage. Furthermore, file systems have various management algorithms ap-
propriate to the heterogeneous hardware material. The data units of a logical object are
usually stored discretely. For looking up a position of a file, a conversion between a log-
ical address (in program) into a physical address (in hard drives) is necessary while only
hardware information is observable at machine level. In the following, we will model the
emulator, the address conversion, and the file operations. The model will be used to
prove the soundness and completeness of our design.

Android emulator Android emulator M splits an execution environment into two
conceptual systems: guest system and host system. The guest system is emulated, and is
restricted in the emulated resources. The entire guest system is just a process running
upon the host system. With the pure software emulated hardware, the host system can
emulate various instruction set architecture (ISA) such as x86, x64, and ARM. Emula-
tor-based virtual machines (VMs) have the advantage over virtualization-based VMs in
terms of architecture compatibility. Currently, the Android emulators are based on
QEMU, an emulation-based VM for ARM system on x86 machines.

An emulator M can be formally described as follows. M contains emulated storage
devices including the emulated memory, internal storage, and external storage, and it
also contains an emulated processor, which loads instructions from the emulated
memory. For emulating the execution, M sets its program counter to a memory address,

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1240

which fulfills the code for emulating an instruction. When finished, M returns to load the
next instruction, and repeats the above procedure.

Data flow within Android emulator The execution on M is a sequential state transi-
tion mainly based on the data of the storage S (data flow) and executed instructions I
(control flow). The logical data flow dfi corresponds the executed instruction ii can be
generally denoted as Eq. (1).

* * , has a data flow

, otherwise

len

i
i

SRC DST idf

 (1)

The SRC is the source object, and the DST is the destination object. Both of them
symbolize the storage regions from the logical perspective. The double arrow appends a
data length len, and it shows the direction of the data flow. The star notion * indicates
that the objects is logical. We consider the logical items such as files and memory buff-
ers are accessible by pointers. A byte in such items can be indexed by an offset from the
start address. The logical objects are eventually transformed into physical objects, which
is of the storage units of hard drives.

The storage S includes primary storage PS (memory), internal storage IS (NAND
Flash), and external storage ES (SD cards). During emulation, each executed instruction
creates a data flow dfi. dfi can be classified into two types: mem-mem and mem-disk. The
former is memory to memory data flow, and the latter is memory to disk data flow. Note
that the term disk is not only meaning the magnetic disk. In Linux kernel, disk is a gen-
eral term for secondary storage, thereby including IS and ES. The mem-mem tracking
has been studied for years, so our paper will focus on the latter data flow. The byte-
granularity tracking across storage devices has not yet been formally discussed. Before
proceeding into the modeling, we briefly model the mem-mem taint tracking system
DROIT.

Mem-mem taint tracking system DROIT initially determines which data should be
taint source. Next, the tracking system propagates taint tags to show the tainted data rel-
evant to the taint source. A general taint tracking system can be formally depicted as
follows.

1. Given an Android emulator M containing memory, NAND Flash, and SD cards that

represent primary storage (PS), internal storage (IS), and external storage (ES), re-
spectively.

2. During the execution of M, M makes storage transitions that depend on the control
flow consisting of ARM instructions from the boot loader, the kernel, and applica-
tions.

3. A taint engine T based on the emulator is a 5-tuple T = (M, BM, δT, C, K), where M
is the emulator; BM is a bitmap for taint tracking; δT is a set of rule for taint propa-
gation; C is a set of taint sources; and K is a set of taint sinks.

4. BM indicates whether a byte is tainted or untainted by 1 or 0, respectively, with a
taint tag.

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1241

5. The size of the taint tag is adjustable. The more bits are used, the more information
for its composition is kept. For example, using three bits as file identifiers, we can
figure out which files of the three are involved with the creation through examining
the corresponding bit status. A 32-bits taint tag is applied to maintain at most 32 dis-
tinct data sources in the tracking system.

6. The T defines the rules how the tainted bytes propagate the taint tags to other bytes
after execution. In general, the T depends on the ISA, so each type of ISAs would
have its own propagation rules.

7. The T, a propagation rule on DROIT, can be classified into three propagation types
assign, append, and hybrid.

8. The assign type is used for data movement such as mov that taints the output if the
input is tainted.

9. The append type is used for bitwise operations such as or that taints the output if one
of the input operands is tainted.

10. The hybrid type is used for arithmetic operations such as mul that combines above
two situations to a byte-granularity taint tracking. Each byte is handled separately.

