
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 1101-1116 (2023)

DOI: 10.6688/JISE.202309_39(5).0006

1101

Design and Implement an Intelligent System for Stock

Investment Decision Making*

CHIUNG HON LEE1, TSUNG-JU LEE2, YU-SHENG CHIANG1,

SHIH-YI YUAN3 AND JYH-HWA LIOU2

1Department of Information Engineering and Computer Science
2Department of Finance

3Department of Communications Engineering

Feng Chia University

Taichung, 407 Taiwan

E-mail: {cholee@; freeman.tjlee@mail; d0636094@mail; syyuan@; jhliou@}fcu.edu.tw

A machine learning (ML) based software for stock investment decision making is

designed and implemented to explore problems of developing the financial software with

intelligent capabilities. Two main issues are discussed in this paper: how to integrate the

process of software development and ML module development; how to integrate the ML

modules into the software. A utility optimization problem is proposed to formulate soft-

ware design considerations. In the prototype system, three modules are implemented to

facilitate the investment decision making process: a fundamental analysis module; a stock

chip analysis module; and a technical analysis module. Those modules let the user to sieve

candidate stocks for investment and help the user to judge whether or not it’s a good timing

to invest. For making better user experience, we implement a user interface in a social

communication software.

Keywords: software process, machine learning software engineering, financial software,

investment decision making, utility optimization problem

1. INTRODUCTION

One of the trends of the financial software industry is around how to integrate ma-

chine learning capabilities into the software [1, 2]. It’s obvious that integrating artificial

intelligence capabilities into a financial software will enhance its functions of predictive

or data analysis, etc. However, the process of developing the machine learning (ML) mod-

ule is different from traditional software development process. How to integrate the ma-

chine learning module development and software development process when develop an

intelligent financial system become an important issue [3].

Following the rapidly development of ML technology, it has been widely used in

different software applications. In [4], the author presents an industrial case study on how

to apply ML to automatically detect transaction errors and propose corrections in a busi-

ness software system. A survey of how software teams develop, deploy and maintain soft-

ware solutions that involve ML components has been identified in [5]. The paper concludes

6 classes of ML software engineering best practices. We also refer to those practices to

check our ML software development. In [6], some software design patterns for ML appli-

cations has been proposed.

Received October 31, 2022; accepted December 12, 2022.
Communicated by Lok Ka Man.
* This research was partially supported by the National Science and Technology Council, Taiwan under grant

MOST 111-2410-H-035 -011-.

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1102

A machine learning process and a basic software development process are shown in

Fig. 1. In the machine learning process, some steps are data oriented such as data collection,

data clearing, and data labeling. Some steps are model oriented such as feature engineering,

model training, and model evaluation, etc. What is the dependency among those steps and

the software development process and when to deploy the trained ML model to the soft-

ware are important issues of machine learning software engineering. The software for dif-

ferent industry has different characteristics and might use different ML capabilities. In this

paper, we focus on how to design and implement an intelligent software system to help

stock investors to make their investment decisions. We use this case study to explore the

process of machine learning software engineering in stock investment field.

In our system, three modules are implemented to sieve and evaluate stocks. The chip

analysis module analyze the shareholders distribution for filtering the target which the

most market leader bought and many small retail investors sold; A fundamental analysis

module is designed to evaluates a stock is worth to invest or not by its financial statements

such as monthly revenue, quarterly report, earnings per share (EPS), etc.; The technical

analysis module based on the technical analysis such as stock technical indexes or candle-

stick patterns identification [7] to suggest investor whether or not it’s a good time point to

buy or sell stocks.

Fig. 1. A software and a machine learning development process.

The rest of this paper is organized as follows. In next section, the investment decision

making software architecture are introduced. The system development process and a pro-

totype implementation are illustrated in Section 3. Section 4 discusses the dependency be-

tween machine learning and software development process to explore issues of the ma-

chine learning software engineering in stock investment domain. Finally, conclusions and

future works are given in the Section 5.

