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Efficient retrieval of mathematical expressions over web is a complex pro-
cess as compared to simple text search. This is only possible when the syntactic
(e.g. Textual) and semantic (e.g. Structural) information of a mathematical ex-
pression is retrieved properly and analyzed methodically. In this paper, we
are proposing a technique that indexes expressions along with their syntac-
tic and semantic information. These expressions are represented in Content-
MathML(CMML). To improve the memory efficiency in index, an encoding
technique is introduced which encode CMML mathematical expressions in
Braille Unicode characters. In order to improve ranking of retrieved docu-
ments, a weighting function is introduced which assign a weight to each index-
ing term. The weighting score of each term contributes in ranking function that
improves the rank of a document which contains query terms. The proposed
technique is evaluated on NTCIR-12 Wikipedia and Arxiv corpora. Perfor-
mance is also measured using NTCIR-MathIR evaluation criteria. The preci-
sion for Wikipedia-formula-queries is achieved 47% and for Arxiv is achieved
44% at top 5 documents.

Keywords: information retrieval, formula retrieval, term ranking, structure
matching, term encoding, formula indexing

1. INTRODUCTION

The scientific information available on the World Wide Web (WWW) mostly
comprises mathematical equations and expressions. Searching these mathematical
expressions using typical web search engines is not only inefficient but also quite
difficult. Inefficient, since the web search engines ignore the inherent tree structure
of mathematical expressions and render them as text only. Difficult, because no
proper interface is provided to input queries involving mathematical expressions.
Though some search engines provide the facility to write simple math queries in
the text format (e.g. xˆ2+2x+1=0) but for the queries with complex structures
such as equation

∫ 2π

0 esinθ dθ , a plain text box is merely insufficient [1].
The systems which deal with the searching mathematical expressions from

the collection of scientific documents are called Mathematical Search Engines
or more formally Mathematical Information Retrieval (MIR) systems. Unlike
traditional text retrieval tasks, the retrieval of mathematical expressions is
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complex, as the search problem is not just syntactical matching of terms but
more a semantic reasoning task. Hence, the retrieval system is required to
implement a proper data structure for preserving both textual and contextual
information of mathematical expressions so that the more relevant information
could be retrieved. The majority of MIR systems use document collections that
contain mathematical expressions in LATEX or Mathematics Markup Language
(MathML) formats. The LATEX/MathML formats are highly structured and
are used in different MIR systems such as Math Web Search [2], EgoMath [3],
and Math Indexing and Searching [4] for retrieving mathematical information. A
small comparison of these systems is shown in Table 1.

This paper focuses on semantic retrieval of math expressions, memory-
efficient indexing, and ranking of retrieved documents. The proposed indexing
structure helps in retrieving the true syntactic and semantic (e.g. meaning of
mathematical expression) results for the query of mathematical expressions. For
memory-efficient indexing, we are introducing an encoding technique that reduces
the size of indexing terms in order to make smaller index in memory. This paper
also discusses a scoring method which assign a weight to each indexing term for
improving the rank of retrieved documents.

Section 2 of the paper discusses the theories and approaches in the field of
mathematical retrieval and concludes with the discussion of limitations of existing
approaches and the need for the proposed solution. Section 3 presents the technical
details and the framework of our proposed approach, we will also discuss the data
corpus used in the experiments, scoring method of the documents, and crafting a
mathematical query. Section 4 is dedicated to technical details and experimen-
tal setup, Section 5 discusses the acquired results, and Section 6 concludes the
presented work by listing the advantages and limitations of the proposed approach.

2. EXISTING MIR SYSTEMS

In the last few years, many successful attempts have been made to develop
efficient MIR systems. As a result, a sizable number of papers has been published
in the field of MIR which elaborates the techniques of indexing and retrieval of
math formulae. Indexing methods and its data structures are the key elements
for retrieving information efficiently, as suggested in Section 1 that researchers use
different approaches for indexing including text-based and tree-based for retrieving
mathematical information, Table 1 shows the various text-based and tree-based
systems.

