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Device-free indoor human trajectory tracking is critical to support health care appli-

cations for elderly people. Many device-free localization algorithms depend on expensive 
hardware to achieve tracking accuracy. In contrast to such algorithms, this paper propos-
es a new device-free human trajectory tracking algorithm for indoor environments based 
on channel state information that is extracted from a Wi-Fi network interface card, which 
is a low-cost component. The proposed algorithm first uses the characteristics of locally 
linear embedding to detect whether a person is moving and applies quadratic discriminant 
analysis to determine the new location of the person. The determined locations of the 
person are connected to form a trajectory. Experimental results revealed that the pro-
posed algorithm provides an effective solution for passive human trajectory tracking.     
 
Keywords: device-free localization, trajectory tracking, channel state information, Wi-Fi, 
local linear embedding algorithm 
 
 

1. INTRODUCTION 
 

Most of people’s daily activities, such as working, shopping, sleeping, and per-
forming fitness exercises, occur in indoor environments. In recent years, the demand for 
location-based services and applications in indoor environments has increased rapidly. 
Indoor localization and tracking services have been widely used in smart home, property 
safety, asset management, health care, and other applications [1-5]. Many studies have 
been proposed to develop methods of human localization and trajectory tracking in in-
door environments. Such methods can be categorized into two classes  active trajectory 
tracking [6-9] and passive trajectory tracking [10-16].  

In active trajectory tracking, most of the proposed methods [6-9] require users to 
participate actively and carry smart devices. The position of a person can be identified by 
estimating the distance between the transmitter(s) and the receiver(s) according to 
changes in signals. A relatively high number of sensors must be deployed in the moni-
toring environment when methods based on wireless sensor networks are used, thus 
leading to high system costs. The primary challenge of active trajectory tracking methods 
is that users must wear the positioning device. Achieving this requirement in practice is 
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not easy. This also makes the system unusable in many scenarios. 
To solve this problem of active trajectory tracking, Wi-Fi signals are used for pas-

sive human tracking, which is an innovative application. Passive trajectory tracking nei-
ther requires the active participation of users nor requires users to wear any equipment. 
The location of a human can be identified by analyzing the influence of human body 
locations on the characteristics of a Wi-Fi channel. Subsequently, the trajectory, which is 
formed using the various locations when a human moves he will be tracked. Many pas-
sive trajectory tracking algorithms [15, 17, 19] have been proposed based on the passive 
tracking technology. The objectives of these methods include the human existence detec-
tion, activity classification, and gesture recognition. These methods capitalize on the 
effects of human motion on radio propagation by identifying changes in the channel state 
information (CSI) of a Wi-Fi signal to identify the location of a person. Passive human 
trajectory tracking enables omnidirectional coverage of people in a scene, and user pri-
vacy is protected. However, the complex multipath effects of indoor radio signals lead to 
unpredictable radio propagation behaviors. This remains a major challenge for passive 
trajectory tracking.   

The purposes of all the aforementioned mechanisms are to solve the problems of 
indoor positioning and tracking. However, there is still a large gap in terms of position-
ing accuracy, real-time performance, and reliability, all of which require further im-
provement. The objective of this study was to propose a device-free human trajectory 
tracking mechanism that uses channel frequency response (CFR) information to identify 
the trajectory of a human in an indoor environment.   

The contributions of this study are summarized as follows: 
 
(1) First, in the mechanism, we integrate multiple differences of locally linear embed-

ding (LLE) features to determine whether a signal detected in a time window belongs 
to a moving or stationary state. 

(2) Second, we propose a device-free positioning system based on CSI to estimate the 
location of a target in the stationary state. 

(3) Third, we integrate the motion detection mechanism and the device-free positioning 
system and propose a time-window-based human trajectory tracking system that is 
effective and accurate. 
 
The remaining sections of this paper are organized as follows. Section 2 provides a 

brief review of related work. Section 3 briefly introduces the characteristics of the CSI in 
the physical layer of a Wi-Fi communication protocol. In Section 4, the proposed de-
vice-free human motion trajectory detection (HMTD) algorithm is introduced in detail. 
In Section 5, performance evaluation is introduced. Finally, Section 6 summarizes this 
study. 

