
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1097-1118 (2018)
DOI: 10.6688/JISE.201809_34(5).0001

1097

A Distributed Neural Filter for Finding Depth-k Skyline
Friends in Social Networks

YI-CHUNG CHEN AND HENG-YI SU+

Department of Industrial Engineering and Management
National Yunlin University of Science and Technology

Yunlin, 640 Taiwan
+Department of Electrical Engineering

Feng Chia University
Taichung, 407 Taiwan

E-mail: chenyich@yuntech.edu.tw; hengyisu@fcu.edu.tw

Finding similar users in a social network is an essential element of personalized

recommendation systems. Most traditional algorithms of this kind consider all the dimen-
sions of user data as a whole and use this merged information to search for similar users.
However, such a method has its flaws, as user information in various dimensions is gen-
erally independent. Recently multi-criteria skyline queries have been applied to search
for similar users. However, these applications are only suited to centralized environments,
which is not a common type of environment among social networks. Hence, this paper
introduces a distributed neural filter to search for similar users in a distributed environ-
ment. By using the proposed filter, we can enhance the speed of identifying whether a
user is similar to you in the distributed environment. That is, the operating speed of rec-
ommendation systems can be improved. Simulation results demonstrate the effectiveness
and efficiency of the proposed identifier.

Keywords: social network, recommendation system, skyline query, neural network, dis-
tributed environment.

1. INTRODUCTION

In recent years, an increasing number of researchers have focused on personalized
recommendation systems [14, 21], which tailor recommendations to users on subjects
such as products, attractions, and travel itineraries. The first step of most personalized
recommendation systems is the search for friends or users similar to the user in question.
The online information that these individuals provide serves as the basis of these rec-
ommendations. Suppose, for instance, that User A wants to take a trip to an unfamiliar
city, which is home to four attractions: science museum and art museum, department
store, and central park. User A requests a recommendation from the system. The system
receiving this request has access to the information presented in Table 1, which includes
types of attractions, the cities they are located in, and the ratings that other users have
given them. For example, the value 0.9 in (A, history museum) means that User A has
been to history museum and given it a rating of 0.9. In contrast, the “” in (A, science
museum) means that User A has not been the science museum. Upon receipt of User A’s
request, the system first searches Table 1 for all the users that have given ratings similar
to those given by User A. The table shows that Users B and D are more similar to User A
than Users C, E, and F are because they both gave history museum high ratings and gave

Received August 26, 2017; revised October 7, 2017; accepted November 14, 2017.
Communicated by Nien-Lin Hsueh.

YI-CHUNG CHEN AND HENG-YI SU

1098

shopping mall and nature park extremely low ratings, as did User A. Users C, E, and F
favor the opposite, having given shopping mall and nature park high ratings but given
history museum lower ratings. After identifying Users B and D, the recommendation
system then makes recommendations to User A based on the ratings given by Users B
and D to science museum and art Museum, department store, and central park. As sci-
ence museum received higher ratings from Users B and D than the other three attractions
did, the system therefore recommends that User A go to science museum.

Table 1. An example of recommendation systems.
Attractions Type city A B C D E F

Science Museum Intellectually-related New York 0.95 0.14 0.97 0.07 0.2
Art Museum Intellectually-related New York 0.89 0.2 0.85 0.06 0.15

Department Store Shopping-related New York 0.13 0.95 0.11 0.98 0.93
Central Park Nature-related New York 0.08 0.97 0.13 0.99 0.84

History Museum Intellectually-related Houston 0.9 0.91 0.06 0.94 0 0.1
Shopping Mall Shopping-related Houston 0.1 0.2 0.88 0.15 0.99 0.95

Nature Park Nature-related Houston 0.05 0.01 0.87 0.1 1 0.98

Conventionally, when recommendation systems search for similar users, they use k-
Nearest Neighbors [20, 23], cosine similarity [21] and the k-means algorithm [19, 30] to
consider multiple user aspects simultaneously. However, this approach has its drawbacks
because the information of users in different aspects is generally independent and uncor-
related [7]. Say that there is a User G in Table 1, who has given history museum, shop-
ping mall, and nature park the ratings 0.93, 0.99, and 0.02, respectively. Clearly, the
preferences of User G in intellectually-related attraction is similar to that of User A, so
the ratings that User G has given to science museum and art museum should also be of
value to User A. However, none of the k-Nearest Neighbors, the cosine similarity and the
k-means algorithm would consider User G as similar to User A because they differ too
greatly in one aspect. This presents a significant shortcoming in existing approaches.

