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Speech synthesis (text-to-speech, TTS) and automatic speech recognition (ASR) are op-
posite tasks yet they can be complementary. In our work, we try to improve the TTS by
using ASR. ASR plays the role of verifying the output of TTS. It compares the recognized
text with the ground-truth text for an ASR loss to penalize TTS. In our experiments, TTS
without ASR scored 3.96 mean opinion score (MOS), and with ASR it achieved 4.21 MOS.
We also enhanced TTS using the architecture of discriminator in generative adversarial net-
works (GANs). By adding a speech discriminator to discriminate the mel-spectrogram syn-
thesized by the synthesizer, it can change the learning of TTS and improve the quality of the
synthesized speech. In our experiments, TTS with speech discriminator scored 4.26 MOS.
Finally, our best TTS system used both ASR and speech discriminator in the synthesizer
model, and it reached 4.29 MOS.
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generative adversarial network

1. INTRODUCTION

TTS is a technology that converts input text to corresponding speech. TTS based
on neural networks has made long progress over recent years and matured gradually. In
particular, end-to-end TTS can directly learn the correspondence between the text and the
acoustic feature. A fairly popular model architecture is Tacotron2 [1]. It is an end-to-
end recurrent neural network (RNN) with an attention mechanism [2] and it can predict
a sequence of mel-spectrogram based on the input character sequence. FastSpeech2 [3]
is a feedforward neural network based on transformer. In comparison to Tacotron2 with
the autoregressive model, FastSpeech2 adopts non-autoregressive model to improve the
speed of synthesis without degrading the overall quality of the synthesized speech.

In this work, we improve TTS through integration of automatic speech recognition
and speech discriminator. Certain related ideas have been proposed recently. Liu et al. [4]
improved the problem of style adjustment in TTS by adding a pre-trained ASR model to
provide loss of ASR during training. Nakayama et al. [5] uses TTS and ASR to form a
speech chain to achieve the effect of semi-supervised learning. Discriminator is neural
network architecture used in GANs [6]. GANs is an unsupervised learning method that
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achieves the purpose of learning through the generator and the discriminator against each
other. Although the generator in GAN is different from synthesizer conceptually, we can
still exploit the idea of a discriminator to guide TTS to learn to be more human-like.

In this work, we first add ASR to the training of the synthesizer in TTS, and call this
method TTS-ASR. Then we add the speech discriminator, which is used to discriminate
the mel-spectrogram, into the training of the synthesizer, and call this method TTS-SD.
Finally, we combine TTS-ASR and TTS-SD to build TTS-ASR-SD based on ideas in-
spired by CycleGAN [7]. CycleGAN, a special kind of GAN architecture, is used in
image-to-image translation. It uses two generators, which convert the input image from
the domain A to the domain B and from the domain B to the domain A respectively, and
then use two discriminators to identify the two outputs of the generators. Although the
domains A and B are two different types of images, we boldly replace them with the
domains of speech and text, then implement the ideas in system development.

The remainder of this paper consists of four sections. In Section 2, the model archi-
tectures and methods, including TTS-ASR, TTS-SD and TTS-ASR-SD, are introduced.
In Section 3, the datasets and the experimental setup for the development of TTS systems
are explained. In Section 4, experimental results and analyses are provided. In Section 5,
we draw conclusion and state future work.

2. METHODS

The methods for training TTS synthesizer, namely TTS-ASR, TTS-SD and TTS-
ASR-SD, are implemented. These methods progressively add additional modules to the
training stage of the synthesizer. In the inference (synthesis) stage, only the synthesizer
(TTS) module is in action. We first introduce the TTS architecture, and then explain other
methods based on TTS.

2.1 TTS

We use Conformer-FastSpeech2 for the synthesizer of TTS, paired with HiFi-GAN
[8] as vocoder. Its architecture is shown in the left of Fig. 1. FastSpeech2 is a non-auto-
regressive model that was proposed to accelerate the speed of the inference time and syn-
thesize speech with the same quality as autoregressive models. Feedforward transformer
(FFT) architecture is applied in its encoder and decoder. The variance adaptor contains
predictors to predict variance information needed to synthesize the speech, such as the
energy, pitch and duration. Duration represents the length of the speech, i.e. how long
the sound should be made. Pitch is an important key to affecting the prosody of speech.
Energy represents the strength of the voice, which directly affects the volume and rhythm
of the voice. In particular, the output of the duration predictor will go through the length
regulator. The length regulator will expand the input embedding sequence multiple times
according to the duration sequence predicted by the duration predictor, so as to achieve
the effect of changing the length of the speech. It is used to solve the problem of aligning
the input syllable sequence with the output mel-spectrogram sequence. The output of the
decoder will map the result to the mel-spectrogram through 1-layer linear. Postnet will
add the output of the decoder and the output of the linear mapping for residual calculation
as the final output, and its architecture consists of 5-layer 1D convolution.
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Fig. 1. Architecture of TTS. It consists of two parts, synthesizer and vocoder. Synthesizer con-
verts the text to mel-spectrogram, and vocoder converts the mel-spectrogram to speech. We use
Conformer-FastSpeech2 as synthesizer and HiFi-GAN as vocoder.