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1103

2. INVESTMENT DECISION MAKING ARCHITECTURE

The system architecture of investment decision making to demonstrate our investment

idea is shown in Fig. 2. In [8], the research empirical result shows that the change of stock

share-holders’ number is related to stock investment returns in a significant level. We used

this result to help the design our investment decision making processes.

Fig. 2. The investment decision making solution architecture.

There are three processes to find out a stocks list for investment. First step is using

shareholder distribution data to filter candidate stocks which the market leader interested

in. Second step is to check the stock fundamental information of those candidate stocks

and get a recommend stock list. The last step is use technical analysis results to generate

buy or sell signals. The processes of ML modules design are: data collecting, data prepro-

cessing and feature engineering, model training, and model evaluation.

There are three different kind of data collected for the system: weekly shareholder

data, monthly company fundamental data, and stock daily trading data. Because the data

announced in different period and have different source, we used the practices proposed in

[5] to help our development. For example, using sanity checks for all external data sources

or checking that input data is complete, balanced and well distributed.

Because the original raw data have many features, we have to check which feature is

related to the result which we want. An example of shareholder distribution table used in

first step is shown in Table 1. Which is announced by Taiwan Stock Exchange every week

[9]. The data shown in table is TSMC (2330) which announced in 20 May 2022.

Table 1. An example of shareholder distribution table.

 Unit grading Number of people Number of units Percentage (%)

1 1-999 826659 143477359 0.55

2 1000-5000 47431 817955930 3.15

3 5001-10000 15520 344834226 1.32

… … … … …

15 >10000001 1517 22442470247 86.54

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1104

Because the investor can get the stock unit distribution variation information by com-

paring the shareholder distribution table in different weeks, the table can be used to un-

derstand how much stock unit bought by the market leader (hold more than 1000,000 stock

units) or how much new investors enter the market to buy the stock in this week. Based in

the research result in [8], we use those data to obtain features used in our chip analysis

module. The basic idea is if a stock has been brought a lot by the market leader and many

retail investors sold the stock, the stock price might rise. If the market leader sold a lot and

many retail investors brought the stock, the stock price might fall. Because not every stock

fit the proposed idea, we trained a ML model to check the relationship between the change

of shareholders’ number and the stock price variation.

Table 2 shows a real preprocessed data of the shareholder distribution of some stocks

at 27 May 2022 in our system. The first column is stock index. Second and third columns

stored percentage of the stock brought by market leader weekly and monthly. The last

column reports amount variation of shareholders. The market leader is defined as follows:

If the stock price <100 NT dollars,

market leader = share holder holds more than 1000 lots

If the stock price 100 NT dollars,

market leader= share holder holds more than 400 lots

Table 2. Data of shareholders distribution.

As the table shown, we can find that the market leader brought 6.1% and 9.9% of

stock 8028.TW weekly and monthly respectively and there are 2510 shareholders sold out

their stocks from 23 May 2022 to 27 May 2022. We assume that the market leader knows

more information about the stock than retail investors. If the market leader buy and retail

investor sell a stock, then we can reason that the stock might have more chance to rise than

other stocks.

The stock fundamental data used in our system are monthly revenue, quarterly report,

earnings per share (EPS), etc. We use those data to evaluate an appropriate investing price

of the stock. If the price of the stock is lower than the evaluated price then it is a good

candidate to invest.

The technical analysis module uses technical indexes to make invest signals. The

stock daily trading data include open, close, high, and low prices and the trading volume.

Based on those raw data, there are many stock technical analysis concepts and techniques

have been established for stock investment such as Relative Strength Index (RSI), Moving

Average Convergence Divergence (MACD), Fast and Slow Stochastic (KD-line), and

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1105

candlestick patterns [9], etc. Those stock price analysis tools are the basis when design

some investment decision making modules.

Because most stocks have ex-rights and ex-dividends every year, the first step of data

preprocessing is to adjust trading prices. The definition of the rate of return Yi is shown as

follows:

20
1 100.

i
i

i

Adj Close
Y

Adj Close

+

= −

Where Adj Close is the adjusted close price and i is the trading date.