2.1 Text-Based Indexing

In text-based indexing, mathematical expressions are converted into a se-
quence of strings and store into the inverted index. Inverted index can be used in
any MIR system in which mathematical expressions are converted into text strings
using linearization process and tokenized them into sub-strings, these tokens are
stored into index along with their location and frequency of their occurrence in the
documents. It also provides a fast access to large datasets. Fast query processing
can be obtained with an inverted index as it makes use of specific similarity func-
tions e.g., the cosine similarity, which only considers the words and their weights
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are present in the query. It is a simple and a fast process for formulae retrieval
but ignores the contextual meaning of formulae.

Table 1. Comparison of existing MIR systems.
MIR
System

Data Sets Formula
Representation

Retrieval
Type

Term
Encoding

Ranking
Function

Text-Based Indexing
DLMF DLMF MathML Syntactic × ×
MathDex Wikipedia,

ArXiv
PMML Syntactic × ×

EgoMath Wikipedia PMML Syntactic × ×
MCAT ArXiv CMML Syntactic +

Semantic
× ×

MIaS ArXiv PMML Syntactic × X

OPMES ArXive,Math
StackExchange

LATEX Syntactic × ×

Tree-Based Indexing
MWS ArXiv CMML Semantic X ×

Tangent ArXiv CMML Syntactic × ×

WikiMir DLMF, ArXiv,
Wikipedia

LATEX Syntactic +
Semantic

× X

2.1.1 DLMF

DLMF uses LATEX documents for indexing. The collection of documents is
converted into parallel MathML for generating a semantic representation of math-
ematical formulae. DLMF uses three pre-processing steps before indexing known
as textualization, flattening, and normalization. DLMF introduces a new data
structure for normalization of an equation, called sorted parse tree. It is a tree
whose branches of any node are sorted from left to right and it does not alter the
mathematical meaning [5].

2.1.2 MathDex

MathDex is math-aware full text search engine [6], which converts retrieved
documents into XHTML+MathML. It linearizes math equations into a sequence
of text tokens and indexes them into Lucene1 indexing format. Complex math
equations are broken down into simpler sub-expressions and weights are assigned
to each sub-expression as per its complexity, length, and nesting depth. The
system uses similarity search for query matching.

2.1.3 EgoMath

EgoMath converts various formats (e.g. LATEX,TEX, PDF, HTML, etc.) of
documents into Content MathML(CMML) for making mathematical formulae in-
dex. It stores formula and its sub-formulae into an index in post fix notation, each
formula is stored in variety of different synonyms, called augmentation. A formula
1http://lucene.apache.org/

http://lucene.apache.org/
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can be found in various format, therefore generalization is applied to all struc-
tures and single structure stores into index where commutativity, associativity,
and distributivity hold.

2.1.4 MCAT

MCAT is another math-aware full-text search engine. It indexes mathemat-
ical formulae written in PMML. Initially unnecessary tags are removed from the
mathematical equations, then three types of encoding are used for indexing called
ordered path (opath), unordered path (upath), and sisters [7]. It uses Lucene
similarity search algorithm for matching query results.

2.1.5 MIaS

MIaS is a Lucene based math-aware full-text search engine [4]. It accepts
XHTML documents for making an index. In the pre-processing phase, mathemat-
ical formulae are extracted from the documents in PMML format then they are
tokenized into a sub-formulae. Canonicalization is used to provide an appropriate
order to formulae and sub-formulae [8]. A Unification algorithms is also applied
on formulae and sub-formulae. In the indexing process, all formulae are indexed
with their original and unified forms. The weight is assigned to formula and its
derivatives. The inverted index is used for indexing.

2.1.6 OPMES

OPMES uses symbolic similarity search method for searching documents from
an index and uses operator tree for storing LATEX math expressions. OPMES
stores index in two parts; the first part of index stores leaf-root path labels and
the second part of index stores mapping of formula ID to additional information
of that formula. OPMES can search documents by using similarity-search and
structural-search methods [9].

2.2 Tree-Based Indexing

In tree-based indexing method, the index is stored in a tree structure format.
A tree structure contains nodes and edges, data items are stored in nodes and
edges provide a link between data items. The tree based MIR systems usually
store operators and functions in nodes while variables and constants are stored
in the leaves of a tree. One of the advantages of tree-based indexing is that it
allows the context based search. Following is a description of some Tree-Based
MIR systems.