Recently, researchers have begun to apply a well-known multi-criteria search algo-
rithm, the skyline query [11, 16, 18, 25] to solve this problem. The most prominent fea-
ture of the skyline query is that it can consider various conditions (or dimensions) sepa-
rately and assist users in retrieving the data points that they need based on all or some of
the conditions. The first study to apply the concept of skylines to the relationships be-
tween users and their friends in social networks was that of Peng et al. [27]. They pro-
posed that performing skyline queries based on various correlations between users and
their friends can assist users in identifying those that are the most important to them.
They furthermore designed a member promotion algorithm to guide users in increasing
their importance to other users. Later, Peng et al. [28] presented the Infrasky algorithm
which is a modification of their previous work to allow it to operate on equal-weighted
social networks. With regard to the relationships between users and their social network
friends, Emrich et al. [8] additionally considered geographical information and claimed
that this approach can assist users in finding friends that they are closer to in both affec-
tion and distance. Also. Zheng et al. [34] proposed a method of friend recommendation
that combines of skyline query and check-in information to find promising friends. But
we should be noticed that despite the successful applications in these works, none of

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1099

them helped users identify other users with similar preferences. Recently, Chiu et al. [7]
employed the depth-k skyline query to identify the depth-k sky line users of target User
A and referred to them as the users similar to User A. Fig. 1 shows an example given by
[7], where axes X and Y respectively measure the difference between User A and other
users in their preferences for intellectually-related attractions and shopping-related at-
tractions. For instance, B(0.1, 0.5) indicates that the difference between Users B and A is
0.1 point in intellectually-related attractions and 0.5 points in shopping-related attrac-
tions. In this example, we can see that a higher degree of similarity exists between Users
B and A than between Users E and A because the preferences of User B are closer to
those of User A than those of User E are in both types of attractions. In this case, we say
that B dominates E. The depth-k skyline query proposed by [7] identifies the users that at
most are dominated by k other users. The black dots in Fig. 1 display the results of a
depth-2 skyline query, in which Users B, C, and D are not dominated by any other users,
Users E, F, and G are dominated once, and Users H, and I are dominated twice. Clearly,
these users all show preferences that are similar to those of User A in either intellectual-
ly-related or shopping-related attractions. Thus, they have reference value for User A
and should be retrieved. This approach effectively solves the issue of only considering
independent dimensions simultaneously. It also enables users to find a wider range of
friends that exhibit similar preferences to them rather than only the users situated on the
skyline. However, this approach requires a substantial number of dominance checks
which slow down computation [13]. For this reason, [32] proposed an R-tree based algo-
rithm to enhance the operation speed of depth-k skyline query. Also, as the number of
similar friends returned by [7] can be quite unstable, which may cause some problems in
recommendation systems, the algorithms in [32] also ensured that the number of similar
friends they returned is fixed at a constant value. But we should be noticed that as the
attribute values of users in social networks change frequently, it is quite difficult for us to
store attribute values of users by R-tree. That is, the algorithms in [32] can be useless in
real world applications. Hence, [13] proposed the concept of skyline regions. For each
User A, their algorithm first identifies the skyline users and then draws a skyline region
based on the threshold given by User A. All of the users within this skyline region are
considered to be similar to User A. Fig. 2, for example, exhibits the skyline region of Fig.
1. Assuming that the target user is User A, we first identify the skyline users from among
the friends of User A, who are Users B, C, and D as shown in Fig. 2. Next, we draw lines
extending from points B, C, and D towards axes X and Y with a length of , which result
in three virtual points B’, C’, and D’. The region formed by these three virtual points in
the lower left corner is the skyline region, as shown in Fig. 2. In this manner, only the
location of a point is needed to determine whether a user may be a skyline user, which
negates the need for numerous dominance checks and therefore accelerates the pro-
cessing speed of the algorithm. Nevertheless, we must understand that while this method
can quickly identify users that are similar to User A, the algorithm only considers the
absolute values in friend data but not the dominance relationships between friends. As a
result, the number of similar users found can fluctuate considerably. It is even possible
that the skyline region contains no similar users (such as with D and D’ in Fig. 2) or too
many similar users (such as with B and B’ in Fig. 2). Such circumstances can lead to
problems in the resulting recommendations. Furthermore, as mentioned above, a com-
prehensive review of past studies reveals that their proposed algorithms are only suitable

YI-CHUNG CHEN AND HENG-YI SU

1100

Fig. 1. An example of finding similar friends in [7]. Fig. 2. An example of finding similar friends in [13].

for centralized environments, yet most existing social networks are distributed environ-
ments. It is therefore necessary to develop an approach that overcomes these limitations.