There are more than 150 stock technical indexes used in the stock market for trend

analysis. Those indexes can be considered as features to train the technical analysis ML

model. However, using all stock technical indexes as features to train ML model is un-

necessary and time consuming. Because it’s well performance and widely used in financial

field, the XGBoost [10] has been chosen as the ML model for technical analysis module.

We train a XGBoost model and use it’s feature importance sequence to select candi-

date features. In our experiment, there are about 100 features have been chosen from 164

indexes for different stocks. After a forward selection strategy, there are about 50 features

have been chosen to reach better prediction performance. The stocks listed in Taiwan 50

index are used in ours experiment and the training data is from 2012 to 2022. The experi-

ment results are show in Table 3. The best test mean-square error (MSE) is 0.56 and most

MSE are between 2.0-5.0. The ML steps for technical analysis module creation are shown

in Fig. 3.

Table 3. Feature number in different stocks.

Fig. 3. The process for ML model creation.

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1106

3. SOFTWARE DEVELOPMENT PROCESS

In this section, we introduce the system development process of an intelligent stock

investment system. The main function of the system is to help the stock investor to sieve

and filter candidate stocks to invest via fundamental, shareholder distribution, and tech-

nical analysis. The stock sieving process is made by the return results from the ML modules.

3.1 Preliminaries

Based on the requirements acquisition results, there are three roles identified in the

requirement analysis phase: investor, data analyzer, and data maintainer. Investor is the

main user of the system; Data analyzer use the system to build ML models; Data maintainer

use the system to collect and update stock data. A use case diagram is shown in Fig. 4 to

represent functional requirements of the system. The use cases of the data maintainer are

related to the data collecting process; The use cases of the data analyzer are related to data

preprocessing and model-oriented ML processes.

Fig. 4. Use case diagram of the system.

After interact with senior stock investors, we acquired four functional requirements

to help investors to make their stock investment decisions. First use case is to check a

specific stock status. When an investor is interested in a stock, this function can show basic

information of the stock such daily trading data or fundamental data etc. Second use case

indicates the scenario of an investor want to get suggestions from ML modules to check

whether a stock worth to invest or not. Third use case shows the scenario that the user to

set or delete stock indexes for tracking. If a stock on the tracking list, it’s daily trading data

will be reported automatically in every trading day. The last use case describes the scenario

of getting a recommend stock list from ML modules. The use case of “get stock investment

suggestion” and “get recommend stocks” are related to the ML models in our design.

The steps to get candidate stocks worth to invest are:

1. analyzing the shareholder distribution table to get candidate stock lists,

2. checking the fundamental data of those candidate stocks, and

3. generating buy/sell suggestion for stocks listed on the candidate stocks list to the investor.

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1107

3.2 System Design

Because the issue discussed in this paper is how to integrate the process of software de-

velopment and machine learning (ML) module development, we only show the design of ma-

chine learning related use cases. A boundary, control, and entity analysis of the use case “get

recommend stocks” and “get stock investment suggestion” are shown in Fig. 5. A sequential

diagram of “get recommend stocks” use case is shown in Fig. 6.

A stock recommend interface is designed to interact with the investor. The “select candi-

date stocks” class is used to sieve candidate stocks from the return results of the “check stock

status” class. The “check stock status” work with ML modules to do chip, fundamental, and

technical analysis of stocks.

Fig. 5. A boundary, control, entity analysis of requirement.

Fig. 6. Sequential diagram of “get recommend stocks” requirement.

Considering the system extension and maintenance requirements, we use strategy de-

sign pattern to design the stock sieve class [11]. After the “StockSieveStrategy” interface

has been designed, different ML module designer can implement this interface to design

their strategy to do chip, fundamental, and technical analysis. The design is shown in Fig.

7. If the stock sieve strategy has been changed in the future, the designer can change fun-

damental, chip, or technical sieve classes in a more flexible way.

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1108

Fig. 8. The user interface of the system prototype.

