
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 89-105 (2024)

DOI: 10.6688/JISE.202401_40(1).0006

89

A Proposal of JYAGUCHI Computing Platform to Realize

ClouEdge (Cloud-Edge) and Serverless Architecture*

BISHNU PRASAD GAUTAM1, AMIT BATAJOO2,+ AND NORIO SHIRATORI3

1Department of Economic Informatics

Kanazawa Gakuin University

Kanazawa, Ishikawa, 920-1392 Japan

E-mail: gautam@kanazawa-gu.ac.jp
2Member, IEEE

E-mail: amitbatajoo@gmail.com
3Research and Development Initiative

Chuo University

Tokyo, 192-0393 Japan

E-mail: norio.shiratori.e8@tohoku.ac.jp

Cloud computing is a well-studied topic, but it does face some challenges, such as a

lack of dynamic service deployment and selection features that can support both edge and

cloud computing environments. When end users and service providers have no choice but

to deploy their services in the cloud, performance issues for latency constrained cloud ap-

plications may arise. To address such challenges, we proposed ClouEdge (i.e., Cloud-

Edge), an optimized cloud computing infrastructure built on a JYAGUCHI computing

framework that supports categorization of the services before the deployment is executed.

It ensures secure and dynamic service delivery and provides deployment options to the

users. End users can decide the location of deployment either in cloud or edge as per the

sizes of the services that work in both cloud and edge computing environments. The pro-

posed architecture is a novel system built on top of a public JYAGUCHI platform that can

dynamically optimize and deploy services in the cloud or on-premises based upon user

intention and requirement. We argue that in order to attain the appropriate level of quality,

additional processes and operation layers are needed in addition to just delivering cloud

resources to the edge. This architecture also performed well for latency-constrained cloud

applications. We evaluated our system by testing the resource efficiency of each compo-

nent. Applications and services that are latency-sensitive, will benefit from our proposed

architecture such as various distributed IoT and AI services, which do not fit well with the

new concepts and platforms available today.

Keywords: JYAGUCHI, cloud computing, edge computing, service delivery, serverless

architecture

1. INTRODUCTION

The development of cloud services and their application in ICT industries is acceler-

ating in order to meet the needs and challenges of end users. Cloud computing has been

introduced in different areas including industrial IoT and mass manufacturing to transform

and optimize manufacturing processes [1]. However, cloud-based systems are facing a

number of challenges. For example, micro services built in cloud systems, are replacing

many legacy systems that are difficult for end users to update and maintain. Similarly,

Received November 1, 2022; revised December 14, 2022; accepted April 26, 2023.

Communicated by Xiaohong Jiang.
* This work was supported in part by the Japan Society for the Promotion of Science (JSPS) under Grant 19H04-

101 and Grant 18K11273, the Cooperative Research Project Program of the Research Institute of Electrical Com-

munication, Tohoku University, Japan.

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

90

security challenges [2, 3] arise during service delivery from the service provider to the ser-

vice consumer in cloud computing technologies which are primarily based on service-cli-

ent architecture. It is a difficult issue to deliver service securely to the target end user due

to the growth of services and its complex cloud and edge architecture [4, 5]. To address

such issues, the concept of JYAGUCHI [6, 7] was initially introduced to demonstrate how

this can be done and deployed securely to the client as a service.

The concept of software delivery (as opposed to Software as a Service) originated

with the JYAGUCHI platform, which literally means “tap” in Japanese. JYAGUCHI’s

philosophy is that the user should be able to consume the service and control the frequency

and duration of service usage, among other things, just as a tap can control the intensity or

rate of flow of water.

JYAGUCHI architecture enables users or service consumers to consume services on

a pay per-use basis. Furthermore, JYAGUCHI was built on the idea of leasing an entire

service item or application from a service provider rather than completely owning that

software by installing and licensing software. From the perspective of a novice user, soft-

ware installation, license management, updating, and upgrading are always being a critical

issue. However, providing those features, as implemented in JYAGUCHI, reduces the us-

ers’ management and learning costs. This type of concept is also used in SaaS-based ap-

plications and more recently in serverless architecture. JYAGUCHI is more than just a

SaaS (Software as a Service) platform; it is also a service development platform that can

be utilized to model, develop, and export the services.

In JYAGUCHI platform, services are classified into Micro, Macro and Mega services

according to the varieties of features implemented in services. These features are size,

prices, end-to-end delay operations, involved techniques and configurations, server avail-

able premises, and users’ interest in the services. The core and primary feature which is

taken as a deciding factor is the size of the service. While the size of the service exceeds

the predefined threshold, it is considered as a mega service in JYAGUCHI and recom-

mended to keep it within the edge.

Fog computing is another computing method that has similar features with JYAGU-

CHI. This new paradigm, which we referred to as the “fog” in this work, enhances the cloud

 Fig. 1. Comparison of JYAGUCHI architecture scenario between previous and current enhanced

designs.

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 91

computing paradigm beyond the plane of the data center to the clusters of end-user devices.