11. The set of taint sources C marks the data regions in memory as the propagation ori-
gins. These data as the input operands will further taint other memory regions de-
pending on T.

12. The taint sink K is a set of the terminal points of tainted data. Analysts can make
decision when the tainted data flow to the taint sink. A taint sink may be a memory
region. Once the tainted data flows to K, the tracking system will halt to perform ac-
tions for specific purposes such as privacy protection (by erasing data), sensitive
leakage detection (by informing users), and malware analysis (by recording the sys-
tem variation).

The tracking system T inspects the data flow instruction-by-instruction. It constructs

the byte-to-byte correlation among registers and memory, so the mem-mem tracking can
be achieved.

Lemma 1: Let T is a set of propagation rules. It can be determined according to the
given instruction set.

Proof: Each architecture has its own instruction specification that shows which bytes
will vary after execution. Much research has proposed their own propagation rules by
modeling the instruction sets.

Lemma 2: Given a single instruction, each byte of output can be either “assign” or “ap-
pend” type propagated from the bytes of the operands.

Proof: The “assign” type is more straightforward. While the value of a byte is assigned
to the one of another byte, the taint tag of the former shall be consistent to the latter. If
the value of a byte is assigned to an immediate value, its taint status will be cleared since
it is no longer relevant to the data source. The “append” type is used when the value of
the output byte comes from the input operands. The taint status of the output will be de-
rived from the inclusive OR between the input operands. Like the bitwise “OR” operator,

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1242

the output should be tainted if one of the inputs is tainted.

Lemma 3: Each data flow of an instruction i, namely dfi, the taint type can be one of the
three types: assign, append, and hybrid.

Proof: Each register contains four bytes regarded as a basic unit for computing. Consid-
ering three operand architecture, two as input and one as output, the taint type of an out-
put byte is determined by its input bytes where can be either “assign” or “append.” If the
output register simultaneously has both type, we call this instruction is a “hybrid” opera-
tion that decide the taint propagation according to the op-code. The propagation rule
among bytes can be further defined in T.

Lemma 4: The information flow dfi is byte-granularity addressable.

Proof: After an instruction execution, every output byte reveals its data sources by its
taint status. The taint status is maintained by the propagation rule δT.

Lemma 5: Let T = (M, BM, T, C, K) is a 5-tuple tracking system creating a series of
data flow dfi, and T can track information flow within memory with byte-granularity.

Proof: When the M is running, it continuously generates dfi. The taint tags of every byte
are kept in BM. After execution, T maintains the data sources of each tainted bytes.

Theorem 6: Given a proper T, the taint sink K is tainted if and only if there is a data
flow that moves data from taint source C into taint sink K.

Proof: Note that the C and K are memory regions. We firstly prove the “if” statement. If
a program exists a data flow from C to K in program expressions, the program further be
translated into a sequence of instructions, producing data flows that realize the depend-
ency between inputs and outputs. Thus, the memory region K will be eventually tainted
after the execution of the program. For the “only if” part, C is the only place marked as
tainted, and these taint tags adhere to the propagation rules. If C has no data dependency
with K, there is no means to taint K.

The above theorems depict the ability of tracking system T, and the soundness and
completeness of its byte-granularity tracking ability. Next, we will further discuss the file
operation, and simplify operations of the logical objects.

File operations In general, users manipulate regular files by list, create, read, write,
and delete. The list, create and delete can be deemed as the read or write operations to
directories, which a directory is also a file. Thus, only two operations, read and write,
shall be considered. Due to the POSIX file system implementation, Linux provides a
uniform means to access file, and the function prototypes are declared as follows.

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1243

Both functions return a type size_t value that counts how many bytes are processed,
and it is a negative number when errors occur. The fd is a file descriptor that contains the
information of the opening files and the current positions of the file pointers. The buf is a
pointer of a memory region for data saving. The third parameter, count, is the expected
data size of operations. The two functions of file access can be represented by the data
flow as follows.

* *

* *

: (,)

: (,)

size

size

read buf FILE fid offset

write buf FILE fid offset

 (2)

Given fid is a unique identity in OS. Usually, it is an i node number that can be
looked up in the directory trees maintained by file systems. The offset indicates the logi-
cal position for operations. Both fid and offset are kept in file descriptors. The file de-
scriptors are created when the file opens. The buf is a memory pointer, pointing to an
available memory region from logical perspective. So far, these data objects are logical,
not yet transformed to the physical objects in hard drives. Next, we will show the address
transformation between the logical symbols and the physical bytes.