Fig. 7. An implementation of “select candidate stocks” control class.

3.3 Implementation

A system prototype is design and implemented for demonstration. The programming

language, tools, and third-party services used in our prototype are shown below:

• Programming language: Python

• Social communication interface: Linebot API

• Cloud platform: Heroku

• Database: mangoDB

• Stock data API: yfinance, yahoo_fin

• Message broadcast API: schedule

The user interface is shown in Fig. 8.

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1109

4. DISCUSSIONS

Following the software development process discussed in Section 3, we explore the

training data and ML model used in the ML modules in different aspects. There are three

data types: fundamental, shareholder distribution, and technical data. Considering the char-

acteristics of stock data, those different data types have different data source and updating

cycle.

Because the trading data of stock market is changing every trading time and the rev-

enue of a listed company is updating every month, the stock data collecting and processing

have to be done in different time cycle. The data maintainer use implemented crawler or

stock data API to maintain those data. Since the data has been updated, the data analyzer

can use the system to re-train ML models. The data processing process and model training

process can be done atomically or manually.

4.1 ML Process and Software Development Process Analysis

The relationships among different types of data and models in different aspects are

shown in Table 4. We can get the relationships between ML process and software devel-

opment process by tracking the development steps of data collecting, preprocessing, model

training, and model evaluation modules.

The stock data crawler, stock database, and data analysis modules are designed to

handle issues of stock data collection and data preprocessing. The model training, stock

recommend, stock filtering, and stock trading point recommendation modules is related to

the issues of ML model training and application. The stock data is collected by the crawler

of stock data APIs, stored in a stock database, and processed by the data analysis module.

The processed data will be the training data source of the model training modules and those

trained and evaluated models is the basis of stock recommend, stock filtering, and stock

trading point recommendation modules.

Table 4. The relationships among data and ML models in different aspects.

The ML process and the software development process are not a waterfall model.

Their workflows are iterative. There are many feedback loops in their workflow. For ex-

ample, the step of model training may loop back to feature engineering, the model evalua-

tion and deployment may loop back to any of the previous ML stages, and the detail design

may loop back to architecture design. Those loop back cycles make the process of the

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1110

machine learning software engineering more complex but we can get better understanding

by clarify the sequence of ML stages and software development stages.

The relationship between ML processes and software development processes is

shown in Table 5. The x-axis is the software development process and the y-axis is the ML

process. The sign −1 and 1 mean one process before or after the other process. For example,

the relationship between “Model requirement” and “Architecture design” is −1. This indi-

cate we have to do “Model requirement” first then the “Architecture design” can be done.

In our implementation, we complete “Architecture design” in software process first, then

the ML process “Feature engineering” start, so their relationship is “1”. The symbol “0”

means both processes is on the same time period. For example, the ML process “Data

preprocessing” and the software development process “Detail design” can do on the same

time period.

Table 5. The relationship between ML processes and software development processes.

4.2 A Machine Learning Software Engineering for Stock Investment Software

Considering the analysis and design process of the intelligent stock investment system,

a workflow diagram of machine learning software engineering is shown in Fig. 8. The

stages on the left side are ML processes. The software development processes are dis-

played on right side of the diagram.

After requirements acquisition and basic requirements analysis done, analyzing the

model requirements of the ML model can be started. These basic requirements analysis

results have been shown in the use case diagram of Fig. 2. In our prototype implementation,

the ML modules and software modules are implemented by different teams. For better

work division and team cooperation we design the system architecture and module inter-

face first. After the architecture design has been done, the ML team start to design pro-

grams for data collection, data preprocessing, model training and model evaluation. The

software development team start to do the detail design on the same time.