2.2.1 MatWebSearch (MWS)

The MWS uses Substitution-Tree(ST) to perform indexing [10]. In pre-
processing phase, XHTML+MathML documents are transformed into a harvest,
which contains document ID, formula ID, and formulae in CMML. MWS converts
all variables of an equation into generic variables, this process is called unification,
these generic variables are inserted into substitution tree [2]. The major advantage
of making an index into substitution tree is that the actual terms are replaced with
auto-generated substitution symbols, and they are stored at each node, helping in
decreasing tree storage space and improving query processing time.
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2.2.2 Tangent Math

Tangent indexes math expressions into Symbol Layout Tree (SLT) [11, 12],
where symbols are mapped with their layout in order to the occurrence of con-
stants, operands, variables and relationship represented in an expression [13].
Tangent uses Maximum Subtree Similarity (MSS) ranking metric for query-by-
expression that produces intuitive rankings of formulae based on their appearance,
as represented by the types and relative positions of symbols.

2.2.3 WikiMir

WikiMir is another MIR system which retrieves math formulae from the col-
lection of Wikipedia documents. It extracts math formulae from LATEX and PDF
documents and converts them into PMML format before indexing. It indexes math
formulae into a presentation tree [14] and employs inverted index data structure
for indexing. WikiMir3.0 uses semantic tree method to store math formulae [15].

2.3 Observations

As discussed earlier, Mathdex works as a normal text search engine, convert-
ing MathML expressions into a sequence of text encoded math fragments. It does
not consider the context of math expressions and return results on the basis of
matching text encoded math fragments. Unlike MathDex, EgoMath represents
math expressions into a flatten term and they are stored as text terms in the
index. Additionally, in EgoMath2, augmentation and ordering process are imple-
mented on each expression for semantic enrichment, which improves the recall of
the system but precision is not up to the mark. Another system DLMF also per-
forms text-based indexing by converting all symbols and operators into text and
stores mathematical expressions in a sequence of text tokens. DLMF only indexes
TEX / LATEX documents and is not able to capture the hierarchical structure of
mathematical expressions [5]. However, MIaS is a text-based search engine which
not only indexes formula and sub-formulae in text format but also ranks the doc-
ument, OPMES creates an index in two parts occupying huge space in memory.
It was also observed that the first-time querying takes longer time than the time
of subsequent same queries [9].

In tree-based indexing methods, MWS uses substitution tree for making an
index of math expressions. The query retrieval time increases if the tree grows.
Tangent Math is an extension of MWS. It segregates expressions by their size, due
to which it is difficult to determine how relevant an expression is to a search query
simply based on its size. Therefore, the retrieval algorithm can overlook expres-
sions that should be returned as relevant search result [16]. Contrary, WikiMir3.0
creates two indices (e.g. formula and context) in the memory, thus occupying large
space. The authors also claim that the performance of WikiMir3.0 in terms of
context and DCG score is higher than MIaS [15].

3. PROPOSED APPROACH FOR RETRIEVING
MATHEMATICAL INFORMATION

It has been observed from the above discussion that MIR systems require
further improvements in the following three areas,

1. Preserving semantics (e.g. structural information) of math equations



80 Sharaf Hussain and Shakeel Khoja

2. Memory management for storing a math index

3. Ranking of retrieval documents

Table 2. Braille equivalent Unicode symbols for CMML elements.
S.No: CMML Element Symbol S.No: CMML Element Symbol
1 <apply> ⠃ ( 6 <times> ⢊ (
2 <ci> ⠘ ( 7 <divide> ⠬ (
3 <cn> ⠙ ( 8 <csymbol> ⠦ (
4 <plus> ⡯ ( 9 <subscript> _(
5 <minus> ⡜ ( 10 <superscript> (̂

In the proposed approach, we have focused on above mentioned areas and de-
veloped new strategies for handling these issues. The Content-MathML(CMML)
is only available language that can store the structure of mathematical expres-
sion. Therefore, CMML encoded expressions are used for indexing with necessary
modification. The objective of using CMML is to provide a precise encoding for
the basic meaning of a mathematical expression, rather than any specific ren-
dering of the expression. Standardization, formation of Mathematical Expression
Tree(MET), and Generalization are the major processes that are applied on math-
ematical expressions before indexing.