This paper proposes the concept of depth-k skyline user regions to assist users in
quickly identifying the depth-k skyline users of User A in distributed systems. These
users are considered to be similar to User A. The concept of this paper is as shown in Fig.
3. Once initialized, the algorithm searches all of the datasets stored in the mainframe of
the distributed system to derive the depth-k skyline user region. All of the users within
this region are potential depth-k skyline users of User A, whereas those outside the re-
gion are not (Fig. 3 (a)). In the next step, this region is sent back to each distributed host
to determine which users may be the depth-k skyline users of User A, as shown in Fig. 3
(b). The information of these users is then collected by the main server to confirm
whether they are the depth-k skyline users of User A, as shown in Fig. 3 (c). This meth-
od of using depth-k skyline user regions is faster than conducting numerous dominance
checks [13]. It also identifies the depth-k skyline users of the target user and is applicable
to environments with distributed systems.

Although using depth-k skyline user regions to identify depth-k skyline users avoids
numerous dominance checks, determining whether a user falls within the depth-k skyline
user region of a particular user is still time-consuming. For instance, if we want to de-
termine whether any of the users in Fig. 4 fall within the depth-k skyline user region of
User A, each candidate must still undergo dominance checks with points X, Y, and Z.
This method is therefore not highly scalable. The introduction of artificial neural net-
works reduces the computational burden of determining whether a user falls within the
skyline-related region of User A. This approach has been used by Chen and Lee [6], but
their algorithm can only determine whether a data point falls within a skyline candidate
region (i.e., data points that fall within this region may be skyline points) but not whether
a data point falls within a depth-k skyline region. Moreover, their algorithm only used
two features, min and sum, of a data point to reach their goal. This can be quite rough,
because these two features cannot always be the best solution for identifying all kind of
datasets. Other features should also be considered in the proposed problem. Last but not
least, their method can only be used in centralized environments, not distributed envi-
ronments; therefore, it is not suitable for this work. Chen and Lee [5] have developed
another algorithm for finding depth-k skyline points in distributed environment. Howev-
er, their work only proposed a naive algorithm, which inputs all attribute values of the
data point into the neural network. In such a case, many redundant information will be
inputted into the neural network and thus the precision of their algorithm can be quite

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1101

(a) Construction of depth-k skyline user region.

(b) Sifting possible depth-k skyline users in each client.

(c) Finding depth-k skyline users from possible depth-k skyline users.

Fig. 3. The concept of this paper.

Fig. 4. The difficulty of examining if a user locates in the depth-k skyline user region.

low. That is, their algorithm cannot be apply to the real world applications. Moreover,
the distributed environment they consider is different to that of social network. Hence,
we cannot use their algorithm to solve our problem directly. Hou et al. [13] also used
artificial neural networks to determine whether a user is located in the skyline-related
region, but the precision of their method was not high, and it also could not be used in
distributed systems. In view of this, we propose a novel model based on artificial neural

YI-CHUNG CHEN AND HENG-YI SU

1102

networks, called the distributed neural filter to swiftly and precisely determine whether a
user falls within the depth-k skyline user region of the target user. The results of our simu-
lation experiment demonstrate the efficiency and effectiveness of the proposed approach.

The remainder of this paper is organized as follows. Chapter 2 presents related work.
Chapter 3 introduces the algorithm and model of the distributed neural filter, and Chapter
4 outlines the experiment simulations. Chapter 5 presents our conclusions.

2. RELATED WORKS

2.1 Skyline Query

Four skyline query algorithms are in common use: block nested-loop algorithms,

divide-and-conquer algorithms, the Sort and Limit Skyline algorithm, and branch-and-
bound skyline algorithms. These algorithms are introduced in detail in the following.

2.1.1 Block Nested Loops Algorithm (BNL)

BNL algorithms [4] are the most intuitive processing methods for skyline queries.

The primary concept behind them is to compare each data point with all of the other data
points in the database and check whether they are dominated by any other data points. If
not, the data point is placed in the skyline candidate region; if it is, then it is eliminated
immediately. Once all of the comparisons have been made, the points remaining in the
skyline query candidate region are the final results of the skyline query. A limitation of
this method is that while it is intuitive, it is inefficient; the time that it requires to process
a query is proportional to the amount of data. The substantial amount of data that we
processed in this study discounted this type of algorithm as a candidate for this study.