The final product of ML team in this stage not only includes well-trained ML models

but also includes the workflow about how to retrain those models for future ML models

updating. The final product of the software development team includes the interface of ML

models. For example, the StockSieveStrategy interface shown in Fig. 6 is related to the

fundamental, chip analysis, and technical ML models. The steps of detail design, software

implementation, and ML model training and evaluation are iterative. The ML team can

deliver earlier version of ML models to software development team for system implemen-

tation and testing and deliver fine-turned ML models in the future. After ML models and

software prototype has been done, the integration and system testing can be started. Similar

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1111

with software module, the ML model might out of date because following the stock data

renewed the old ML model might cannot predict new situation well. The model monitoring

stage is used to represent such situation and the data analyzer or the system can update ML

models in this moment.

Fig. 10. A brief processes diagram of machine learning software engineering.

4.3 Stock Investment Software Design as a Utility Optimization Problem

There are more than 1000 stocks in Taiwan stock exchange market, using a ML model

for all stock prediction is impossible and training models for every stock is unreasonable

also. Basically, an investor only interested a few investing targets, not all stocks in the

market. Considering this issue, we can use a “lazy” strategy to solve the problem. The

system only train ML model assigned by the data analyzer in advance. When an investor

wants to know suggestions of a new stock, then the system start to train ML models for the

stock if the ML models do not exist or expired. The system only store N models. If the

number of models bigger than N, one model will be deleted to maintain the storage space.

The shortage of the strategy is longer response time if the stock is accessed in first time.

Although the lazy strategy is work, it is just a design strategy. Taking executing time

and storage space into account, we formulate those consideration to a utility optimization

problem.

Assume that a machine learning software S has machine learning models M1, M2, …,

Mn. Each model can be either reserved or on-demand depended on software analysis. The

on-demand model design logic is described briefly in the following statements:

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1112

◼ The amount of available space must be greater than the maximum of storage space of

on-demands models.

◼ The server response time must be reasonable if users submit on-demand requests.

Some assumptions are made to formulate the model, including a fixed training time

of machine learning model, a fixed storage size of machine learning mode and a fixed

response time of the other service module ignoring network latency. Notations are defined

as follows, and will be used in our research.

Notations

Ti The training time of model i

Si The storage size of model i

i The indicator of whether model is on-demand or not

 The trade-off coefficient between time and space

 The thread number of the deployed server

B The available buffer space for on-demand model

S The total storage size of the other service modules

ST The total storage threshold of the deployed server

T The computational time of the other service modules

RT The service response time threshold

With these notations, the utility optimization problem can be defined as follows:

 min (/) (1)((1) /) .i i i i i iT T S S

 + − −

Subject to

1. i{0, 1},

2. {0, 1},

3. Ti > 0,

4. Si > 0,

5. .

6. i(1 − i)Si + B + S ST,

7. B m
i
ax{iSi},

8. m
i
ax{iTi} + T RT

9. 1
 iTi + T RT

This utility optimization problem aims to minimize the trade-off between the training

time of on-demand models and the storage size of reserved models. In order to simultane-

ously compare the effect of training time and storage size, the normalization technique is

applied to scale both items. Constraint 1 is a binary constraint and states that machine

learning model can be either reserved or on-demand. Constraint 2 states that the trade-off

coefficient is between 0 and 1. Note that if = 1, it means that server storage is limited

and all model are on-demand. On the other hand, if = 0, the deployed server storage is

enough for all machine learning models. Constraint 3 and 4 ensure that the training time

and the storage size should be positive. Constraint 5 ensures that the thread number of the

deployed server should be a nature number. Constraint 6 and 7 state that the deployed

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1113

server needs to have available space for at least one on-demand models. Constraint 8 states

that the service response time of an on-demand request must be reasonable. Constraint 9

states that the service response of simultaneous on-demand requests must be reasonable.

The utility optimization problem is a binary optimization problem which is NP-hard

[12-14]. Therefore, there is no polynomial-time solution. It is seldom to analyze all the

stocks in the stock markets. There are many heuristic-based approaches for selecting po-

tential targets and we can use those approach to decide which stock can be choose to create

its ML model.

In our approach, we use stock chip analysis result and fundamental information to

select candidate target and a lazy strategy to train ML model. Other approaches are brief

describe as follows.