3.1 Standardization

Standardization is a process that converts mathematical expressions into a
standard format. Mathematical expressions are made up of numerical constants
(numbers), variables, and arithmetical operators. In addition, functions are also
very important part of mathematical expressions such as √.,∑,and

∫
, which are

used for performing some specific tasks. A mathematical expression can be writ-
ten in different formats by using the symbols, operators, functions, and numbers
such as x

y can be written in x/y, or xy−1 format. In standardization process, mul-
tiple forms of an equation are converted into a single standard form that enables
searching to retrieve more relevant results.

3.2 Formation of Math Expression Tree (MET)

Mathematical Expression Tree (MET) is a tree structure of mathematical
expressions that are encoded in CMML. Before the tree is developed, CMML ele-
ments including tags, attributes, and content dictionaries are replaced by Unicode
characters preceded with opening elliptical bracket ’

(
’ and end with closing ellip-

tical bracket ’
)
’. The sequence of Unicode character is selected from U+2800 to

U+28FF, which are Braille patterns. The Braille patterns are chosen for encod-
ing because they are only used for printing Braille documents and are not used
in scientific documents for formulae representation. The result of this conversion
produces a concise sequence of Unicode characters as index terms that occupies
small space in the memory. As as example, some equivalent Unicode characters
for CMML elements are shown in Table 2.

The comparison of CMML and Braille encoded tree (e.g. 1
1+x2 ) is shown in

Table 3, which clearly shows that Braille encoded tree is more concise and memory
efficient.
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Table 3. Standardized and generalized trees for 1
x2+1 .

CMML Encoded Tree Braille Encoded Tree
< apply >
< divide/ >XXXXX
�����

< cn >
1

< /cn >

< apply >
< plus/ >

aaaa
!!!!

< apply >
< csymbole >

superscript
< /csymbol >

b
bb

"
""

< ci >
x

< /ci >

< cn >
2

< /cn >

< cn >
1

< /cn >

⠃ (⠬ (

aaa
!!!

⠙ (1) ⠃ (⡯ (

b
bb

"
""

⠃ (⠦ (ˆ(

ll,,
⠘ (x) ⠙ (2))))

⠙ (1)))

CMML Encoding: <apply><divide/><cn>1</cn><apply><plus/><cn>1</cn>
<apply><csymbol>superscript</csymbol><ci>x</ci><cn>2</cn></apply>
</apply></apply>

Braille Encoding: ⠃ (⠬ (⠙ (1)⠃ (⡯ (⠃ (⠦ (ˆ(⠘ (x)⠙ (2))))⠙ (1)))

3.3 Generalization

Generalization of a mathematical expression is a process in which we replace
variables, constants, and operators with unified symbols. The generalized tree
describes the general structure of an expression which is useful for searching math
expressions those have same contextual meaning. The math expressions are called
semantically similar, When they are contextually equal. Therefore, generalization
helps to search mathematical expressions semantically. The general structure of
an equation is called generalized form.

Generalization is divided into two types, simple and extended generalization.
In simple generalization, variables, constants, and operators are replaced with
Unicode symbols U+25ED (◭ ), U+25D1 (◑ ), and U+25CC (◌ ) respectively. In
extended generalization, different variables, constants, and operators are replaced
with ◭ i, ◑ i, and ◌ i symbols respectively, where i = 1,2,3, . . . ,n. The variables,
constants, or operators share the same identification, if they are repeating in an
equation.

There are various levels of generalization, in first level only constants are
replaced with◑ symbol, In the second level, variables are replaced with ◭ symbol.
In third level both constants and variables are replaced with ◑ and ◭ . In
fourth and last level, operators are replaced with ◌ along with ◑ and ◭ .
All generalized forms are stored in the inverted index for searching. Simple and
extended generalization forms of (x+y)3

(x2−y2)
are shown in Table 4.

Table 4. Simple and generalized forms of an equation (x+y)3

(x2−y2)
.