Whereas Cloud computing has consolidated the computer infrastructure into huge data

centers by primarily shifting computing resources from the user plane to the data center

plane. Fog computing, in contrast, decentralizes resources from cloud data centers to users

or the network’s edge, enabling a new generation of services and applications with greater

potential. Fog computing, in particular, is a paradigm for computing that moves data pro-

cessing, service utilization, networking storage, and analytics closer to the applications and

devices that are used by consumers [8, 9].

Fig. 2. JYAGUCHI ClouEdge (Cloud-Edge) and serverless environment.

The main goal of Cloud computing is to leverage the Internet and provide on demand

access to fundamental computing resources. For instance, cloud users can utilize and share

processing power, storage space, bandwidth, memory, applications, and software in sev-

eral ways. In response to their usage, cloud providers charge the users as per their con-

sumption. This sort of business concept has been derived from the concept of utility busi-

ness and thus cloud computing sometimes refers to utility computing too. In this way, users

are not required to set up or to buy hardware by themselves as it used to be traditionally. It

has brought a huge paradigm shift in the market. However, it has not addressed all issues

raised in the user front.

Regardless of its supremacy in terms of providing resources to the end users, it has a

number of issues. Cloud computing has arisen with new data security challenges [2-4, 10,

11]. Existing data protection mechanisms such as encryption have failed in preventing data

theft attacks, especially those perpetrated by an insider to the cloud provider.

1.1 Contributions of This Research Project

We believe that this work has made the following contributions:

(A) It Proposes and Demonstrates a Novel Approach in Cloud-Edge Computing

Architecture: This article proposes a method for realizing a cloud-edge infrastructure

that is more effective, scalable, and affordable, representing a novel approach in the

field of cloud-edge computing architecture. Moreover, the JYAGUCHI architecture

categorizes services according to their size and granularity. Each service in the JYA-

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

92

GUCHI architecture controls its own resources and interacts with other services

through APIs, utilizing a decentralized approach to manage the services. By eliminat-

ing the need for a central controller, this method reduces the risk of single points of

failure and enhances the system’s fault tolerance.

(B) It Considers Sustainable Planet Concept in Design: JYAGUCHI is aware of carbon

footprint in its designing philosophy. This principle led us to optimizes resource utili-

zation by dynamically allocating resources to users based on their usage patterns. Users

are recommended to utilize the appropriate services as per their underlying computing

resources. For example, if the user has sufficient memory, storage and network band-

width, they can use the mega and macro services via internet. Otherwise, users with li-

mited computing resources are prompted to utilize the service locally. This approach re-

duces computing resource waste and improves the overall efficiency of the cloud in-

frastructure and contribute to reduce carbon emissions in digital products and solutions.

(C) Improved Scalability: The legacy JYAGUCHI’s architecture has limitations due to

its dependency in JINI based technology. We improved it make it highly scalable, al-

lowing for the easy addition of new microservices as demand grows. This scalability

ensures that the system can handle increasing workloads without sacrificing perfor-

mance.

(D) Cost-Effective: To improve carbon emission, we employ the granularity-based de-

ployment boundary. This means while the service is too large, we recommend deploy-

ing it locally. Furthermore, by utilizing pay per use basis technology and a decentral-

ized management approach, JYAGUCHI reduces the cost of deploying and maintain-

ing a cloud infrastructure. This cost-effectiveness makes it an attractive option for small

to medium-sized businesses that want to leverage the benefits of cloud computing with-

out incurring high costs.

2. RESEARCH CHALLENGES

The distributed application architecture like JYAGUCHI must consider lots of archi-

tectural elements, components, connectors and other parameters of the system that directly

or indirectly affect the realization of the system. These elements are required to be analyzed

and be designed to depict the solution before implementation leading to the best design

decision in order to reduce the total cost of the system. In this paper, we figured out the

following research challenges which are significant to address.

2.1 Secured Service Delivery

Security is always a challenging issue in the cloud while providing different types of

services to users. It also may reveal information which adds to security issues and risks of

cloud computing systems. Most security issues on the Internet are common to existing

computer security problems in communication and the downloading of software. As cloud

provides a Software as a Service (SaaS), a comprehensive solution offering the entire pack-

age from infrastructure to application, service or package delivery securely is still a chal-

lenging issue. In order to address these security issues, it is important to identify a common

security problem not only in communication protocols but also while downloading and

uploading events happened between the user and servers. Furthermore, these issues apply

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 93

to cloud computing, and thus must be addressed in order to ensure the security and privacy

of data in the cloud. To address this challenge, a robust access control mechanism must be

implemented that can handle during service delivery in the cloud system. Furthermore, this

mechanism should ensure that only authorized users and applications are granted access to

the cloud resources, and that any unauthorized access attempts are immediately detected

and prevented.

Fig. 3. JYAGUCHI sequence diagram enhanced.

2.2 Limitation in Service Lookup in Legacy System

The lookup service in previous JYAGUCHI serves as a central repository of services.