2. RELATED WORK 

The methods of human trajectory tracking presented in the literature can be divided 
into two types  active and passive trajectory tracking methods. Because active trajectory 
tracking methods are limited by the requirement of active user participation, passive 
tracking methods, which do not require users to carry any equipment, have become the 
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focus of recent studies.  
The passive human trajectory tracking systems related to this study are mentioned 

as follows. Want et al. developed an infrared-based system, namely Active Badge [18], 
for indoor human tracking. The system deploys a wireless sensor network inside a 
building with at least one sensor node in each room. During the operation of the system, 
the person being tracked carries a tag. To allow the sensor to detect the tag information, 
each tag periodically transmits a signal to the sensor. Concurrently, the base station in 
the network periodically detects the sensor data, processes the data, and provides the 
result to the client in a visualized form. According to the signal received by the sensor 
from the tag, the room in which the person is present is determined, and the timing of the 
person’s movement can be determined by combining the timings of the signals received 
by multiple sensors. Although the Active Badge system can track the trajectory of people 
in different rooms, the system cost is high due to the complex deployment of the system. 
Au et al. [19] proposed a stand-alone wearable system, namely 3D Action SLAM, that 
can track people in previously unknown multifloor environments. The system utilizes 
synchronous positioning and maps the relationships between actions and combines the 
dead reckoning data of the pedal-type inertial measurement unit. This system recognizes 
the action of a tester in different positions and updates the landmark map regularly to track 
the tester’s movement trajectory. This system is ideal for patient tracking in e-health ap-
plications. Because the active tracking system requires a tester to carry a tracking device, 
this method is not feasible in some cases. For example, testers are reluctant to carry 
equipment all the time, and criminals deliberately do not carry equipment to prevent their 
movement trajectories from being tracked. Therefore, there is an urgent requirement for 
a passive indoor tracking system that obviates the necessity of carrying equipment. 

To mitigate the inconvenience engendered by the necessity of carrying tracking 
equipment during active positioning, Mao et al. [20] proposed a passive tracking solu-
tion based on visible light. They proposed a passive human tracking system, iLight. The 
system consists of 40 sensor nodes, 10 normal light sources, and 1 base station. Their 
experimental results revealed that the iLight system has high positioning efficiency and 
accuracy. However, because the system contains multiple hardware devices, the cost of 
system deployment is increased. Mao et al. [21] proposed a high-precision acoustic trac- 
ker (CAT) that is used to replace the mouse with a smart device. Through the system, a 
user can perform clicking and sliding operations through voice control on the smart de-
vice. The system can interact with virtual reality or augmented reality headsets to control 
the smart device by moving the smartphone in the air. The core idea of the system is to 
continuously estimate the distance and speed of the mobile device relative to the spea- 
ker based on the received sound by using a distributed frequency-modulated continuous 
waveform to achieve continuous tracking of the mobile device trajectory. The designed 
system was tested on computers and smartphones. The test results revealed that the sys-
tem has a high tracking accuracy. Wang et al. [22] proposed a device-free gesture track-
ing scheme, which can be deployed on mobile devices in the form of an application 
without modifying any hardware. The system employs the acoustic phase to obtain fi-
ne-grained motion and motion distance measurements. After removing the background 
sound signal that is relatively consistent over time, the system first extracts the sound 
signal that is reflected by hand or finger movements. The phase change of the sound sig-
nal is then measured and converted into the motion distance. Visible light solutions re- 
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quire strict line-of-sight conditions and do not work in dark environments. Sound-based 
solutions are susceptible to environmental noise and have a very small coverage. These 
methods have their own limitations when tracking a person in practical applications. 