Theorem 7: An in-memory file modification can be tracked with byte-granularity if the
memory regions of the file content are marked as a unique taint source.

Proof: The kernel modifies file content by substituting the copies in memory. Memory
modification is performed by instructions. If all file pieces within memory are marked
with C, the file composition of a byte can be uncovered by examining the taint tag. The
byte-granularity property for file processing is guaranteed by Lemma 4, and the tracking
ability is guaranteed by Theorem 6.

Currently, the modeling shows that file operations is traceable within memory. The

relation between the emulated storage devices and memory is not discussed yet. In the
next part, the formalism is given to represent the address conversion between the logical
and the physical objects.

File systems Android devices are mainly based on the two file-systems, YAFFS2 for
internal storage and FAT for external storage. File systems divide files into many blocks
as well as the sectors in hard disks. We use blocks and sectors for distinguishing the log-
ical and the physical storage units, respectively. A block is a logically addressable, and it
can be programmatically modified. A sector is a physically addressable, and the medium
of sectors actually save data. For performance concern, the device updates a sector in-
stead of a byte once at a time. Since a sector is the basic unit of hard drives, a block of
file systems must contain a multiple of sector size. The kernel and file systems commit
I/O operation consisting of blocks. The data order inside a single block is as the same as
the one inside the storage devices.

There are three kinds of storage including primary storage PS (memory), internal
storage IS (NAND Flash), and external storage ES (SD cards), are accessible in Android
emulator M. The ith byte of these storage are denoted as psi, isi, and esi, respectively,

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1244

where i is physical address on hardware. A sector si
{IS|ES} points to the specific address isi

or esi of sectors, where i = j SIZE(si
{IS|ES}), i, j Z+. The function SIZE(·) returns the

size of objects, and the superscript {IS|ES} shows which storage type of the data. The
storage types can be simplified by a symbol t, and we omit the description t = {IS|ES} in
the rest of the paper. The sectors <sj

t, st
j+1, …, st

j+k> can form a block blki
PS, where k =

 ()

()
1 .

PS
i
t
j

SIZE blk

SIZE s
 The data flow between them can be represented by the following form.

()

1

()

1

read a block from disk : , ,...,

write a block into disk : , ,...,

PS
i

PS
i

size blk
PS t t t
i j j j k

size blk
PS t t t
i j j j k

blk s s s

blk s s s

 (3)

Suppose PA() returns the physical address of an pointer, the physical address of a block
blki

PS is written as PA(blki
PS

). If w = PA(blki
PS

), the block begins at the wth byte of PS. In
the right hand side of Eq. (3), the start address of <sj

t, st
j+1, …, st

j+k> on hard drives is the
same as that of sj

t. The following equation holds.

PA(<sj
t, st

j+1, …, st
j+k>) = PA(sj

t) = PA({esu|isu}) = u (4)

In Eq. (4), it shows a sequence of successive sectors is byte addressable by the first
byte. To use byte-granularity representation, we refine Eq. (3) by Eq. (4), which replaces
sectors and blocks by bytes. The two operations read t and writet are denoted as follows.

()

()

read :

write :

PS
i

PS
i

SIZE blk
t PS t

i j

SIZE blk
t PS t

i j

blk s

blk s

()

()

{ | }

{ | }

PS
i

PS
i

SIZE blk

w u u

SIZE blk

w u u

ps es is

ps es is

 (5)

The kernel enqueues the I/O request after modifying files in memory. The I/O re-
quests contain the information of the physical addresses of the sectors. The physical ad-
dresses are managed by file systems. Given a file x, all blocks of x is Bx = {blkx,0, blkx,2, …,
blkx,m-1}, where m is the total number of the occupied blocks. Through dividing the file
offset by the block size, file systems can know which block is under modification. The
physical address of a logical block blkx,v can be calculated by the following function.

, 1() (, ,...,) ({ | }),

 where , (,),
(1) ()

 ().

t t t
x v j j j k u u

xt
j

t
j

PA blk PA s s s PA es is

offset
v j FS f offset

k SIZE s

u j SIZE s

 (6)

To permanently store data, the kernel eventually writes the block blkx,v into the sec-
tors <sj

t,…, st
j+k> through file systems. These blocks can be converted into physical ad-

dresse {esu|isu} on hard drives. The FS() function lookups the sectors by parameters fx
and offset, where the fx indicates the file system type, and the offset indicates the sectors
responsible for data keeping. Eq. (6) is the key address conversion between logical ob-

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1245

jects and physical objects. The created data flow dfi of each file operation is byte-add-
ressable on both internal and external storage since all the variables are known, including
fx, offset, and the size of sectors and blocks. The proposed taint tracking system can map
the tainted bytes into memory.