Entries in the lookup service are Java objects, which can be downloaded as local proxies

to the service that registered with the lookup service [12].

2.3 Dynamic Service Delivery

The network protocol that is used to communicate between a discovering entity and

an instance of the discovery request service is assumed to be unreliable and connectionless,

and to provide unordered delivery of packets. In an environment that makes use of IP mul-

ticast or a similar protocol, the joining entity should restrict the scope of the multicasts it

makes by setting the time-to-live (TTL) field of outgoing packets appropriately [12, 13].

This maps naturally onto both IP multicast and local-area IP broadcast but should work

equally well with connection-oriented reliable multicast protocols.

3. PROPOSED SOLUTION

To address the above challenges, we proposed the enhanced JYAGUCHI architecture

which incorporates the essence of architectural styles adopted in the distributed applica-

tions and understand its inherent problem. The architectural differences between the pre-

vious JYAGUCHI and enhanced JYAGUCHI is portrayed in Fig. 1. The original architec-

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

94

ture of JYAGUCHI [15] we started to analyze the widely used architectural style in the

file of distributed applications and further deepen our understandings of the internal archi-

tecture of those applications. In addition, we have developed some services which were

developed emphasizing on the scalability of components and the reduction of dependen-

cies among them. Furthermore, it maintains the principle of encapsulating legacy systems

by providing the simple methodology of interfacing the underlying software components

and the way of enhancing them to be well defined services [3].

To address the enhanced proposed solution, there is no longer any need for distributed

Java applications to be installed directly on the user’s computer anymore, as with proposed

in Section 4 i.e., Enhanced JYAGUCHI architecture it is now accessible via Internet by

entering the correct URL address.

4. ENHANCED JYAGUCHI ARCHITECTURE

Distributed application varies in granularity and infrastructure. Traditionally, distrib-

uted applications were two-tiered, three-tiered or multi-tiered in their architecture which

collectively makes a single system. This notion of single system has evolved to the creation

of from tire-based system to a huge virtualized system such as grid system [16, 17]. We

experienced that the emergence of cloud computing as a new platform for enterprise. From

its very inception, JYAGUCHI service development model utilizes the legacy computing

infrastructure thereby creating a cluster of possible hardware that can participate in the

federations of JYAGUCHI services. The hardware and services that participate in JYAGU-

CHI services are capable of addressing the problem in a co-operative manner. The notion

of co-operation has been executed by utilizing the concept of SOA in which the underlying

computing infrastructure or underlying middleware are encapsulated and the detailed of

which are not required while providing the services to the end user. In fact, JYAGUCHI

services can be built in a number of multiple technologies and protocols [18-20]. Though

there are the different architectures underlying, JYAGUCHI service models can produce

similar characteristics of web service and can be used together with other web service like

technologies too. This ability is referred to as co-operative computing infrastructure. Fig.

3 shows the relation between each device and the underlying software components that

cooperate while developing, deploying and using of JYAGUCHI service. In particular us-

age scenario, JYAGUCHI client send request to the lookup server, this server provides the

proxy required to the client and with the help of this proxy, client will be able to interact

and can download the remaining codes from web server. In this way, a solution is achieved.

In order to scale out the co-operative infrastructure, the underlying hardware federation

can be increased by virtualization. We are also exploring the ways to build the services by

using encapsulation service modularization approach [18]. We have developed a complete

package of middleware by integrating different kinds of underlying technologies.

We agree that JYAGUCHI platform supports the development of distributed objects.

The main requirement of distributed object is its ability to create, invoke and deliver the

objects in a remote host while providing the environment as if they were invoked in local

infrastructure. These sorts of remote object invocation have been implemented in COM,

COBRA and RMI and many other technologies until a few years ago. JYAGUCHI em-

ploys a similar kind of concept that invokes the total bundle of service executed on a re-

mote server. We named this invocation model as RSI. The underlying protocol to call the

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 95

remote service is JERI and JRMP [12, 21, 22]. Recently, a different type of invocation

model is often utilized in web service technology such as WSIF [13, 23, 24]. Web service

technologies have passed different stages of evolution in terms of utilizing underlying mes-

sage passing protocols such as SOAP and REST.

These technologies, must of the time, utilize XML data format to send and receive

the message. Messages can also be passed in JSON format too. However, service call in

web service technology and JYAGUCHI is different. Most of the web service-related tech-

nologies utilizes message passing technique whereas JYAGUCHI utilizes RSI at which

parameters are passed as the reference of java object. We did not utilize message passing

rather we utilized service calling approach in order to reduce the overhead occurs in mes-

sage passing. In message passing, it has to copy the existing arguments and append it to

the new portion of the message resulting to a large size of message.

JYAGUCHI emphasizes loose coupling of the components thereby reducing the de-

pendencies of the components participating in the foundation for the architecture. The

overall architectural style presented by JYAGUCHI never tries to replace the prevalent

architecture but tries to leverage and show the guideline for the next generation applica-

tions by utilizing hybrid architecture style [2]. The post notification and dynamic delivery

of the service omit the requirement of complex procedure of software installation for the

client.