• Top-k market value: Many researches have demonstrated that the positive relationship

between market value and return of rate [15, 16]. It is a common used approach in stock

market. The famous Taiwan 50 ETF is based on the top-50 market value heuristics.

• Long/short average order status: Moving average (MA) has won its reputation in forming

trading strategies [17, 18]. The relationships between different MAs can be proxy vari-

ables of price trends. For example, an average order status is long, if short-MA, medium-

MA and long-MA are at the descending order. Long/short average order status are very

strong signal for the uptrend/downtrend of stock prices.

• Top-k news: News sentiment is correlated to investors’ sentiments and attentions, and

hence affect stock prices. Numerous researches have studied sentiment-based trading

strategies. [19, 20] In stock market, news sentiment can be used to identify the potential

popular stocks.

5. CONCLUSIONS

This paper introduces the design and implementation of an intelligent system for stock

investment decision making. A workflow of machine learning software engineering is dis-

cussed in the paper. We explore the relationship between ML process and software devel-

opment process by analyzing the design and implementation process of ML related mod-

ules. Although different ML based software might have different development workflow,

the experience proposed in this paper can contribute to the area of machine learning soft-

ware engineering.

There are three important time points when developing a machine learning based soft-

ware for the software development teams work division: requirement analysis, design, and

maintenance. In requirement analysis stage, the ML team starts to analysis ML models’

requirements and the software development team starts to analysis software requirements.

This is the first work division of ML team and software development team. In the design

stage, the ML team starts to collect and process data. The software development team can

design the software modules on the same time. After the interface between ML model and

software module has been designed, training and evaluating of ML models and software

modules implementation and testing can be processed simultaneous. Because the ML mod-

els might out of date frequently, the ML models should be monitored and updated if it is

not work well. Model monitoring and updating are important issues in the machine learn-

ing software engineering. The software development team might have to consider those

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1114

issues in the requirement analysis stage and design related interface for model updating.

The strategy design pattern is helpful to those requirements.

Executing time and storage space are two important issue when design a ML based

software. In this paper we propose a utility optimization problem to provide the designer a

way to consider trade-off between executing time and storage space.

There are still more challenges for the machine learning software engineering such as

how to do the integrating and system testing in a smooth way between ML model devel-

opment and software module development. Based on the results of this paper, we can ex-

plore those issues in the future.

REFERENCES

1. L. P. Marcos, Advances in Financial Machine Learning, Wiley, NY, 2018.

2. K. Lano and H. Haughton, Financial Software Engineering, Springer Cham, 2019.

3. S. Amershi et al., “Software engineering for machine learning: A case study,” in Pro-

ceedings of the 41st International Conference on Software Engineering in Practice,

2019, pp. 291-300.

4. M. S. Rahman, E. Rivera, F. Khomh, Y.-G. Guéhéneuc, and B. Lehnert, “Machine

learning software engineering in practice: An industrial case study,” arXiv Preprint,

2019, arXiv:1906.07154.

5. A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Adoption and effects of software

engineering best practices in machine learning,” in Proceedings of ACM International

Symposium on Empirical Software Engineering and Measurement, 2020, pp. 1-12.

6. H. Washizaki, et al., “Software-engineering design patterns for machine learning ap-

plications,” Computer, Vol. 55, 2022, pp. 30-39.

7. G. L. Morris, Candlestick Charting Explained: Timeless Techniques for Trading Sto-

cks and Futures, 2nd ed., McGraw-Hill Trade, NY, 1995.

8. T. Y. Yu, “The relationship between change in the number of shareholders and stock

return”, Master Thesis, Department of Finance, National Chengchi University, 2017.

9. https://www.tdcc.com.tw/smWeb/QryStockAjax.do

10. XGBoost https://arxiv.org/abs/1603.02754

11. M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Profes-

sional, NY, 2002.

12. R. S. Pavithr and Gursaran, “Quantum inspired social evolution (QSE) algorithm for

0-1 knapsack problem,” Swarm and Evolutionary Computation, Vol. 29, 2016, pp. 33-

46.