2.1.2 Divide and Conquer Algorithm (DAC)

The primary concept behind DAC algorithms [4] is to first divide large amounts of

data into groups, search each for skyline data points, combine these skyline data points,
and then conduct another skyline query to derive the final skyline query results. This
method filters out unlikely candidates beforehand, significantly reducing the number of
data points that must be considered during the query. In Fig. 5, we can clearly see that
the data points in region B must be dominated by the data points in region C. For this
reason, we do not have to check the data points in B for the skyline query. However, the
improvement in computational burden made by this approach, while positive, was not
sufficient, prompting researchers to seek alternatives.

2.1.3 Sort and Limit Skyline algorithm (SaLSa)

The main idea of the SaLSa algorithm [2] is to use threshold values to search for

potential skyline data points. The threshold values are derived from feature values of the
data, which may be the minimum, total, or product of data points in each dimension. The
threshold values record the upper limits of the feature values of current skyline candi-
dates. For each data point, its feature values are first calculated and compared with the

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1103

threshold values. If the feature values are less than the threshold values, then the data
point may be a skyline data point. If not, then it cannot be a skyline data point. This al-
gorithm also uses feature values to rank the data points in ascending order. In this man-
ner, if the feature values of a data point surpass the threshold values, then all of the later
data points do not need to be checked because their feature values will certainly be
greater than the threshold values.

2.1.4 Branch and Bound Skyline algorithm (BBS)

BBS algorithms are currently the most widely applied type of skyline query algo-

rithm [24] because they can significantly reduce the number of data points that need to
be checked during skyline queries. This is achieved by indexing and contrasting them
with BNL algorithms, which use all of the data points, and DAC algorithms, which use
most of the data points. Below, we give an example to illustrate this advantage of BBS
algorithms. Fig. 6 (a) displays the first step of a BBS algorithm. The root node M0 must
contain skyline data points and is thus divided into M1 and M2. Next, Fig. 6 (b) shows
that only M1 contains skyline data points and therefore must be divided, while M2 does
not contain skyline data points and therefore does not have to be divided. Finally, Fig. 6
(c) indicates that both M3 and M4 contain skyline data points, necessitating further
checking. This procedure shows that because M2 is never divided, data points B, C, H, I,
and J in M2 will not be processed by the BBS algorithm. In other words, BBS algorithms
checks fewer data points than conventional algorithms and thus require less time to com-
plete skyline queries.

Fig. 5. An example of
divide and conquer al-
gorithm.

(a) First step. (b) Second step. (c) Third step.
Fig. 6. An example of branch and bound skyline algorithm.

2.2 Recommendation System

The existing recommendation systems can be classified into three types, the Col-

laborative filtering, the content-based recommendation and the knowledge-based rec-
ommendation. The detail of these three types of recommendation system are introduced
in the following.

2.2.1 Collaborative filtering

Collaborative filtering classifies users into groups according to similarities in inter-

YI-CHUNG CHEN AND HENG-YI SU

1104

ests, and then recommends items to these users as members of that group [10, 29]. There
are two types of collaborative filtering: memory-based and model-based [17]. The mem-
ory-based approach finds users with similar interests within a pre-established database
[12], whereas the model-based approach uses clustering [17]. The memory-based ap-
proach is the most-used recommendation method and thus it is also the main recommen-
dation method this work focus on.

2.2.2 Content-based recommendation

Content-based recommendation identifies items in accordance with the profile or

preferences of the user [1, 10]. This method considers only existing users of the system
and can be adapted to users with special interests. The content-based recommendation
process includes two steps [3]: (1) acquisition of user profiles, including logs, cookies,
and records of previous interactions obtained via data capture applications; (2) finding
similar friends for the recommended users by using the information retrieved in the first
step.

2.2.3 Knowledge-based recommendation

Knowledge-based recommendation involves the correlation of user profiles with the

characteristics of candidate items selected by the users. This can be implemented using
two types of classification: case-based and rule-based reasoning [15]. The case-based
approach applies empirical rules to previously obtained data in order to find solutions to
new problems [31]. In contrast, the rule-based approach uses rules defined by experts
without reference to the historical records of specific users [22].

3. THE ALGORITHMS AND MODEL OF THE DISTRIBUTED NEURAL
FILTER

Supposing that the target user is A; the process of the distributed neural filter actu-
ally consists of four parts; (1) It retrieves information from the clients and then con-
structs a depth-k skyline user region for A; (2) It constructs the distributed neural filter,
which uses neural network to learn and approximate the range of this depth-k skyline
user region; (3) It transmits the distributed neural filter to each client, filters out those
users that may possibly become A’s depth-k skyline user and feeds back these users to
the server; (4) The server will find A’s depth-k users out of these fed back users. These
four parts are explained respectively as follows.