Conformer-FastSpeech2 is a model after replacing the FFT architecture in Fast-
Speech2 with the conformer [9]. The transformer based on the attention mechanism has
great performance in extracting the dependencies of long input sequences. Conformer
adds a convolution layer that extracts local features, which makes its performance better.
The architecture of the conformer encoder and conformer decoder is shown in the right of
Fig. 1. It is composed of macaron style feed forward network (macaron style FFN) [10],
multi-head attention and convolution module. The macaron style FFN module will only
contribute half the value of FNN before and after the convolution module. Increase the
attention ability of the model in multiple different subspaces through multi-head attention.

The loss function used in training the Conformer-FastSpeech2 consists of multiple
terms

Losstts = Lossmel +Lossduration +Losspitch +Lossenergy (1)

where Losstts is the total loss of synthesizer. Lossmel is the loss of mel-spectrogram, which
uses mean absolute error (MAE) as loss function. Lossduration, Losspitch, and Lossenergy are
the losses of the duration predictor, pitch predictor, and energy predictor respectively, all
of them use mean square error (MSE) as a loss function.
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Fig. 2. Architecture of TTS-ASR. ASR receives the mel-spectrogram from synthesizer, calculates
the ASR loss, and feeds back to the synthesizer. Note ASR is only used during the training stage.

Fig. 3. Example of optimal alignment between ASR output and ground truth label for calculating
ASR loss. “O” means space, “I” means insertion, and “D” means deletion.

2.2 TTS-ASR

We add a pre-trained ASR and freeze its parameters when training the synthesizer
of TTS. ASR receives the mel-spectrogram synthesized by the synthesizer, and predicts
the corresponding text. The text predicted by ASR and the ground-truth text is compared
to yield ASR loss, which is added as a penalty to modify model training and enhance the
synthesizer. This is shown in Fig. 2.

Since the length of the text output by ASR may be different from the text length of
the ground-truth, optimal alignment between ASR predicted text and ground-truth text is
carried out for calculating the ASR loss. See Fig. 3 for an example regarding the determi-
nation of character error rate (CER).

We use the cross-entropy function for the ASR loss

Lossasr =CEL(ASR(Mtts),Tg) (2)

where Mtts is the mel-spectrogram output of the synthesizer, and Tg is the ground-truth
text. And the loss of ASR will be added to the loss of the synthesizer

Losstts-asr = Losstts +Lossasr (3)

where Losstts is the loss of the synthesizer as given in Eq. (1).
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Fig. 4. Architecture of TTS-SD. Using a speech discriminator, we hope the synthesis output can be
indistinguishable from real human speech.

2.3 TTS-SD

We added a speech discriminator when training the synthesizer, and its architecture
is shown in Fig. 4. Speech discriminator identifies whether the input mel-spectrogram
is from synthesizer or from genuine speech. It provides a loss to enhance the train-
ing of the synthesizer. Speech discriminator consists of two parts, convolution block
and post-processing. The convolution block does padding first and then goes through
1D convolution followed by 1D batch normalization, ReLU function and dropout. The
post-processing part performs average pooling, reduces the output size through the fully
connect layer, and uses the sigmoid function to map the output to a value between 0
(fake/synthetic) and 1 (real/ground-truth).

Speech discriminator is only used during the training stage. It receives ground-truth
mel-spectrogram and mel-spectrogram synthesized by the synthesizer at every iteration.
According to the result, the loss is returned to itself and the synthesizer. We use the binary
cross-entropy (BCE) functions

Losss = BCE(SD(ms),1) (4)

Losssd = 1/2(BCE(SD(ms),0)+BCE(SD(mg),1)) (5)

where Losss and Losssd are the loss for synthesizer and speech discriminator, respectively.
The function SD(x) represents the result obtained by x through the speech discriminator,
and ms and mg are the mel-spectrogram from ground-truth and synthesizer respectively.

When training TTS-SD, we use multi-task learning, adding Losss to the loss of the
synthesizer, which can be written as

Losstts-sd = Losstts +Losss (6)

where Losstts is the loss of the synthesizer.