Note that, from Eqs. (5) and (6), objects of both sides are physically addressable,
and can be converted to each other. The byte-addressable conversion allows the tracking
system to provide a byte-granularity tracking among storage.

Theorem 8: All dataflow between {ES|IS} and memory is traceable in tracking system T
if the algorithm of FS() and the location of I/O buffers are known.

Proof: If a dataflow dfi is related to storage access, by Eqs. (3)-(6), the taint status of the
memory blki

PS can be synchronized (assign type) with the storage unit {esu|isu}, where the
index u can be computed by Eq. (6). The byte indexing of FAT and YAFFS2 are existing
in file system tools, so the physical address of {esu|isu} can be revealed along with the
file name and offset. For each read/write operation to disk, we can hook the functions of
file operations for retrieving the addresses of I/O buffers, and hook the functions of de-
vice I/O execution for retrieving the addresses of the addresses of sectors. These ad-
dresses construct the byte correlation between the memory and secondary storage. Con-
sequently, such data flow between memory and disks is with byte-granularity. By Theo-
rem 7, mem-mem tracking is with byte-granularity, so the storage tracking will be
achieved by synchronizing the taint status of the data units.

Fig. 1. The architecture of DROIT+. The light gray and white blocks belong to the previous work.

We add some features to achieve the storage tracking. Two additional bitmaps for IS and
ES are joined into the tracking system.

Once the correlation between physical and logical addresses is known, the taint sta-
tus of secondary storage can be faithfully delivered into memory for further access. In
the other hand, the buffers in memory update the taint status of disks when the files are
flushed into disks. The data in disks will be tainted if and only if the creation of content
involves tainted bytes.

In this section, we have formally introduced the emulation-based taint tracking sys-

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1246

tems and our methodology. The mem-disk tracking is similar to the mem-mem taint
tracking, but with the address conversion. The ability of storage tracking is proven by
Theorem 8. Next, we will discuss the implementation of DROIT+, showing how to ex-
tract the location of I/O buffers.

3. IMPLEMENTATION

The goal of our work is to perceive the composition of tracked data that the subject
application ever accessed. We observed all data modification must be performed via
memory operation and device I/O. It contains mem-mem and mem-disk data movements.
The mem-mem tracking is achieved by the previous work, DROIT [14], with byte-gran-
ularity. The byte-granularity mem-disk tracking is not yet proposed. In this paper, the
mem-disk tracking has been implemented to extend the tracking scope of DROIT.

Maintaining the bitmaps of heterogeneous storage is challenging. First, we need to
know how Android stores files. If a file is opened by the subject, the sectors of the file
shall be tainted. DROIT+ enumerates the sectors of a file to setup taint tags. For this sake,
we herein leverage the existing file system tools, unyaffs [20]. The rest of storage track-
ing is introduced in the following. Second, the size of taint tags is fixed, usually restrict-
ed in 32-bit taint tags. An intuitive means for storage tracking is to mark all the files in
storage with unique identifiers at prior. A 32-bit tag is insufficient to distinguish hun-
dreds of files in hard drives. Consequently, the proposed system should make good use
of the limited taint source. To address this, we draw support from out-of-box hooking
[13] at file operation functions, thereby acquiring opened files information and accom-
plishing dynamic taint tag allocation. The details are further described. Third, the net-
work packets use port I/O, so it is hard to obtain the memory regions of packets. We also
employ out-of-box hooking technique for retrieving the memory address for network
traffics.

Dynamic taint tag allocation Due to the limit of taint tag size, DROIT+ allocates a
taint bit as identifiers of individual files when they are opened. File opening starts from
the system call, sys_open(), for checking the file presence. This system call further
invokes the do_filp_open() in /fs/namei.c to create the struct file data, which
contains more hardware information. The code pattern of do_filp_open() can be used
for setting breakpoints. Since the binary code of the kernel does not vary, during emula-
tion, we can halt to retrieve the file information in the stack when the code pattern is
recognized. The procedure above mentioned is called “out-of-box hooking.”