Particularly, these services are coded as Java objects and are wrapped with JYAGU-

CHI service and the whole service is remarshaled in the user device. In the following sec-

tions, we describe the total scenarios and implementation approach of JYAGUCHI, service

wrapping scenarios and the concept of service granularity. In our new approach in the Fig.

1, we have implemented the new platform for secure deliver web server which simply run

JYAGUCHI application and is able to be delivered and accessible via Internet, by just

entering the correct URL address. We also ensure stable performance and regular delivery

of JYAGUCHI application via internet. As the web interface became the primary platform

for software distribution in cloud. The delivery of JYAGUCHI services has become plat-

form and device independent.

5. IMPLEMENTATION

The concept of modularization is to separate the concern and context from one piece

of program another so as to minimize the effect that changes in one module may have on

other modules. Separating the unrelated concerns from the modules has a great advantage

of reducing interdependencies of modules so as to minimize the coupling between the

server and client program. While there is a maximum coupling between server and client

program, a small change in server program needs to be informed to the user. While this

sort of software cohesion and coupling issues can be addressed in service modularization

[25, 26] and tenancy classification [27]. Our approach utilizes loose coupling and service

categorization, as described below, which we believe to be both novel and practical for

cloud-edge infrastructure:

5.1 Micro Service

Micro services (Fig. 4) in JYAGUCHI are the services which can be downloaded over

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

96

a network and these services can be exported as a complete software package. To utilize

this service, JYAGUCHI client does not even require knowing about the interface. How-

ever, JYAGUCHI client must possess a universal browser, where we have implemented a

universal interface that can be used to call any JYAGUCHI mini service. These services

are implemented for the users who have low internet bandwidth.

5.2 Macro Service

Macro services (Fig. 4) are the services which can either be downloaded or can be

accessed via web browser. As the size of service becomes larger than micro service, we

categorized these kinds of services to macro service and put the option to the client to

choose whether he or she wants to download the entire service or can access it by using a

web browser as like other web services.

5.3 Mega Service

Mega services (Fig. 4) in JYAGUCHI are those services whose granularity is ex-

tremely larger than macro services and are not feasible to serialize as a complete software

that can be done for micro and mega services. Option is also omitted, and clients can only

use this kind of service like web services by using a web browser. In order to ensure the

access of service at different network mode as in Fig. 2 we have proposed the solution as

follow.

5.4 JYAGUCHI Service at Public Network (Within Cloud)

Using the web browser, users can access the JYAGUCHI client system. The network

area with the public or outside the organization or company will allow the users to access

Fig. 4. JYAGUCHI services (micro, macro and mega) scenarios.

➀ Micro Services ② Macro Services

③ Mega Services

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 97

only Micro service. The Mega & Macro services are disabled, and users are not allowed to

access them.

5.5 Security in JYAGUCHI

The design of the security model for JYAGUCHI is built on the twin notions of a

principal and an access control list. JYAGUCHI services are accessed which are generally

traced back to a particular user of the system. Services themselves may request access to

other services based on the identity of the object that implements the service. Whether

access to a service is allowed depends on the contents of an access control list that is asso-

ciated with the object [14, 28].

The solution provided by cloud infrastructures raises security concerns regarding data

privacy, as data stored in the cloud may not be protected with the same level of security as

data stored in an end-user’s own infrastructure. Third-party data centers cannot guarantee

data and privacy protection [2]. In JYAGUCHI, data is not retained on the server-side, but

rather on the client-side to give end-users control over their data. This solution increases

trust in the system, as no data is transferred to the server-side, except for data related to

user authentication. Once the user successfully logs in, the client can send a request to

search the service registry in the network. To find the registry, we have tested both unicast

and multicast discovery [2].

Meanwhile, in the enhanced JYAGUCHI architecture, the original concept of user

authentication for the Macro and Mega services are the same in Edge environment. In

addition, to ensure the Micro services are secured in a Cloud environment there is a user

authentication before they access services.

In order to maintain high security for the services when user access from a Cloud

environment, the information for the authentication is privately provided by the System

Administrator after their request. Moreover, even when a user accesses from the Cloud

environment the user’s data does not retain in the server side rather, they retain in the client

side so that end-user can have control over their data. This solution in fact increases the

trust over the system as no data is transferred to the server side except the data related to

user authentication both for Edge and Cloud environments.

6. PERFORMANCE EVALUATION

To perform performance evaluation, we began to implement JYAGUCHI applica-

tions as services in two different environment Edge & Cloud environment and tested

whether we can utilize the deployment environment without having difficulties. We did

not have much difficulty to implement JYAGUCHI services and expose them via lookup

service and browser for end users.

6.1 Latency Evaluation

As the latency of a network is the time it takes for a data packet to be transferred from

its source to the destination. In Fig. 5-A, we can observe that after the server starts, delays

in transmission are small, it’s referred to as a low-latency network. This is the latency for

downloading the Micro service.