Form Simple Generalization Extended Generalization
1 (x+y)◑

(x◑ −y◑ )

(x+y)◑

(x◑ −y◑ )

2 (◭ +◭ )3

(◭ 2−◭ 2)

(◭ 1+◭ 2)
3

(◭ 2
1−◭

2
2)

3 (◭ +◭ )◑

(◭ ◑ −◭ ◑ )

(◭ 1+◭ 2)
◑ 1

(◭
◑ 2
1 −◭ ◑ 2

2 )

4 (◭ ◌ ◭ )◑ ◌ (◭ ◑ ◌ ◭ ◑ ) (◭ 1◌ 1◭ 2)
◑ 1◌ 2(◭

◑ 2
1 ◌ 3◭

◑ 2
2 )
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3.4 Scoring of MET Terms and Documents Ranking

In order to improve the ranking of retrieval documents, different weights are
assigned to MET and its subtrees. These weights are computed on the basis of
their level of appearance in the tree structure. The weights are also assigned to
each generalized form of a tree and its subtrees. In the proposed system, expression
and its generalized forms are stored in the index along with their weights. The
weight of an expression is computed by the following formula:

WR =
ltl{(1+wv|v|+wc|c|+wo|o|)× (|v|+ |c|+ |o|)}

n
(1)

A mathematical expression is a phrase that groups together numbers (constant),
letters (variables) or their combination joined by operators (+, -, ×, /,ˆ), to
represent the value of an entity. In Eq. (1), arbitrary weights are assigned to
variables(e.g. wv = 0.8), operators(e.g. wo = 0.6), and constants (e.g. wc = 0.5) as
per the importance of these elements in a mathematical expression. The weight
for tree level constant (e.g. l = 0.7) is selected at the higher side because the level
of tree or subtree tl value will reduce it significantly when the tree level increase.
The ltl is a discount factor which decreases the weight of a expression according
to its level of appearance in the tree. The product of weights (e.g. wv,wc, and
wo) with the cardinalities of variables, constants, and operators (e.g. |v|, |c|, and
|o|) are called weighting component (e.g. wv|v|+wc|c|+wo|o|) which determines
the weight of an expression in the MET. The sum of cardinalities of terms (e.g.
|v|+ |c|+ |o|) determines the combined weight of an mathematical expression, this
sum produces a gain in the total weight of an expression. The cardinality of a
term is unimportant when generalization is performed, therefore the term’s car-
dinality can be eliminated on the basis of generalization scheme. For example, if
a mathematical expression is generalizing with respect to variables and constants
then WR formula is rewritten as,

Wvc =
ltl{(1+wo|o|)× (|v|+ |c|+ |o|)}

n
(2)

In Eq. (2), cardinalities of variables and constants are eliminated because they
have been generalized and at this level are not considered as important entities in
the mathematical expression tree (MET). However, these cardinalities of variables
and constants are not removed from the combined weight of the term (e.g. (|v|+
|c|+ |o|)) because it determines the actual weight of mathematical expression. As
per example, the Real (WR) and Generalized (Wvc) weighting scores of mathematical
expression

( 1
x2+1

)
are given in Table 5.

The query is crafted in such a way that it can be retrieved fully and partially
matched math expression from the index. It is written in CMML format and is
converted it into text by applying pre-processing steps as defined in Section 4.
The query is divided into sub-parts of the given mathematical expression. Whole
part and subparts of the query are also represented in various generalized forms.
The complete query is the composition of whole part, subparts, and generalized
forms. For example, if the query is 1

1+x2 , then after the pre-processing, the query
will be represented as;
Query:
⠃ (⠬ (⠙ (1)⠃ (⡯ (⠃ (⠦ (ˆ(⠘ (x)⠙ (2))))⠙ (1))) OR
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Table 5. Weighting scores of
( 1

x2+1

)
.

Term# Expression Generalization tl |v| |c| |o| n WR Wvc

1 1
x2+1

◑
◑ +◭ ◑

0 1 2 3 7 3.2285 1.6857

2 x2 +1 ◭ ◑ +◑ 1 1 2 2 5 2.2400 0.9800

3 x2 ◭ ◑ 2 1 1 1 3 1.0943 0.4573

⠃ (⡯ (⠃ (⠦ (ˆ(⠘ (x)⠙ (2))))⠙ (1))) OR
⠃ (⠦ (ˆ(⠘ (x)⠙ (2)))) OR
⠃ (⠬ (⠙ (◑ )⠃ (⡯ (⠃ (⠦ (ˆ(⠘ (◭ )⠙ (◑ ))))⠙ (◑ ))) OR
⠃ (⡯ (⠃ (⠦ (ˆ(⠘ (◭ )⠙ (◑ ))))⠙ (◑ ))) OR
⠃ (⠦ (ˆ(⠘ (◭ )⠙ (◑ ))))

In above query only variables and constants are generalized.
The Lucene’s practical function is used for computing the score of retrieved

documents as described in Eq. (3).