2.4 TTS-ASR-SD

CycleGAN is a GAN-based approach for image-to-image translation. The task of
image-to-image translation is to map the input image to the output image given a learning
set of images. But in most cases, the input image of the training data is difficult to match
with the output image. CycleGAN is trained using data set from two domains without
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Fig. 5. The cycle consistency loss. It measures the difference between switching back and forth,
i.e. forming a cycle, in two domains.

strict correspondence between the data in different domains. Its architecture contains
two generators GA2B and GB2A, which convert the images in domain A to domain B and
convert the images in domain B to domain A, respectively. In addition, two discriminators
DB and DA identify whether the generated image is in the domain B or domain A after the
conversion. The loss used in the training of CycleGAN is divided into two parts, namely
the generative adversarial loss and the cycle consistency loss. The generative adversarial
loss is the loss against the generator and the discriminator in the generative adversarial
network architecture

Lossgan = LGAN(GA2B,DB,A,B)+LGAN(GB2A,DA,A,B)

= Eb[logDB(b)]+Ea[log(1−DB(GA2B(a)))]

+Ea[logDA(a)]+Eb[log(1−DA(GB2A(b)))].
(7)

Note the generative adversarial loss consists of two parts since CycleGAN consists of two
architectures in opposite directions. For the cycle consistency loss, since the goal is to
minimize the difference between A and A′ in the process of converting A to B and then
converting from B to A′, ideally we want to have GB2A(GA2B(a)) = a. The same is true
for the other direction. It is shown in Fig. 5. Thus, it is reasonable to adopt

Losscycle = Ea||GB2A(GA2B(a))−a||1 +Eb||GA2B(GB2A(b))−b||1 (8)

for the cycle consistency loss function. Combining generative adversarial loss and the
cycle consistency loss, we have

Losstotal = Lossgan +Losscycle (9)

Inspired by CycleGAN, we further integrate TTS-ASR and TTS-SD into a new ar-
chitecture called TTS-ASR-SD. This is shown in Fig. 6. First, the loss provided by the
speech discriminator is used, just like the generative adversarial loss provided by the dis-
criminator to the generator in CycleGAN. Second, the loss provided by ASR is defined
by

Lossasr = BCE(ASR(T T S(t)), t) (10)
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Fig. 6. Architecture of TTS-ASR-SD. The idea is inspired by CycleGAN. It consists of three parts:
TTS that converts text to speech, ASR that converts speech to text, and speech discriminator.

as the goal is to achieve ASR(T T S(t)) = t. It corresponds to the cycle consistency loss in
CycleGAN. Since the training data we use is matched with corresponding text, we do not
use complete unsupervised learning. Instead, we add the loss from speech discriminator
and the loss of ASR to the synthesizer loss. Thus the loss function of TTS-ASR-SD can
be written as

Losstts-asr-sd = Losstts +Losscycle +Lossgan = Losstts +Lossasr +Losssd. (11)

3. EXPERIMENT

We use the software toolkit of ESPnet2 [11] for system implementation. In the ex-
periments we use the same vocoder to compare synthesizers trained by different methods.
We describe the key system modules in details below.

3.1 Datasets

Biaobei [12] is a Mandarin dataset with a single female speaker, containing 10,000
utterances with the total time of about 12 hours. Among them, to improve the speech
synthesis ability of short sentences, we cut 200 utterances into multiple short-utterance
data and added them to the original data set as our training data set. We call it Biaobei+
which contains 11,112 utterances with the total time of about 12.5 hours.

3.2 Experiment Setting

In our TTS systems, the vocoder and synthesizer are trained separately. The voco-
der uses Biaobei as training data and the synthesizer uses Biaobei+ as training data.
Conformer-FastSpeech2 uses 4-layer conformer encoder and 4-layer conformer decoder.
The kernel sizes of the depth-wise convolution in conformer encoder and conformer de-
coder are 7 and 31. The used optimizer is Adam [13], and the learning rate is set to 1.
In the vocoder, we set the batch size to 16 and use Adam as optimizer, and the learning
rate is set to 2× 10−4. The speech discriminator uses 4-layer convolution block. And
the (input channel, output channel) of the 1D convolution are (80,128) and (128,128)
respectively, the kernel size of them is 5.
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The computation of ASR loss requires optimal alignment between text sequences.
To reduce the overall training time, we use the fine-tune method in transfer learning [14].
In TTS-ASR and TTS-ASR-SD, the synthesizers without ASR is pre-trained with 180
epochs and fine-tuned with 20 epochs with ASR. In order to avoid the speech discrimina-
tor with poor discriminative ability dragging down the training of the synthesizer in the
early stage of training, We also bootstrap TTS-SD and TTS-ASR-SD with pre-training.
The speech discriminator is trained with TTS-SD for 200 epochs, and then used to re-train
the synthesizer in TTS-SD or TTS-ASR-SD.