Due to the low cost and easy deployment of RF-based solutions, many RF-signal- 
based systems have been designed for indoor tracking. Li and Zhang [23] proposed a 
device-free indoor tracking system, namely Indo Track, based on commercial Wi-Fi. The 
system proposes Doppler-MUSIC and Doppler-AOA to jointly estimate the accurate 
trajectory of a target. Joshi et al. [24] proposed a passive tracking system, namely Wi 
Deo, based on a radio platform defined by WARP software to achieve fine-grained mo-
tion tracking. However, the system must modify the internal structure of the Wi-Fi hard- 
ware device, thus increasing the complexity of the system hardware design. The WiVi 
system proposed in [25] relies on special hardware to capture the reflection of its own 
transmitted signal. To track the signals on moving objects behind the wall, the system 
only tracks the relative motion but cannot obtain the absolute position. The Wi Dar [26] 
system tracks human motion by estimating the Doppler frequency. Wi Dar uses fast Fou-
rier transform (FFT) to estimate Doppler shift by using CSI amplitude information, 
which is similar to the system proposed in [27]. Because the CSI amplitude does not 
provide direction information for the Doppler velocity, Wi Dar requires multiple Wi-Fi 
links with significantly different spatial characteristics to determine the direction of 
movement and the location of the person to be tracked. Therefore, to enable Wi Dar to 
work with only two receivers, the antennas of the Wi-Fi receiver must be separated from 
each other, which is difficult for commercial Wi-Fi equipment.   

In [28], Teng et al. used a highly directional 60-GHz millimeter-wave radio to 
achieve passive target tracking. In this study, the passive tracking algorithm uses a dis-
crete beam scanning mechanism to accurately locate the initial position of the object and 
acquire the target trajectory by using the signal phase information. The short wavelength 
of the 60-GHz signal can suppress the interference signal. Although the accuracy of 
tracking a person is improved, the complexity of the radio platform is relatively high.  

In general, the aforementioned indoor passive trajectory tracking approaches can be 
categorized into non-Wi-Fi-based and Wi-Fi-based mechanisms. Although the non-Wi- 
Fi-based approaches can achieve good localization accuracy, their main drawback is that 
they have high hardware costs. The state-of-the-art component of Wi-Fi-based approa- 
ches is the Indo Track system [23]. The Indo Track system uses Doppler-MUSIC and 
Doppler-AOA to realize a tracking system with high accuracy. However, when the target 
stops moving, Indo Track cannot track the target. The proposed HMTD algorithm can dis- 
tinguish between motion and stationary states of a target and determine the location 
when a target is stationary. A combination of the Indo Track system and HMTD algorithm 
can not only track a target in motion but also detect the location of a stationary target. 

3. PRELIMINARY 

3.1 Channel State Information  

Due to complex radio propagation in indoor environments, the multipath effects in 
the subcarriers of a Wi-Fi signal are pronounced, a phenomenon that has a relatively 
high effect on reliable feature acquisition. In general, the characteristics of wireless sig-
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Fig. 1. Indoor device-free positioning scene. 

nals can be analyzed from the time and frequency domains. In the time domain, the in-
fluence of the environment or human activities on the subcarrier channel can be de-
scribed as disturbance to the channel impulse response (CIR) of the channel. In the fre-
quency domain, the multipath propagation due to reflection results in a change in the 
CFR. Therefore, it is possible to reliably distinguish between various target locations 
through multiple omnidirectional subcarriers by analyzing the variations in CIR and CFR, 
even if there is interference of background noise. 

A wireless communication system generally uses CIR to describe the multipath ef-
fect of a channel. Under the assumption of linear time invariance, the impulse response 
of a channel can be expressed as presented in Eq. (1): 

H(k) = ||H(k)||ej∠H(k), (1) 

where H(k) denotes the CSI of the kth subcarrier, ||H(k)|| denotes the amplitude of the kth 
subcarrier, and ∠H(k) denotes the phase of the kth subcarrier. 

The multipath propagation of a signal presents a time-delay distribution in the time 
domain and selective signal fading in the frequency domain. Therefore, the CFR of the 
wireless channel can also be used to describe the multipath propagation of signals based 
on the amplitude, frequency, and phase information. Under the conditions of an infinite 
bandwidth, CFR and CIR are Fourier transforms of each other. The frequency response 
of the channel can be expressed as presented in Eq. (2): 

1
( ) ( ),i

N j
i ii

h a e    


   (2) 

where ai represents the amplitude attenuation of the ith path, i represents the phase off-
set of the ith path, i represents the time delay of the ith path, N represents the total num-
ber of propagation paths, and () represents the Dirac pulse function.  