Score(q,d)=queryNorm(q)×Coord(q,d)×
[

∑
n
i=0

(
t f (ti∈d)×id f (ti)2×ti.getBoost()×norm(ti,d)

)]
(3)

Score(q,d) is the relevance score of document d for query q. The queryNorm(q) is
the query normalization factor that is used to normalize a query so that results
from one query may be compared with the results of other. The Coordination
factor Coord(q,d) is a fraction of math terms found in the document and the
total number of math terms found in the query. The term t f (t ∈ d), computes the
frequency of each query term in the document. The id f (t) computes the inverse
document frequency of query terms in the retrieved document.

The ti.getBoost() is a boosting function of a math term that appears in the
document. The boosting values are assigned to math terms during the indexing
process. In Table 5, weights are assigned to each math term by using Eqs. (1) and
(2). The q.getBoost() is a boosting function for math terms which appears in the
query. The boosting value is set during the query formation process. Generally
the default value of g.getBoost() is set to 1.

The norm(ti,d) is a function that combines the boost and length factors. The
value of field boost set when one field is more important to others. Where as
length normalization is computed during indexing on the basis of number of math
terms appeared in the document. Finally, the retrieved documents are arranged
in descending order according to the score they get during the retrieval process.

The following section discuses the overall architecture and development of our
proposed MIR system.

4. SYSTEM DESIGN AND DEVELOPMENT

The suggested system is divided into four phases, data-collection and pre-
processing, indexing, querying, and the front-end design & development. Each
phase is developed as a separate module. The architecture of a proposed system is
shown in Figure 1, also suggesting the flow and storage of data in various modules.
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Fig. 1. Architecture of the proposed system.

4.1 Data Collection and Pre-Processing

To perform the preliminary experiments, two data sets, NTCIR-12-MathIR-
Wikipedia2 and ArXiv are used for the creation of mathematical expressions index.
The Wikipedia collection contains 64,8414 math expressions in 20,185 documents
and occupies 2.2GB of space for an index. The ArXiv’s collection contains 154.577
million math expressions in 440,000 documents which occupy 692GB of space for
its index in the memory.

In the Pre-processing phase, LATEX and Web documents are converted into
Extensible Hypertext Markup Language (XHTML) using LATEXNLMATH tool.
The Wikipedia HTML documents contains math formulae in PMML and LATEX
format but CMML encoding was missing. During the pre-processing of documents,
we inject CMML encoding into Wikipedia documents once PMML encoding was
carried out, without affecting the originality of documents, the process of CMML
injection into Wikipedia documents is shown in Algorithm 1. Once this process
was executed, the documents were ready for entering into the indexing phase.

4.2 Indexing

A goal of the proposed indexing technique is to preserve the syntactic and se-
mantic information of math expressions. The indexing involves four sub-modules,
standardization, the creation of MET, generalization, and creation of an index.

In the standardization process, multiple forms of a mathematical expression
are converted into a single standard form, as discussed in section 3.1. The second

2http://ntcir-math.nii.ac.jp/data
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Algorithm CMML_Fussion(doc)
Input: Wikipedia document
Output: WikiPedia document augmented with CMML encoding of LATEX equations
LinePos ← 0;
Regex ← (? <= displaystyle).∗ (? =}< /annotation >);
while ((line=doc.readLine()) !null) do

if search(Regex,line)=True then
LatexEq ← getEq(Regex,line);
CmmlEq ← LatexToCMML(LatexEq); . Conversion via latxmlmatha

AddEq(doc,CmmlEq,LinePos+1);
end
LinPos ←LinePos+1;

end
Algorithm 1: Inject CMML encoding into WikiPedia document.

ahttps://dlmf.nist.gov/LaTeXML/manual/commands/latexmlmath.html

phase of indexing process is a MET development module. It forms a tree and then
extracts math expressions from nodes to leaves, where each path of a node to a
leaf represents part of an equation (i.e. sub-expression) but root to leaf defines the
complete equation. The level of each path from a node to leaf determines the score
of expression, which will be used to rank the document during query search. The
third module of indexing is generalization which is used to generate generalized
forms of mathematical expressions. It is divided into four levels as suggested in
Section 3.3.