 A mapping between taint tags and files is necessary for dynamically marking the
files as taint source when they are opened by the subject. DROIT+ always matches the
current process name with the package name of the subject. If matched, DROIT+ regards
the opened file as the data of interest, thereby marking it as a taint source. Moreover, the
system databases including accounts, contacts, calendar, SMS, and browsing history
contain much sensitive data, but the data of these databases cannot be obtained by file
operations. The data can be accessed only via inter-component communication (ICC).
Thus, hooking on sys_open() will cause misses for these sensitive data. To address the
missing flow, DROIT+ marks the sectors of these databases in advance.

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1247

Taint propagation between the memory and the secondary storage In Android,
persistent data are stored in either IS or ES with different access characteristics. Each
installed application has its own directory in IS, and the directory cannot be accessed by
other applications. IS stores system and application configurations in various data format,
such as XML and SQLite databases. These files are only accessible by the owner and the
root user. On the contrary, external storage can be arbitrarily accessed by the applica-
tions granted with the permissions READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_
STORAGE. Mostly, applications access storage by file operations, and files are conceptual
objects. At machine level, identify the accessed files is hard since the device I/Os do not
contain the name of files, instead, only the sector numbers. We employ the out-of-box
hooking to gather the file information.

By the out-of-box hooking technique, DROIT+ can know the addresses of the I/O
buffers in memory. The kernel invokes the do_sync_read() and do_sync_write()
for manipulating the I/O requests. When the subject reads a file, DROIT+ firstly allocate
a tag for identifying the file. Next, DROIT+ use unyaffs, a file system tool, to locates all
the sectors of the file, namely the function FS(.) in Eq. (6), and then marks them with the
tag in the bitmap. To intercepting the device I/O of IS, DROIT+ hooks the nand_dev_
read_file() and nand_dev_write_file() for extracting the addresses of the I/O
buffers. The code is in /external/qemu/hw/goldfish_nand.c. For ES, the emula-
tion code is written in /external/qemu/hw/goldfish_mmc.c. While the addresses
of I/O buffers are known, the taint tags in bitmaps can be synchronized between memory
and secondary storage. Because the mem-mem taint tracking is done by the previous
work, the taint status of the memory buffer for writing to the secondary storage shall be
correctly set. With the hooks in emulated devices, DROIT+ propagates the taint tags into
IS and ES through updating the bitmaps of the secondary storage. The tags are perma-
nently stored, so they will be successively propagated by the processes accessing the
tainted data. DROIT+ therefore achieves a whole-system storage tracking through corre-
lating the system-level and machine-level semantics.

(a) (b)

(c)

(d)

Fig. 2. The result of storage tracking; (a) is a pop-up window of contacts; (b) is the GUI of the
simple file manager. We pasted the data of contacts and then saved the file as 1.txt; (c)
shows the contacts are tainted with #6; (d) shows the tainted data in 1.txt is with byte-
granularity property.

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1248

Network communication tainting In Linux, device I/Os are regarded as file opera-
tions, except the network communication. The emulated network interface controller
(NIC) receives and sends packets via port I/O. Port I/O directly transmits data to hard-
ware, and therefore no need to use memory buffer. Thus, the memory addresses of pack-
ets are hard to know. Observe that the network communication still invokes the system
call sys_read(). DROIT+ intercepts all sys_read() for searching for the SOCKET
data types. Once the current pid is matched with the one of the subject, DROIT+ will
assign the taint tag of network into the bitmaps of memory.

4. EVALUATION

In this section, we will evaluate DROIT+’s the ability of storage access tracking, the
ability of network communication tracking, and its performance. The evaluations are
performed on a PC equipping an Intel i7-4770 3.4 GHz Quad-Core Processor and 8GB
DDR RAM. The apps are tested on Android SDK 2.3 and 4.4. The first experiment is a
proof of concept of byte-level tracking among storage. The crafted file manager can cre-
ate, delete, and modify files in both IS and ES. Secondly, two representative malware are
analyzed for evaluating the ability of network tracking. Finally, the performance experi-
ment shows DROIT+ has around 30~40% performance downgrade for storage tracking.

Storage Tracking Most of system data and configurations are stored in IS in the di-
rectory “/data/data/*”. At system booting stage, Android system initially opened the
contacts databases for further use. DROIT+ detected the file opening and marked these
data as tainted with tag #6, shown in Fig. 2 (c). After the data were tainted, we copied a
piece of contacts and pasted them into the file in ES. This operation caused two data
flows: IS-to-memory and memory-to-ES, shown in Figs. 2 (a) and (b), respectively. This
experiment requires the tracking ability across the two file systems, FAT and YAFFS2.
In Fig. 2 (d), the result showed the characters from contacts were correctly tainted with
byte-granularity. The file composition of 1.txt included the contacts2.db.