Device-free human detection operates on the principle that part of the propagation 
paths are reflected by the presence or absence of a target. In the frequency domain, fre-
quency changes are caused by CFR reflections. Human motion usually causes signal 
changes on only a few paths. Even when very few paths are changed, human motion can 
obviously change the CFR amplitude of all subcarriers. Moreover, in addition to the am-
plitude change in the CFR, human motion affects the phase of the CFR. However, the 
phase information has a uniform distribution and is related to the deployment location of 
the nodes. Therefore, we use the change in the amplitude characteristics of each subcar-
rier in the CFR to measure the sensitivity of the human body to determine the states of 
the body. The indoor trajectory tracking system based on the CFR amplitude is illustrat-
ed in Fig. 1. 
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3.2 Device-Free Stationary Human Location Detection Problem 
 

The objective of this paper is to trace the moving route of a person in an indoor en-
vironment by analyzing the characteristics of the received signal without the necessity of 
the person carrying tracking equipment. In an indoor environment, let T denote the 
measurement time, and can be expressed as T = {t1, t2, …, tq}. Let the channel infor-
mation be denoted as C = {c1, c2, …, cn}. Let L denote the measurement position and is 
expressed as L = {l1, l2, …, lm}, where m = k2, kN, and N is a positive integer. Then, xi,j,k 
represents the CSI signal value measured at time ti, position lj, and channel ck. Therefore, 
multiple sets of CSI signals can be expressed as DT,L,C = {xi,j,k | 1  i  q, 1  j  m, 1  k 
 n}. 

Let yi denote the position of a person at time ti and xik denote the CSI value meas-
ured by channel ck at time ti. Because each CSI packet includes channel information from 
30 subcarriers, let Xi represent the extracted CSI at time ti. The CSI values corresponding 
to n subcarriers can be expressed as Xi = {xi1, xi2, …, xin}. 

To model the change in CSI when a person appears at various locations, a model D 
is established between the features obtained from the CSI channel and the target location. 
The indoor passive localization model D can be expressed as Eq. (3): 

D = (Xi, yi) = MD,   (3) 

where MD represents the relationship function between Xi and yi. 
During CSI acquisition, let x̂ik represent the CSI value measured at time t̂i on chan-

nel ck when a person is at position ŷi. Similarly, let X̂i = (x̂i1, x̂i2, …, x̂in) represent the CSI 
value measured at time t̂i on n channels at position ŷi. Therefore, according to the rela-
tional model D, X̂i, and ŷi, i must satisfy the following relationship (2) when the follow-
ing measurement is performed: 

M(X̂i) = ŷi  1  i  p.   (4) 

Here, we assume that there are p groups of position data.  

4. DEVICE-FREE HUMAN TRACKING ALGORITHM 

The purpose of the proposed algorithm is to detect the trajectory of a person in an 
indoor environment without requiring the human to carry any tracking equipment. Fig. 2 
shows an example scenario in which an indoor space is divided into 3  3 equal-sized 
subregions. As shown in Fig. 2, a Wi-Fi-based mobile access point (AP) and a laptop are 
deployed in the monitoring area. The AP plays the role of the sender and periodically 
sends signals to the laptop. The laptop receives the signal from the AP. The wireless 
connection between the AP and the laptop can be used to monitor CSI conditions in the 
indoor environment. The received CSI value changes when a human appears in the mon-
itoring area. Therefore, we can determine the position of the human according to the 
change in the CSI value.   

The proposed algorithm comprises a CSI acquisition phase, motion detection phase, 
and location discrimination phase. In the CSI acquisition phase, the mobile AP periodi-
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cally sends broadcast information. The laptop computer continuously receives the signals 
from the AP and extracts valid CSI. In the motion detection phase, the motion state of a 
person is detected by applying the proposed LLE-Diff algorithm. Finally, the location 
discrimination phase identifies the location of the person at a particular time interval 
when the person is in a stationary state. Thus, the CSI is acquired continuously, and the 
extracted CSI can be sent to a remote server synchronously to detect the location of the 
person. Finally, the trajectory of a person can be obtained by repeating the aforemen-
tioned steps. 