13. Z. Yang, B. W.-K. Ling, and C. Bingham, “Extracting underlying trend and predicting

power usage via joint SSA and sparse binary programming,” in Proceedings of IEEE

International Symposium on Circuits and Systems, 2013, pp. 1312-1315.

14. Md. A. K. Azad, A. M. A. C. Rocha, and E. M. G. P. Fernandes, “Improved binary

artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems,”

Swarm and Evolutionary Computation, Vol. 14, 2014, pp. 66-75.

15. R. W. Banz, “The relationship between return and market value of common stocks,”

Journal of Financial Economics, Vol. 9, 1981, pp. 3-18.

16. “Analysis of the effect of economic value added and market value added on stock

https://www.tdcc.com.tw/smWeb/QryStockAjax.do

DESIGN AND IMPLEMENT AN INTELLIGENT SYSTEM FOR STOCK INVESTMENT DECISION MAKING 1115

return on the Indonesian stock exchange case study on health companies in 2019-2020,”

Hasanuddin Journal of Applied Business and Entrepreneurship, http://journal.un-

has.ac.id/index.php/hjabe/article/view/21662, 2022.

17. E. Pätäri and M. Vilska, “Performance of moving average trading strategies over var-

ying stock market conditions: the Finnish evidence,” Applied Economics, Vol. 46,

2014, pp. 2851-2872.

18. J.-Z. Huang and Z. (James) Huang, “Testing moving average trading strategies on

ETFs,” Journal of Empirical Finance, Vol. 57, 2020, pp. 16-32.

19. D. E. Allen, M. McAleer, and A. K. Singh, “Daily market news sentiment and stock

prices,” Applied Economics, Vol. 51, 2019, pp. 3212-3235.

20. W. Zhang and S. Skiena, “Trading strategies to exploit blog and news sentiment,” in

Proceedings of the 4th International AAAI Conference on Weblogs and Social Media,

2010, pp. 375-378.

Chiung Hon Lee (李俊宏) received the Ph.D. degree in Elec-

tronic Engineering from the National Chung Cheng University in

Taiwan in 2006. He is an Associate Professor at Department of Com-

puter Science and Information Engineering, Feng Chia university in

Taiwan. His research interests are in fuzzy time series, machine learn-

ing software engineering, and machine learning for investment deci-

sion making.

Tsung-Ju Lee (李宗儒) received the Ph.D. degree in Computer

Science and Engineering from National Chiao Tung University, Tai-

wan, in 2013. He is an Assistant Professor in the Department of Fi-

nance at Feng Chia University. He is also the Deputy Director of

FinTech Research Center at Feng Chia University. His research in-

terests include FinTech, green finance, algorithmic trading, machine

learning and data mining.

Yu-Sheng Chiang (姜育昇) is an MS student at Department of

Computer Science and Information Engineering, Feng Chia Univer-

sity in Taiwan. He received his Bachelor degrees in the Department

of Statistics from Feng Chia University, Taiwan. His research in-

terests include machine learning, investment decision making, and

statistical test applications.

CHIUNG HON LEE, TSUNG-JU LEE, YU-SHENG CHIANG, SHIH-YI YUAN, JYH-HWA LIOU

1116

Shih-Yi Yuan (袁世一) received his Ph.D. degree in Electrical

Engineering from National Taiwan University, Taipei, Taiwan, in

1997. He joined the Communications Engineering Department of

Feng Chia University, Taichung, Taiwan in 2010 as an Associate

Professor. He is also a member of ICEMC center of Feng Chia

University. His research interests include driver design, algorithm

design for digital system EMI estimation, and software IC-EMC

model development for PI, EMI, or EMS of a digital system.

Jyh-Hwa Liou (劉智華) is an Assistant Professor at the De-

partment of Finance, Feng Chia University in Taiwan. She received

her Ph.D. degree from the Institute of Information Management,

National Chiao Tung University in Taiwan. Her research interests

include machine learning, deep learning, social computing and fi-

nancial technology.