Malware Analysis Two malware are analyzed in this experiment. Both of them need
to connect to web servers for proceeding malicious behaviors. Unfortunately, the servers
were no longer existing so the malware would do nothing unless it connected to the
servers. To pretend the servers were alive, we employed DNS query redirection and
crafted a HTTP server to interact with the malware. The redirection intercepted all query
packets from the malware, and returned the IP of the crafted HTTP server if the domain
name was non-existent. When connecting, the HTTP server sent a random page for trig-
gering the malware behaviors.

In the Table 1, the result is listed along with the captured sensitive data. The upper
three columns are the package name of Android apps, requested the permissions, and
sent data types. The row right after the description records the leaked data with byte-
granularity. Both of them leaked IMEI, which is protected by the permission READ_
PHONE_STATE, to the Internet. The IMEI number is 260310IMEI00000, and it can be
found in the packets.

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1249

Table 1. The performance evaluation result.

Note: Two benchmark apps are applied in this experiment. It is estimated that DROIT+ maintains 60%~77%
performance of the previous work.

Table 2. The analysis result of the malware. Owing to the DNS redirection, the leaked

data can be shown. The IMEI is tagged with #27.
Package name Requested Permission Sending

com.crazyapps.angry.birds.rio.
unlocker

INTERNET, ACCESS_WIFI_STATE, READ_CONTACTS,
READ_PHONE_STATE, READ_LOGS

IMEI(27)

[TAINTED PCACKET]:
"applicationDetails":{"applicationId":"325842966#752469853","build":{"brand":"generic","device": "gener-
ic","manufacturer":"unknown","model":"generic","versionRelease":"2.2.3","versionSDKInt ":8},"deviceId":" 2(27) 6(27)
0(27) 3(27) 1(27) 0(27) I(27) M(27) E(27) I(27) 0(27) 0(27) 0(27) 0(27) 0(27)
","displayMetrics":{"density":1.0,"densityDpi":160,"heightPixels":480,"scaledDensity": …

com.allen.txthej
INTERNET, READ_PHONE_STATE, AC-
CESS_NETWORK_STATE, WRITE_EXTERNAL_STORAGE, …

IMSI(26)
IMEI(27)

[TAINTED PCACKET]:
GET /activate/v1/?bd=&ei=2(27) 6(27) 0(27) 3(27) 1(27) 0(27) I(27) M(27) E(27) I(27) 0(27) 0(27) 0(27) 0(27) 0(27) &si=
3(26) 1(26) 0(26) 2(26) 6(26) 0(26) I(26) M(26) S(26) I(26) 0(26) 0(26) 0(26) 0(26) 0(26) &pack=com.galeapp.ebookshop
&vs=1.2&vn=4&chn=1&src=3&sig= e(26, 27) 2(26, 27) 3(26, 27) 7(26, 27) 6(26, 27) 5(26, 27) d4 4(26, 27) f(26, 27) d(26,
27) b(26, 27) 9(26, 27) b(26, 27) b 3 8(26, 27) 4(26, 27) b(26, 27) 7(26, 27) 6(26, 27) d(26, 27) b 5 2(26, 27) e(26, 27) 4(26,
27) 4(26, 27) a(26, 27) e(26, 27) 54 HTTP/1.1 User-Agent: Dalvik/1.2.0 (Linux; U; Android 2.2.3; generic Build/MASTER)
0x0d 0x0a Host: effects.youmi.net 0x0d 0x0a Connection: Keep-Alive 0x0d 0x0a

Performance Evaluation We applied two benchmark tools for performance evalua-
tion. The first one is AnTuTu Benchmark which tests the performance of integer com-
putation, floating point computation, memory access, and database I/O speed. In the Ta-
ble 1, we use CPUI, CPUF, RAM, and DBI/O for short, respectively. Each test is re-
peated 20 times to acquire the average value and the standard variation . The results
are the performance scores of the tracking systems; the higher, the better. Another tool,
0xbench, integrates some well-known algorithm such as Fast Fourier Transform (FFT),
Composite (Comp.), Monte Carlo Integration (MCI), Spares Matrix Multiply (SMM),
LU Matrix Factoring (LUMF), and Dalvik VM Garbage Collection (VMGC). The unit of
these tests is Mflops (Millions of floating point operations per second), except the
VMGC. The result of VMGC is counted by milliseconds. The 1.64X overhead roughly
equals to 62.5%, in other words, 37.5% performance downgrade.