4.1 CSI Acquisition Phase 

The aim of this phase is to acquire CSI at the receiver when people appear at some 
particular locations. Fig. 2 illustrates a scenario for the application of this phase. To ef-
fectively determine the location of a person, the indoor space is divided into n  n subre-
gions. An AP and a laptop computer are deployed in the subregion and act as the sender 
and receiver, respectively. As illustrated in Fig. 2, the indoor space is divided into 3  3 
subregions. 

 

 
Fig. 2. Illustration of the HMTD scenario in which the indoor area is divided into 3  3 subregions. 

4.2 Motion Detection Phase 

In an indoor environment, the variation of the collected CSI sample is small when a 
person is in a stationary state. When a person is in a moving state, the collected CSI 
sample values vary greatly. The original dimension of the CSI sample is 30; this sample 
is too large to process. Moreover, the difference between various sets of the collected 
CSI samples in the moving state is large, thus causing the CSI-based tracking system to 
be highly complex. To accurately capture the trajectory of a person, it is necessary to 
reduce the dimension of the CSI sample and then use an effective algorithm to achieve 
the goal of trajectory tracking for a person. 

LLE is a nonlinear dimensionality reduction algorithm that maintains the original 
manifold structure in a low-dimensional subspace. LLE is one of the classic algorithms 
of manifold learning. Many subsequent manifold learning and dimensionality reduction 
methods are closely related to LLE. The traditional dimensionality reduction algorithms, 
such as principal component analysis and linear discriminant analysis (LDA), focus on 
sample variance, whereas LLE focuses on maintaining the local linear structure of a 
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sample during dimensionality reduction. Because LLE maintains the local structure of 
the sample during dimensionality reduction, it is widely used for image recognition, 
high-dimensional data visualization, and other applications. 

In the proposed algorithm, LLE is used to reduce the dimension of the acquired CSI 
sample feature and to determine the degree of variation in samples. Assume that the CSI 
sample feature is linear in a short time interval; that is, a certain data can be linearly rep-
resented by several samples in its neighborhood. Let a CSI sample collected by the sys-
tem be marked as x1, and LLE uses the k nearest neighbors to find the three closest sam-
ples in its original high-dimensional neighborhood, x2, x3, and x4. 

The sample x1 can be expressed using a linear combination of samples x2, x3, and x4: 
 
x1 = w12x2 + w13x3 + w14x4, 

 
where w12, w13, and w14 are the weight coefficients. After LLE dimension reduction, the 
corresponding projection x1, x2, x3, and x4 in the low-dimensional subspace maintains the 
same linear relationship: 

 
x1 = w12x2 + w13x3 + w14x4. 
 
Specifically, the weight coefficients w12, w13, and w14 of the linear relationship be-

fore and after the projection exhibit minimal changes. The linear relationship is only 
present in the vicinity of the sample. A sample that is far from the present sample has no 
influence on the local linear relationship. Therefore, the complexity of dimensionality 
reduction is reduced. 

In this phase, we first select the neighborhood size, that is, the number of neigh-
borhood samples required to linearly represent a sample. Here, we let the neighborhood 
size value k = 6. We then select the k nearest neighbors of the sample by using the Eu-
clidean distance. After determining the k nearest neighbors of the sample x1, we establish 
the linear relationship between x1 and the k nearest neighbors; that is, we determine the 
weight coefficient of the linear relationship. This is obviously a regression problem. 
Suppose that there are m samples {x1, x2, …, xm}, each with n-dimensional features; the 
mean square error is considered the loss function of the regression problem, as presented 
in Eq. (5). 

2
21 ( )

( ) || ||
m

i ij ji j Q i
J w x w x

 
    (5) 

where Q(i) represents the k neighbor sample sets of i. In general, the weight coefficient 
wij is normalized, that is, the weight coefficient must satisfy Eq. (6). 

( )
1ijj Q i

w


  (6) 

For the sample xj that is not in the neighborhood of the sample xi, we let the value of 
the corresponding wij = 0. Specifically, we find the weight coefficient by using the pre-
ceding two equations. The optimization problem can be solved using a matrix and La-
grange multiplier. Finally, a low-dimensional representation of the 30-dimensional sam-
ple feature can be obtained. 
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The detailed steps designed for the motion detection algorithm are shown in Table 1. 