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

98

Fig. 5. Latency and bandwidth report of JYAGUCHI services at Cloud environment.

Fig. 6. Latency and bandwidth report of JYAGUCHI services in Edge environment.

On the other hand, in Fig. 6-A we can observe a larger delay when an application is

started to run Mciro & Mega JYAGUCHI service. This high latency is due to Mega service

download from the JINI server to the user’s computer. But after download is completed to

the local PC of user’s the latency gradually decreases.

6.2 Bandwidth Evaluation

The JYAGUCHI services access at the socket or stream level. Below this level, the

data is handled on the network, using the appropriate protocol. Depending on the Internet

speed of the user the bandwidth may vary. The Internet download and upload speed was

38.36 Mbps and 43.14 Mbps respectively during the evaluation process in our working

environment. We can observe in Fig. 5-B as a bandwidth Report of JYAGUCHI services

at Cloud environment that with the minimum internet speed the Micro service is accessible

to the user’s computer via the Internet.

In Fig. 6-B, to access the Mega service via the Internet there is a little higher peak of

bandwidth. This is because the application downloads in the user’s computer via Internet

developed in Java swing are difficult to carry from server to end users’ due to limitations

of network and platform that end users can access simply with no expert technical know-

ledge.

Here in JYAGUCHI architecture we are proposing a dynamic ability where we can

deliver Java swing applications to end users simply using a Web browser. By doing this

we can re-use the Java swing code in the development of valuable services without wasting

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 99

time and money for learning new languages and changing the development and deploy-

ment environment in academic or enterprise environments.

7. SUSTAINABILITY ASPECT IN JAYGUCHI

7.1 Aspect of Sustainable Layer

The quest for sustainable computing is one of the most challenging issues in cloud

computing today. To address this challenge and contribute to a more sustainable future,

JYAGUCHI is taking a multi-faceted approach that considers several key modules and

aspects. These include the implementation of a sustainable layer consisting of a power

measurement module, dynamic resource allocation module, energy monitoring and report-

ing module, and energy efficiency module. Additionally, JYAGUCHI leverages its legacy

code, particularly old Java Swing codes, to minimize energy consumption and reduce the

carbon footprint of its development process. This approach not only saves time and re-

sources but also helps to minimize the overall environmental impact of the software system.

Nonetheless, it is important to note that legacy code may not be as efficient or effective as

newer code, hence it is recommended to measure energy consumption using energy meas-

urement functions or third-party libraries like jRAPL, PowerAPI, and EnergyMon.

7.2 Aspect of Web Enabled Swing Component

JYAGUCHI was developed entirely on Java programming language where many of

its applications were built on Swing components initially. Java is a widely used program-

ming language across various computing platforms including cloud infrastructure. How-

ever, with the emergence of new programming languages such as Python, Go, C#, R , and

Rust many organizations and IT companies are now adapting to these newer options. These

newer programming languages are rises in popularity for cloud-native applications and

computing environments. As a result, the vast majority of apps created using Java Swing

are now limited for personal or academic research and education. This is primarily because

Java Swing applications are difficult to move from the server to the end user due to network

and platform accessibility restrictions, which often requires advanced knowledge of dis-

tributed computing and security. Furthermore, Swing components provided in Java com-

puting platforms have GUI (Graphical User Interface) elements and thus may consume

more energy while transferring them via internet while the granularity of Swing compo-

nents are larger. To tackle energy consumption issue, a granularity-based categorization

method was proposed in latest JYAGUCHI architecture which we believe substantially

reduces carbon emissions and promote to achieve the sustainable earth. Additionally, the

JYAGUCHI architecture provides a dynamic method for providing end users with simple

web browser access to Java Swing applications. This web interface provides options to use

the platform either locally, or in edge or cloud. In addition to increasing accessibility, this

method also makes it easier for end consumers to utilize, regardless of their level of tech-

nical proficiency. By utilizing this architecture, users can access Java Swing apps without

needing to go through any complicated technical training or installation processes, making

it possible for a larger audience to take use of the Java Swing-developed applications. In

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

100

this way, the updated JYAGUCHI architecture engage users less time in computing re-

source and thus contributes to reducing carbon emission.

7.3 Aspect of Green Energy Usage

Another important aspect to consider for a sustainable layer in JYAGUCHI’s cloud

system is the use of renewable energy sources. By leveraging renewable energy sources

such as solar, wind, or hydroelectric power, JYAGUCHI can reduce its dependence on

non-renewable energy sources and contribute to a more sustainable computing ecosystem.

Additionally, optimizing the data center’s cooling systems and using energy-efficient hard-

ware can also help in reducing energy consumption and the overall carbon footprint. By

implementing these sustainable practices, JYAGUCHI can demonstrate its commitment to

sustainable computing and contribute to a more environmentally friendly technology in-

dustry. However, considering all of these aspects in the architecture of JYAGUCHI alike

cloud system and the implementation of a sustainable layer is still a task for future work.