The mathematical expression tree, sub-trees, and their generalized forms are
considered as strings. These strings are stored into an inverted index along with
their weights. The inverted index also stores document ID, the title of a docu-
ment, path of a document, and the location of mathematical expressions in the
document.

4.3 Query Processing

Querying is an important component of MIR system which is responsible to
get a query from the users and produce results. In the proposed system, users
can input queries in CMML, LATEX, or in GUI environment [1]. Internally, the
system can accept queries only in CMML, therefore, the LATEX or GUI queries
are translates into CMML format before processing. Similarly, the query written
in graphical format is first translated into LATEX and then converted into CMML.
The input query is converted into a standard format by using the standardization
process. The MET and its subtrees are created from a standardized query using
the MET module, the generalization procedure is applied on MET and its subtrees.
The final query is the logical combination of MET and its subtrees along with all
their generalized forms as discussed in Section 3.4.

4.4 Document Ranking

The retrieved documents are ranked according to the similarity matching
among mathematical expression trees found in a query and the document. The
weight of both generalized and non-generalized trees are contributed to assigning
a rank to a document. The rank of a document is computed by the Eq. (4), as
discussed in Section 3.4.

https://dlmf.nist.gov/LaTeXML/manual/commands/latexmlmath.html


86 Sharaf Hussain and Shakeel Khoja

5. SYSTEM EVALUATIONS AND RESULTS

In this section, a detailed description of system evaluations and obtained
results are provided. The evaluation of MIR system provides an insight to the
performance of the different internal component and therefore certain benchmarks
evaluation criteria are required. NTCIR provides the evaluation matrices for mea-
suring the performance of IR systems. NTCIREVAL is a toolkit for evaluating
various types of IR system including ranked retrieval, diversified ranked retrieval,
ranked retrieval evaluation based on equivalence classes, and NTCIR 1CLICK
task. In the proposed system, documents are ranked on the basis of their scores
in the corpus. Therefore, ranked retrieval is used to measure the performance of
the proposed system.

5.1 Results

In order to investigate the performance of the proposed system, we have de-
veloped an evaluation framework based on the techniques suggested in NTCIR-
12-MathIR Ranked Retrieval Task. Since NTCIR-12 is mainly composed of two
corpora i.e. The Wikipedia and ArXiv collections, therefore, we have evaluated
our system using both Wikipedia and Arxive Math IR collections. The NTCIR-12
provided formula queries to participants to evaluate the system, the Wikipedia For-
mula Browsing (NTCIR12-MathWikiFormula) subtask contains total 40 queries,
out of which 20 queries are without wildcards and remaining queries are with
wildcards. The execution of 20 queries without a wildcard were performed. Simi-
larly, the Arxiv Formula Browsing subtask (NTCIR12-Math-queries- participants)
containing 29 queries which are the combination of text and formulae were also
performed. Since proposed system is based on formula search only, so we only
selected Arxiv formula queries for the evaluation.

The evaluations are performed using the software provided by the NTCIR12
(NTCIREVAL3) for the evaluations of math IR systems. We have selected different
measurements for the evaluations as suggested by the NTCIR12 including Preci-
sion (P), nDCG, MSnDCG, Q-measure and Expected Reciprocal Rank (nERR).

Table 6. Evaluations - NTCIR-12 WikiPedia formula queries.
@k AP Q-measure AP Q nDCG MSnDCG P nERR
5 0.4932 0.7549 0.4550 0.4171 0.4902 0.4966 0.4700 0.6569
10 0.4932 0.7549 0.3648 0.3390 0.4585 0.4613 0.4000 0.6585
15 0.4932 0.7549 0.3214 0.3071 0.4571 0.4595 0.3733 0.6616
20 0.4932 0.7549 0.2956 0.2904 0.4592 0.4615 0.3600 0.6625
30 0.4932 0.7549 0.2770 0.2920 0.4671 0.4708 0.3317 0.6632
100 0.4932 0.7549 0.3532 0.4274 0.5614 0.5758 0.2050 0.6649
200 0.4932 0.7549 0.4291 0.5877 0.6517 0.6759 0.1445 0.6652
500 0.4932 0.7549 0.4713 0.6941 0.7324 0.7651 0.0771 0.6652
1000 0.4932 0.7549 0.4932 0.7549 0.8016 0.8416 0.0474 0.6652