Table 1. Motion detection algorithm based on the LLE-Diff algorithm. 
Motion detection Algorithm 
Inputs: 
1. A set of collected CSI data {x}. 
2. The nearest neighbor parameter, k. 
3. The dimensionality d by which the dimension is reduced. 
Output:  
Low-dimensional feature {y} 

1. For i = 1 to m, calculate xi and the nearest k nearest neighbors by using the Euclidean 
distance {xi1, xi2, …, xik}. 

2. For i = 1 to m, calculate the local covariance matrix Zi = (xi  xj)T(xi  xj) and  
calculate the corresponding weight coefficient vector. 

3. The weight coefficient matrix W is composed of the weight coefficient vector 
Wi, and calculate the matrix M = (I  W)T(I  W). 

4. Calculate the first d + 1 eigenvalues of the matrix M, and calculate the eigen 
vectors corresponding to the d + 1 eigenvalues {y1, y2, …, yd+1}. 

5. The matrix formed by the second eigenvector to the d + 1th eigenvector is the  
output low-dimensional sample set matrix D = {y2, y3, …, yd+1}.  

 
The sample feature is reduced from 30 dimensions to 6 dimensions by using the 

LLE algorithm. Subsequently, the difference between the LLE values of adjacent sample 
features is calculated to determine the motion state of a person within a time slot. A large 
difference between the adjacent LLE results indicates that the person is in a moving state. 
However, a small difference between the adjacent LLE results indicates that the person is 
in a stationary state. Here, we calculate the difference between the LLE values of adja-
cent sample features, named as LLE-Diff. 

 
4.3 Location Discrimination Stage 

 
After phase 2, the motion state of the human (i.e., stationary or moving) can be de-

termined. When a person is in the moving state, the variation of the collected CSI is large, 
and it is difficult to calculate the exact location of the person. In the proposed algorithm, 
we only determine the location of a person in the stationary state. Let each location be 
denoted by a class; thus, the localization problem becomes a classification task. When a 
person is standing at a specific location, the collected CSIs are regarded as the training 
samples of the class that are associated with the corresponding location. Through the use 
of the CSI training samples of various locations, the classifier can be trained to solve 
localization tasks. We use discriminant analysis to solve classification tasks. LDA pro-
jects high-dimensional samples to the optimal discriminant subspace to extract low-di- 
mensional features with the best discriminant capability. The extracted features maxim-
ize the ratio of interclass distance to intraclass distance in the new subspace. That is, the 
sample has the best class separation in the subspace. LDA assumes that all sample clas-
ses have the same covariance matrix. Because the collected CSI values have different 
covariance matrices, the collected samples cannot fulfill the requirements of the LDA 
algorithm. In this study, the quadratic discriminant analysis (QDA) that is conducted on 
samples with various covariance matrices is applied to solve CSI classification tasks.  
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Fig. 3. Indoor experiment scene. 

The operations of the QDA algorithm are briefly described as follows. Let m denote 
the total number of different locations (classes). The first step of QDA is to calculate the 
mean vector j and covariance matrix j of each class j (j = 1, 2, …, m). Therefore, the 
quadratic discriminant function is defined as presented in Eq. (7): 

121 1
2 2( ) log | | ( ) ( ) log ,j j j j jj

x x x   
        (7) 

where j represents the prior probability of class j. According to the quadratic discrimi-
nant function in Eq. (7), the classification rule for an unknown sample x can be ex-
pressed as presented in Eq. (8). 

ˆ ( ) arg max ( )j
j

G x x  (8) 

The unknown sample x is classified into class j if j(x) has a maximum value among all 
discriminant functions. 