Configuration (b) sets the baseline for the comparison. The result of our system is

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1250

measured in (a), which can track the dataflow among storage and memory. Maintenance
of taint tags when data movement is significant overhead for emulation. The sixth row
shows that our system maintains 59%~70% performance of the DROIT. The perfor-
mance downgrade is due to the additional computation for storage tainting. As afore-
mentioned, we use out-of-box hooking at file operations such as nand_dev_read_
file() and nand_dev_write_file(). For every file accessing, the injected code will
be executed whichever file is data of interests. The extra computation causes about
30~40% overhead according to the number of file operations.

5. RELATED WORK

Previous work [2, 4, 5, 18, 19] focus on the information flow within memory for
program analysis. Static information flow tracking (SIFT) analyzed DEX byte-codes [5]
or native binaries [6, 9, 11] to find potential privacy leakage. On the contrary, dynamic
information flow tracking (DIFT) [3, 14, 16] can reveal more complex behaviors of an
application without relying on the specific patterns of the source code of the subjects. It
is meaningful to understand the run-time behaviors of apps [2, 12, 18], especially the
obfuscated and the encrypted malware. Taint tracking provides abundant data flow in-
formation so that they can monitor data related to security issues.

Taint tracking at object level provides more program semantics, but can be circum-
vented if the malware is composed in native code. Meanwhile, tracking at machine level
avoids the evasion of analysis, but it leads to obscure semantics reconstruction. DROIT
[14] exploits the advantage of the two designs to provide a dual-level taint tracking. By
inspecting the executed code, it can dynamically switch to the two levels on demand.
Although DROIT can effectively and efficiently show the data flow of whole system,
without the byte-granularity file tracking, it leads to the false positives that an entire file
is tainted even if only a few tainted bytes are written into the file. To reduce these false
positives, we improve the DROIT for a better storage tracking. The summary compari-
son of related work is shown in Table 3.

6. CONCLUSION

Taint tracking with byte-granularity is useful to extract the whole picture of a mal-
ware program, thereby uncovering its malicious behavior. In this paper, we present
DROIT+, a taint tracking system to reveal data flow due to file access and network
communication. File modification normally involves user-level, kernel-level, and hard-
ware-level operations. To track data flow, we first model the file access and show the
methodology of file tracking. Secondly, the dynamic tag allocation and out-of-box
hooking are applied. Dynamic tag allocation facilitates the automation of setting taint
tags. The out-of-box hooking is used to gather the system-level information of a subject
where the hooking on the emulated hard drives can inform DROIT+ to synchronize the
tags between memory and secondary storage as the device I/O is proceeding. On the
other hand, using DNS redirection triggers network communication even if target hosts
are unavailable. The redirection is effective to stimulate a quarantined malware program

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1251

Table 3. The summary of related work.

Note: The first column group identifies the type of analysis technique. The second column group shows the unit
of analysis target. The third column group shows the target platforms. Finally, the forth column group identifies
more specific features of each system. The four rightmost features are only applicable in taint tracking tech-
nique. The triangle mark stands for “partial.” TaintDroid cannot provide byte-granularity for storage taint
tracking, and DROIT needs declaring taint source in advance.

invoking a connection to a remote server. DROIT+ has been evaluated with formalism,
case studies, and performance benchmarks. In our experiment, DROIT+ is able to un-
cover the file composition with 40% performance downgrade. This overhead may seem
significant, but is reasonable for the dynamic testing of a malicious software program.
Our work extends the scope of taint tracking, and provides more accurate program anal-
ysis.

REFERENCES

1. F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of An-
nual Conference on USENIX Annual Technical Conference, 2005, p. 41.

2. I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based mal-
ware detection system for Android,” in Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2011, pp. 15-26.

3. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P.
McDaniel, and A. N. Sheth, “TaintDroid: An information-flow tracking system for

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1252

realtime privacy monitoring on smartphones,” in Proceedings of the USENIX Con-
ference on Operating Systems Design and Implementation, 2010, pp. 393-407.

4. A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated security certifi-
cation of android applications,” Manuscript, University of Maryland, http://www.cs.
umd.edu/avik/projects/scandroidascaa, Vol. 2, 2009.

5. C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Automatically de-
tecting potential privacy leaks in Android applications on a large scale,” in Pro-
ceedings of the 5th International Conference on Trust and Trustworthy Computing,
2012, pp. 291-307.

6. M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard, “Infor-
mation-flow analysis of Android applications in DroidSafe,” in Proceedings of Net-
work and Distributed System Security Symposium, 2015.