8. COMPARISON BETWEEN DISTRIBUTED SERVICES

In this section, we conducted a study and comparison of similar distributed services

to gain insights into the extension and limitations of the JYAGUCHI architecture. Com-

paring all prevalent sets of relevant features such as Ease of Use (EoU), Ease of Develop-

ment (EoD), performance, cost, security, openness, and sustainability would be a daunting

task, and citing all related works would be too extensive. Therefore, we only compared

JYAGUCHI with selected works, including Apache River, WebSwing, gRPC, and Vaadin,

which are related to the seven quality attributes. We evaluated each architecture using a

set of symbols: a double circle represents “very good,” a circle represents “good,” and a

triangle represents “fair,” as shown in Table 1.

Table 1. Comparison between distributed services.

Quality Attri-s
Distri- bute
buted Service

Ease of
Use

(EoU)

Ease of
Deployment

(EoD)
Security Performance Openness Sustainability Cost

JYAGUCHI ◎ ◎ 〇 〇 ◎ ◎ ◎

Apache River ▲ ▲ ▲ ▲ ◎ ▲ ◎

WebSwing ◎ ▲ 〇 〇 ▲ ◎ ▲

gRPC 〇 〇 ◎ ◎* ◎ ▲ ◎

Vaadin 〇 〇 〇 〇 〇 ◎ ▲

◎ Very Good 〇 Good ▲ Fair

* In terms of gRPC performance indicator is marked as very good; however, gRPC does not transport GUI object

(Swing) as service to the end users but sends only the data. Thus, the performance of gRPC outperformed the

other methods which may seem unfair but we do not count this specific features in our comparison.

The objective of comparing in this way is to clarify the definition, use, and emphasis

those quality attributes presented in Table 1. Such subjective comparison will help us to

determine the extension and limitation of JYAGUCHI architecture, which will help us im-

proved design in future. In our evaluation based on subjective analysis, we found that

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 101

JYAGUCHI architecture is able to provide all the features required for distributed compu-

ting and are capable of service delivery in distributed environment; however, these systems

have no architectural guarantee of EoU, EoD, sustainability, security and openness feature

as proposed in JYAGUCHI architecture.

Furthermore, we definitely think that this kind of comparison will help researchers

while choosing the appropriate cloud-edge architecture in their research project.

9. INTEGRATION OF SERVERLESS APPROACH IN JYAGUCHI

To test the serverless approach, we designed services in the upgraded JYAGUCHI

for particular applications. JYAGUCHI is a fully functional distributed architecture that

also supports serverless features. In this study, we have created a cloud-edge and integrated

this platform with a serverless platform to improve the capability of wide-area service dis-

tribution without the restriction of server management. Many IT industries such as Ama-

zon AWS, Microsoft Azure, and IBM Cloud, have already begun to offer their clients a

new, paid platform called serverless.

Table 2. Details of server specification.

Operation System RAM CPU Disk

Ubuntu 18.04 (LTS) 64 2 GB 1 50 GB

Here, we integrated JYAGUCHI with the OpenWhisk (Fig. 7) engine. Table 2 shows

the details of server specification during implementation. In order to implement and trigger

an action, we prepare a simple JYAGUCHI micro service. While a developer at JYAGU-

CHI environment creates the services and pushes his service in the repository, an auto-

mated message triggers to the JYAGUCHI Environment at client side. For the testing pur-

pose, we have used Slack, a messaging app that connects people to the information. Inside

OpenWhisk engine the generated action as follows,

① Action create: This will create a new action

② Action invoke: This will run an action

Fig. 7. Integration of serverless architecture in JYAGUCHI.

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

102

In this proposed architecture we are able to successfully implement serverless service

with JYAGYUCHI service.

10. CONCLUSION AND FUTURE WORKS

In this study, we architected JYAGUCHI and successfully demonstrated a service-

oriented development approach that enables users to create, publish, and use services in

accordance with their needs and security constraints. For instance, consumers are advised

to use the edge computing platform offered by JYAGUCHI if the client’s communication

infrastructure is unreliable and bandwidth sensitive. In this case, mostly the mega and

macro services are developed and delivered to the end users within the edge environment.

However, if the services are relatively small and may not consume high bandwidth, those

services can be located in the cloud side either in server-client model or in Serverless for-

mat. In this research, we enhanced our previous JYAGUCHI platform which was based on

JINI [12, 21, 29] technology by proposing a new architectural component that augments

the services as per the granularity of the applications and also ensure the access control for

secured service delivery. We evaluated our system by testing the performance of each

component in terms of resource consumption, latency and network bandwidth metrics

within and outside the edge. Furthermore, we integrated the Serverless approach into the

architecture. In our previous architecture, distributed services were not able to pass via the

internet due to the restriction in NAT. However, this constraint is solved by designing a

NAT traversal module in the architecture. In the current architecture, this module is inte-

grated with AjaxSwing and the services can be accessed by using a web browser.