The Wikipedia queries without wildcards resulted in the nDCG value of 49.02%,
the MSnDCG value of 49.66%, Precision values of 47%, the Average Precision
value of 45.50%, and nERR value of 65.69% at top 5 documents. All Wikipedia
results are shown in Table 6.
3http://research.nii.ac.jp/ntcir/tools/tool-en.html

http://research.nii.ac.jp/ntcir/tools/tool-en.html
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The Arxiv queries without text resulted in the nDCG value of 48.38%, the
MSnDCG value of 47.88%, Precision values of 44%, the Average Precision value of
44%, and nERR value of 56.20% at top 5 documents. All Arxiv results are shown
in Table 7.

Table 7. Evaluations - NTCIR-12 ArXiv formula queries.
@k AP Q-measure AP Q nDCG MSnDCG P nERR
5 0.3483 0.4058 0.4400 0.4276 0.4838 0.4788 0.4400 0.5620
10 0.3483 0.4058 0.3099 0.3035 0.4390 0.4300 0.3400 0.5664
15 0.3483 0.4058 0.2557 0.2597 0.4433 0.4360 0.3067 0.5668
20 0.3483 0.4058 0.2690 0.2822 0.4619 0.4573 0.3400 0.5671
30 0.3483 0.4058 0.3171 0.3535 0.5203 0.5235 0.3267 0.5672
100 0.3483 0.4058 0.3261 0.3669 0.5809 0.5903 0.1300 0.5796
200 0.3483 0.4058 0.3434 0.3959 0.6447 0.6614 0.0830 0.5813
500 0.3483 0.4058 0.3477 0.4045 0.6640 0.6826 0.0364 0.5813
1000 0.3483 0.4058 0.3483 0.4058 0.6673 0.6862 0.0186 0.5813

The above results show the performance of the proposed system. Having exam-
ined the result of both Wikipedia and Arxiv tasks, it has been observed that the
performance of Precision, Average Precision, and Q-measure is maximum at top 5
documents, while the performance of nDCG, MSnDCG, and nERR are maximum
at top 1000 documents.

The various MathIR systems participated in the NTCIR12-MathIR competi-
tion, their evaluation results are reported in literature [17]. We have also compared
our performance with the NTCIR12 systems and have observed that our proposed
system is equally good with NTCIR-MathIR system. The comparison of our sys-
tem with the systems which participated in NTCIR-12 is given in Table 8.

Table 8. Comparison of proposed system with other systems [16].
ArXiv Main Task

MIR System Precision
@5 @10 @15 @20

WikiMir 0.2207 0.1828 0.1609 0.1379
MCAT 0.2552 0.2379 0.2092 0.1845
MIaS 0.1241 0.1345 0.1218 0.1069
Tangent3 0.2552 0.2000 0.1586 0.1345
Proposed System 0.4400 0.3400 0.3067 0.3400

MathWikiFormula Task
MIR System Precision

@5 @10 @15 @20
MCAT 0.4250 0.3350 0.2850 0.2450
Tangent3 0.4300 0.3400 0.2933 0.2450
Proposed System 0.4700 0.4000 0.3733 0.3600
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6. CONCLUSION

In the proposed approach, we have worked on semantic retrieval of mathe-
matical information, efficient memory indexing of math equations, and improved
ranking of retrieved documents which contain math terms. The semantic retrieval
of math information is made possible by introducing a new generalization scheme
for math formulae. The mathematical formulae written in CMML are encoded
in Braille Unicode characters that occupy small space in memory and make an
efficient index. A new scoring technique is developed for assigning a weight to
each indexing term, which contributes to a ranking of the retrieved documents.

The performance of the proposed system is satisfactory but it needs further
improvements. Currently, the developed system indexes mathematical formulae
and do not store text terms from the HTML/XHTML documents. Therefore, a
user can search for math information from a formula query. In the future, text
tokens will be indexed along with mathematical formulae so that user can write
query either in math or text format.
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