5. PERFORMANCE EVALUATION 

5.1 Experimental Setting 
 
To evaluate the performance of the proposed device-free HMTD algorithm, a labor-

atory experiment was conducted. As displayed in Fig. 3, the laboratory included com-
puter tables, chairs, display, bookshelves, drinking fountains, and other furniture. Due to 
the existence of multiple indoor devices, various degrees of multipath effects would be 
generated for wireless communication links. We used a Wi-Fi-based mobile AP as the 
signal transmitter, and the laptop was used as the signal receiver. The mobile AP was 
placed above the bookshelf, the laptop with the CSI Tool software was placed on the 
computer desk, and the laptop regularly received signals from the AP. We divided the 
indoor space into 3  3 subregions and tested the performance of the algorithm in tracing 
the trajectory of a person in these subregions. 
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5.2 Performance Evaluation 
 
We selected 5 people with heights of 165, 170, 175, 180, and 185 cm as our mobile 

testers. As mentioned, the laboratory was divided into 3  3 subregions, as shown in Fig. 
4. The transmitter and receiver were deployed in subregions 4 and 3, respectively. The 
possible moving paths of a person are indicated by the red arrows in the figure. The sys-
tem collected corresponding CSI when a tester moved between two adjacent subregions. 
According to the details presented in Table 2, 12 sets of CSI features were collected. 
Consider, for example, group 1 (1→2) presented in Table 2. The tester stayed in subre-
gion 1 for 10 s and then walked from subregion 1 to subregion 2 at a normal speed. The 
tester finally stayed in subregion 2 for 10 s. 

 

 
Fig. 4. Possible moving path for a person.  

 

Table 2. Test path partition table. 
Group Moving trajectory Moving speed

Group 1 ①—>② Constant speed
Group 2 ①—>④ Constant speed
Group 3 ②—>③ Constant speed
Group 4 ③—>⑥ Constant speed
Group 5 ④—>⑦ Constant speed
Group 6 ⑤—>② Constant speed
Group 7 ⑤—>④ Constant speed
Group 8 ⑤—>⑧ Constant speed
Group 9 ⑥—>⑤ Constant speed
Group 10 ⑥—>⑨ Constant speed
Group 11 ⑦—>⑧ Constant speed
Group 12 ⑧—>⑨ Constant speed

 

Consider, for example, the trajectory of group 1 presented in Table 2. The discri-
minant result of the motion state of a person determined by applying the LLE-Diff is 
displayed in Fig. 5. When a person is in the moving state, the value calculated by the 
LLE-Diff algorithm is high. By contrast, when a person is in the stationary state, the 
value obtained by the LLE-Diff algorithm is low. Therefore, in Fig. 5, the horizontal line 
indicates that the person is in the stationary state, whereas the peak value represents that 
the person is in the moving state on each LLE-Diff axis. To increase the confidence value  
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Fig. 5. Processing results of the subcarrier zero. 

 

 
Fig. 6. Comparison between the tracking accuracies of the iLight and proposed HMTD algorithms. 
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of the calculated human states, the values from six LLE-Diff axes were multiplied. The 
final peaks were determined to correspond to the motion state of the person. 

When the LLE-Diff algorithm finds that a person is in the stationary state, a reliable 
CSI feature extraction and location identification algorithm based on mean value calcu-
lation and QDA algorithm can be applied to determine the current position of the target. 
According to the location of the person in the previous and subsequent positions and the 
moving state of the person, the trajectory of the person can finally be determined. 

Fig. 6 displays a comparison of the trajectory tracking accuracy of the iLight and 
the proposed HMTD algorithms. As illustrated in Fig. 6, the HMTD algorithm had a 
higher positioning accuracy level than did the iLight algorithm. Because the HMTD al-
gorithm eliminates noise and interference information from a signal before executing 
location discrimination, a highly reliable signal can be obtained. The LLE-Diff algorithm 
can then be applied to recognize the motion state (i.e., stationary or moving), and the 
location of the person can be determined using the QDA algorithm, which improves the 
recognition efficiency of the algorithm. By contrast, the iLight system requires 40 sensor 
nodes, 10 common light sources, and a base station. These results in a longer signal 
transmission and processing time, which reduces the position recognition efficiency.  

6. CONCLUSIONS 

This paper presents a device-free trajectory tracking algorithm based on CSI for 
identifying the trajectory of a person in indoor environments. The proposed HMTD al-
gorithm is a trajectory tracking algorithm that does not require a person to carry any 
tracking device. Based on CSI, the proposed HMTD algorithm first uses LLE to reduce 
the dimension of CSI. Subsequently, the algorithm further recognizes the position of the 
person by using the QDA algorithm. Compared with existing algorithms, the proposed 
HMTD algorithm significantly improved the accuracy of device-free human trajectory 
tracking. 
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