We have also incorporated sustainability considerations in our design. We are aware

that data centers, cloud computing infrastructures, and digital services consume a signifi-

cant amount of energy and produce carbon emissions. We strongly believe that our inno-

vation and solution should adopt a sustainable approach and demonstrate a commitment to

creating sustainable digital services, as responsible researchers. This will help us to ensure

that our work is not only effective, but also sustainable in the long term. To embrace this

philosophy, JYAGUCHI has devised a sustainable layer in its architecture. However, at

this stage, the sustainable layer is not fully implemented. We look forward to reporting

additional findings in our future articles.

REFERENCES

1. C. Yang, S. Lan, L. Wang, W. Shen, and G. G. Q. Huang, “Big data driven edge-cloud

collaboration architecture for cloud manufacturing: A software defined perspective,”

IEEE Access, Vol. 8, 2020, pp. 45938-45950.

2. A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, “A survey of security in cloud,

edge, and fog computing,” Sensors, Vol. 22, 2022, p. 927.

3. A. M. Alwakeel, “An overview of fog computing and edge computing security and

privacy issues,” Sensors, Vol. 21, 2021, p. 8226.

4. Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing security: State

of the art and challenges,” Proceedings of IEEE, Vol. 107, 2019, pp. 1608-1631.

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 103

5. A. Mulay, H. Ochiai, and H. Esaki, “IoT WebSocket connection management algo-

rithm for early warning earthquake alert applications,” in Companion Proceedings of

the 10th ACM International Conference on Utility and Cloud Computing, 2017, pp.

189-194.

6. B. P. Gautam, K. Wasaki, and A. Batajoo, “Encapsulation of micro engineering tools

in a co-operative Jyaguchi computing infrastructure,” ScieXplore International Jour-

nal of Research in Science, Vol. 1, 2014, p. 1.

7. B. P. Gautam and D. Shrestha, “A model for the development of universal browser for

proper utilization of computer resources available in service cloud over secured envi-

ronment,” in Proceedings of International MultiConference of Engineers and Com-

puter Scientists, Vol. I, 2010, pp. 638-643.

8. B. P. Gautam, A. Batajoo, and K. Wasaki, “Fogging Jyaguchi services in Tensai Go-

thalo,” International Journal of Computer Trends and Technology, Vol. 28, 2015, pp.

119-125.

9. M. Goudarzi, M. Palaniswami, and R. Buyya, “Scheduling IoT applications in edge

and fog computing environments: A taxonomy and future directions,” ACM Compu-

ting Surveys, Vol. 55, 2022, Article No. 152, pp. 1-41.

10. N. A. Sulieman, L. R. Celsi, W. Li, A. Zomaya, and M. Villari, “Edge-oriented com-

puting: A survey on research and use cases,” Energies, Vol. 15, 2022, p. 452.

11. G. Caiza, M. Saeteros, W. Oñate, and M. V. Garcia, “Fog computing at industrial level,

architecture, latency, energy, and security: A review,” Heliyon, Vol. 6, 2020, p. e03706.

12. M. Sun, “JiniTM technology core platform specification,” http://di002.edv.uniovi.es/

~falvarez/core1_1.pdf, 2000.

13. M. Diarra, “Enhanced transport-layer mechanisms for MEC-assisted cellular net-

works,” University of Cote D’azur, https://theses.hal.science/tel-03946149/file/1318

18_DIARRA_2022_archivage%20%282%29.pdf, 2023.

14. C. Raiciu, J. Iyengar, and O. Bonaventure, “Recent advances in reliable transport pro-

tocols,” https://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapter2.pdf,

2023.

15. B. P. Gautam, “An architectural model for legacy resource management in a Jini based

service cloud over secured environment,” IPSJ SIG Technical Reports, No. 2009-EIP-

43, Information Processing Society of Japan, Vol. 11, 2009, pp. 55-62.

16. M. Simic, I. Prokic, J. Dedeic, G. Sladic, and B. Milosavljevic, “Towards edge com-

puting as a service: Dynamic formation of the micro data-centers,” IEEE Access, Vol.

9, 2021, pp. 114468-114484.

17. A. Ghosh and K. Grolinger, “Edge-cloud computing for IoT data analytics: Embed-

ding intelligence in the edge with deep learning,” IEEE Transactions on Industrial In-

formatics, Vol. 17, 2020, p. 2191-2200.

18. S. K. Shrestha, Y. Kudo, B. P. Gautam, and D. Shrestha, “Recommendation of a cloud

service item based on service utilization patterns in Jyaguchi,” in Knowledge and Sys-

tems Engineering, V. N. Huynh, T. Denoeux, D. H. Tran, A. C. Le, and S. B. Pham,

eds., in Advances in Intelligent Systems and Computing, Vol. 245, Springer Interna-

tional Publishing, Cham, 2014, pp. 121-133.

19. B. P. Gautam, K. Wasaki, A. Batajoo, S. Shrestha, and S. Kazuhiko, “Multi-master

replication of enhanced learning assistant system in IoT cluster,” in Proceedings of

BISHNU PRASAD GAUTAM, AMIT BATAJOO, NORIO SHIRATORI

104

IEEE 30th International Conference on Advanced Information Networking and Appli-

cations, 2016, pp. 1006-1012.