7. X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, 2007, pp. 128-138.

8. X. Jiang and X. Wang, “‘Out-of-the-box’ Monitoring of VM-based high-interaction
honeypots,” in Proceedings of Recent Advances in Intrusion Detection, 2007, pp.
198-218.

9. W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint flow analysis
for app sets,” in Proceedings of the 3rd ACM SIGPLAN International Workshop on
the State of the Art in Java Program Analysis, 2014, pp. 1-6.

10. C. Mann and A. Starostin, “A framework for static detection of privacy leaks in An-
droid applications,” in Proceedings of the 27th Annual ACM Symposium on Applied
Computing, 2012, pp. 1457-1462.

11. D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L. Traon,
“Effective inter-component communication mapping in Android with Epicc: An es-
sential step towards holistic security analysis,” in Proceedings of the 22nd USENIX
Conference on Security, 2013, pp. 543-558.

12. G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid Android:
versatile protection for smartphones,” in Proceedings of the 26th Annual Computer
Security Applications Conference, 2010, pp. 347-356.

13. C. W. Wang, C. K. Chen, C. W. Wang, and S. W. Shieh, “MrKIP: Rootkit recogni-
tion with kernel function invocation pattern,” Journal of Information Science and
Engineering, Vol. 31, 2015, pp. 455-473.

14. C. W. Wang and S. W. Shieh, “DROIT: Dynamic alternation of dual-level tainting
for malware analysis,” Journal of Information Science and Engineering, Vol. 31,
2015, pp. 111-129.

15. C. W. Wang and S. W. Shieh, “SWIFT: Decoupled system-wide information flow
tracking and its optimizations,” Journal of Information Science and Engineering,
Vol. 31, 2015, pp. 1413-1429.

16. L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis,” in Proceedings of the 21st
USENIX Conference on Security Symposium, 2012, p. 29.

17. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Capturing system-
wide information flow for malware detection and analysis,” in Proceedings of the
14th ACM Conference on Computer and Communications Security, 2007, pp. 116-
127.

DROIT+: TAINT TRACKING FOR STORAGE ACCESS ON ANDROID 1253

18. Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-stealing smart-
phone applications (on Android),” in Proceedings of the 4th International Confer-
ence on Trust and Trustworthy Computing, 2011, pp. 93-107.

19. D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser: Protecting
sensitive data leaks using application-level taint tracking,” ACM SIGOPS Operating
Systems Review, Vol. 45, 2011, pp. 142-154.

20. “ehlers/unyaffs,” GitHub, https://github.com/ehlers/unyaffs, 2015.

Chia-Wei Hsu (許家維) is a Ph.D. student of Department of
Computer Science, National Chiao Tung Univeristy, Hsinchu,
Taiwan. He has experience in virtual machine, malware analysis,
cloud computing, system security, mobile security, wargame con-
test, and network security. His recent research interests include
mobile security, Android, and operating system. Contact him at
hsucw@cs.nctu.edu.tw. 

Chia-Huei Chang (張佳惠) is backend IT engineer with
Taiwan Semiconductor Manufacturing Company (TSMC), Taiwan.
She received an MS in Computer Science from National Chiao
Tung University, Hsinchu, Taiwan.

Chi-Wei Wang (王繼偉) received his Ph.D. in the Depart-
ment of Computer Science and Information Engineering, National
Chiao Tung University, Taiwan. He has been very active in the
malicious software analysis community, and has received many
awards. Recently, he led his team and achieved 1st place in the
Wargame Contest held by Hacks in Taiwan Conference 2010 and
2011. He also received the 1st place in the Microsoft Cross-Strait
Innovation Contest in 2007. His research interests include network
security, software security, and operating systems.

CHIA-WEI HSU, CHIA-HUEI CHANG, CHI-WEI WANG AND SHIUHPYNG SHIEH

1254

Shiuhpyng Winston Shieh (謝續平) is a Distinguished Pro-
fessor and the past Chair of the Department of Computer Science,
National Chiao Tung University (NCTU). He is actively involved
in IEEE and has served as the Reliability Society VP Tech and EIC
of IEEE Reliability. Shieh received his Ph.D. in Electrical and
Computer Engineering from the University of Maryland, College
Park, and invented (along with Virgil Gligor of CMU) the first US
patent in the intrusion detection field. He is an IEEE Fellow and
ACM Distinguished Scientist. His research interests include intru-

sion detection, network and system security, and malware behavior analysis. Contact him
at ssp@cs.nctu.edu.tw.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