3.3 Evaluation

We used the MOS measure in TTS system evaluation. The score is between 0 to 5
and one decimal place. The average of the scores is rounded to the two decimal places.
We picked three sentences in Mandarin as test data. The sentences are taken from differ-
ent categories of news or fragments of articles be found in the Internet. We used these
sentences as test material and played to the 9 members of our team who scored fairly. In
addition, we also plotted the waveform of synthesized speech to observe and annotate the
subtle differences in the outputs of the systems.

We found that the performance of different architectures in short texts is not very
different, except for speech quality. But some noticeable problems can be heard in long
texts. We divide the problem into two types: pronunciation errors and sentence segmen-
tation errors. The pronunciation error means that the synthesized speech does not match
the text. This is because there is heteronym in Mandarin, that is, the same character but
there are multiple pronunciations. The sentence segmentation error refers to the wrong
position of the pause, such as a pause in speech before a word is finished. We use long test
sentences and manually annotate the errors. We report the occurrence of the two errors in
test sentences.

4. RESULTS AND ANALYSIS

The results in MOS of the proposed methods are shown in Table 1. The MOS of
TTS is 3.96, while the MOS of TTS-ASR is 4.21. The MOS of TTS-SD is 4.26, and
the MOS of TTS-ASR-SD is 4.29. Examples of the speech waveforms synthesized by
the proposed methods are shown in Figs. 7 and 8. Five sentences, each containing 40–60
words, are used to evaluate the performance regarding pronunciation errors and sentence
segmentation errors. The results are summarized in Table 2 and two examples are shown
in Fig. 9.

Table 1. Results in MOS of the proposed methods. The addition of ASR and speech dis-
criminator improved MOS. The TTS-ASR-SD method achieved the highest MOS score
among them.

TTS TTS-ASR TTS-SD TTS-ASR-SD
3.96 4.21 4.26 4.29
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Fig. 7. The synthesized speech waveforms for input text ”陰時多雲短暫陣雨或雷雨” of the
proposed methods.

4.1 TTS-ASR

TTS-ASR achieves significant improvement in MOS over the TTS baseline. In TTS-
ASR, the waveforms are relatively loose, while the waveforms in TTS are more dense. Its
is because ASR loss is the loss of the text, which penalizes TTS and corrects its articula-
tion and intelligibility of speech. Listening to the waveforms, we feel the pronunciation of
words in TTS-ASR results sounds clearer and more rhythmic. That is, the results in TTS
are relatively dull and not as rhythmic as in TTS-ASR. Regarding pronunciation error and
sentence segmentation error, TTS-ASR is not particularly effective over TTS. The ASR
loss is based on single words and has no direct relationship with the context. Therefore,
it does not have a special performance in sentence segmentation error.

4.2 TTS-SD

TTS-SD also achieves significant improvement in MOS over the TTS baseline. This
is because the addition of a speech discriminator guides the synthesizer to output data that
is indistinguishable from real human speech. In TTS-SD, the sentence segmentation error
has been significantly improved. This is because TTS-SD can synthesize speech that is
closer to real speech than TTS, so the rhythm of the speech becomes more natural.

Table 2. The pronunciation errors and sentence segmentation errors of the proposed
methods. Pronunciation error means that the synthesized speech does not fit the text
correctly. Sentence segmentation error refers to inappropriate pauses.

TTS TTS-ASR TTS-SD TTS-ASR-SD
pronunciation error 8 7 7 7
sentence segmentation error 7 7 3 2
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Fig. 8. The synthesized speech waveforms for input text ”美國運輸安全管理局指出，在疏散過
程中有3人受傷，不過都沒有生命危險” of the proposed methods.

Fig. 9. Examples of pronunciation error and sentence segmentation error. Word “()” flags pronun-
ciation error, and “O” flags sentence segmentation error.

4.3 TTS-ASR-SD

TTS-ASR-SD achieves the highest score in MOS among the proposed methods. It
also has the best performance on pronunciation error and sentence segmentation error.
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TTS-ASR-SD combines TTS-ASR and TTS-SD in architecture, so it can benefit from
both ideas. From the waveforms, we can see that TTS-ASR-SD has the characteristics of
TTS-ASR, and the improvement of TTS-SD in sentence segmentation error.

5. CONCLUSION

In this work, we improve TTS by adding ASR and speech discriminator during train-
ing. When we add a pre-trained ASR, the intelligibility of the synthesized speech is en-
hanced. Furthermore, the rhythm of speech synthesized by TTS is improved. When we
add a speech discriminator, the naturalness of speech is significantly improved. Finally,
we use both ASR and speech discriminator during training. It retains the above-mentioned
advantages and achieves further improvements.

One thing to try is to jointly train TTS and ASR, instead of unilaterally. Another
direction is to experiment with different discriminator architectures. The speech discrim-
inator in this work has a simple neural network architecture. We can try a more complex
architecture and the method of TTS-ASR-SD can become more comprehensive.
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