20. M. S. Alam, U. D. Atmojo, J. O. Blech, and J. L. M. Lastra, “A REST and HTTP-

based service architecture for industrial facilities,” in Proceedings of IEEE Conference

on Industrial Cyberphysical Systems, 2020, pp. 398-401.

21. N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, “ICENI: An open

grid service architecture implemented with Jini,” in Proceedings of ACM/IEEE Inter-

national Conference for High Performance Computing, Networking, Storage, and

Analysis Conference, 2002, p. 37.

22. J.-M. Dricot, “Development of distributed self-adaptative instrumentation networks

using Jini technology,” in Proceedings of IEEE International Workshop on Virtual

and Intelligent Measurement Systems, 2001, pp. 22-27.

23. E. Gökçay, “A new multi-target compiler architecture for edge-devices and cloud

management,” Gazi University Journal of Science, Vol. 35, 2022, pp. 464-483.

24. M. Migliardi and R. Podesta, “Performance improvement in web services invocation

framework,” in Proceedings of IEEE 18th International Parallel and Distributed Pro-

cessing Symposium, 2004, pp. 110-122.

25. S. Yangui, A. Goscinski, K. Drira, Z. Tari, and D. Benslimane, “Future generation of

service-oriented computing systems,” Future Generation Computer Systems, Vol. 118,

2021, pp. 252-256.

26. J. Singh, P. Singh, and S. S. Gill, “Fog computing: A taxonomy, systematic review,

current trends and research challenges,” Journal of Parallel and Distributed Compu-

ting, Vol. 157, 2021, pp. 56-85.

27. H. T. Malazi et al., “Dynamic service placement in multi-access edge computing: A

systematic literature review,” IEEE Access, Vol. 10, 2022, pp. 32639-32688.

28. V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Access control for emerging distributed

systems,” Computer, Vol. 51, 2018, pp. 100-103.

29. J.-M. Dricot, P. de Doncker, M. Dierickx, F. Grenez, and H. Bersini, “Jini technology

as a solution to develop distributed instrumentation network in engineering,” in Pro-

ceedings of International Symposium on the Convergence of IT and Communications,

2001, pp. 16-23.

Bishnu Prasad Gautam received his master’s and Ph.D. in

Computer Engineering from Shinshu University. He has published

over 50 papers in international journals and international conferenc-

es. He has been invited as a key speaker in several International

Workshops, Conferences and Universities. He is currently working

as a Professor (Full) at Kanazawa Gakuin University, and he is a

member of IEEE, IPSJ and IAENG. His current research interest

includes sustainable computing, distributed computing architecture,

network architecture, network security, and IoT. He was a recipient

of Highest Score Award (IPA), Highest Championship Award and Championship Prize

(General) of ET Robotic Championship Contest in 2018, Japan. He has obtained several

awards in international conferences and academic societies.

JYAGUCHI COMPUTING PLATFORM TO REALIZE CLOUEDGE AND SERVERLESS ARCHITECTURE 105

Amit Batajoo received the MS degree in Computer Science

and Engineering from Shinshu University at Nagano, Japan in 2019.

He is currently working in Fujitsu Limited, Japan as Software Engi-

neer. His research interests include modeling and analysis of opera-

tional behavior, mathematical model and formal verification of soft-

ware and development process, open-source software, ad-hoc net-

work communication protocol. Also interested in the micro-service

architecture, DevOps, and development of IoT system, database ma-

nagement system, web application and Android app. He is a member

of IEEE and IEICE. Mr. Batajoo’s award include Incentive Award, 62nd Intelligent Trans-

portation Systems and Smart Community Research Workshop, Paper Title: Fogging Jya-

guchi Services in Tensai Gothalo, Wakkanai, Japan, 2015.

Norio Shiratori (Life Fellow, IEEE) is currently a Professor

with Chuo University, Tokyo, and also an Emeritus Professor with

Tohoku University, Sendai, Japan. He has published over 15 books

and over 600 refereed articles in computer science and related fields.

He is a Fellow of the Japan Foundation of Engineering Societies

(JFES), the Information Processing Society of Japan (IPSJ), and the

Institute of Electronics, Information and Communication Engineers

(IEICE). He was a recipient of the Minister of MEXT Award from

the Japanese Government in 2016, the Science and Technology

Award from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

in 2009, the IEICE Achievement Award in 2001, the IEICE Contribution Award in 2011,

the IPSJ Contribution Award in 2008, the IEICE Honorary Member in 2012, the IPSJ

Honorary Member in 2013, the IPSJ Memorial Prize Winning Paper Award in 1985, the

IPSJ Best Paper Award in 1997, the IEICE Best Paper Award in 2001, the IEEE 5th SCE01

Best Paper Award in 2001, the IEEE ICPADS 2000 Best Paper Award in 2000, and the

IEEE 12th ICOIN Best Paper Award. From 2009 to 2011, he was a former President of

IPSJ.