3.1 The Construction of Target User’s Depth-k Skyline User Region

To construct a depth-k skyline user region for target user A in the distributed system,

two steps are required. The first step is to retrieve the users who may become A’s
depth-k user, and to transmit them back to the server. In the second step, the server uses
these fed back users to derive A’s depth-k skyline user region. These two steps are de-
scribed respectively as follows.

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1105

It is assumed that a specific user intends to find his user with depth-k. There are m
groups of clients in the community network; and in each group of clients, there are u
users. To find A’s possible depth-k users in step 1, n user groups (there will be p users in
a user group) will first be randomly chosen in each client. Hence, mn user groups will
be selected from the whole community network. Furthermore, skyline query will be
conducted for each user group; and skyline results are derived. At this stage, the most
commonly used skyline query algorithm BBS algorithm [24] is not used for query. This
is due to the fact that when the BBS algorithm is employed, all users must use the R-tree
[9] index. However, in this step, each user group was randomly chosen, therefore the
retrieved users cannot possibly exist in the R-tree. Hence it is inconvenient to use the
BBS algorithm for querying. Of course, the R-tree can first be established for each user
group prior to query but this method will consume extra time and will slow down the
algorithm speed and hence it is not considered. Another skyline query algorithm, the SFS
algorithm [2], is employed here to find the skyline results for each user group. It is the
fastest way to find the skyline results without using any index structure. Eventually, the
skyline results of each user group will be fed back to the server. Note that when the sys-
tem decides the n value in step 1, it assumes mn k. This is because in some special
cases, if the relationship between A and other users are in correlated distribution, the user
A might merely find a single skyline user [2, 4, 24]. Meanwhile, if mn is less than k,
and all mn groups can only find a single skyline user, the skyline results received by the
server will be less than k; consequently, there is no way to form a depth-k skyline user
region. Besides, the p range in each user group is recommended to be between [0.01u,
0.1u]. The actual value should be based on client performance and the size of u. In gen-
eral, a larger p will result in less non-depth-k skyline users in the depth-k skyline user
region established in this step. However, the time required for skyline query grows ex-
ponentially with the size of the data set [2, 4, 24]. A bigger p implies each client will
need more query time; hence the speed of the overall algorithm is further reduced. In
other words, this is a trade-off. The system designer can set a suitable p according to the
conditions and needs of his own system. Fig. 7 is used to explain this step. In this figure,
there are three sets of clients and one set of server. It is supposed that user A intends to
take out the user in Depth-4. Based on target user A, the system will select two user
groups from each client (the gray points in Fig. 7 (a)). Next, the system will find the sky-
line users for six user groups, as shown in Fig. 7 (b). These skyline users will be trans-
mitted back to the server.

(a) Randomly choosing some users in each client.

Fig. 7. An example of retrieving depth-k-skyline-user-region-related information from clients.

YI-CHUNG CHEN AND HENG-YI SU

1106

 (a) (b)
Fig. 10. An example of mapping users from original coordinates to featured coordinates; (a) before

mapping; (b) after mapping.

(b) Finding skyline users in each client.

Fig. 7. (Cont’d) An example of retrieving depth-k-skyline-user-region-related information from clients.

Fig. 8. An example of constructing the depth-k

skyline user region from the retrieved
information.

Fig. 9. An example of generating training data
for the neural network.

In step 2 of this part, the server uses the users being fed back from each client to
obtain target user A’s depth-k skyline user region. It is assumed that the fed back users
from each client are q in total. The system will perform dominating comparison for each
user against the other q 1 users in this data set; and will calculate the number of times
each user was being dominated. The users that were dominated k number of times will be
retrieved. The range enclosed by the retrieved users in the lower left corner is A’s
depth-k skyline user region. All users in this region have the potential to become A’s
depth-k skyline user; and those falling outside this region are unlikely to become A’s
depth-k skyline users. Fig. 8 is used to explain this procedure; users in this figure are the
users being fed back by each client in Fig. 7. In Fig. 8, A, B, C, and D are being domi-
nated four times and are specifically picked out. The enclosed lower left corner area is
A’s depth-k skyline user region.

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1107

3.2 The Construction of the Distributed Neural Filter

This section describes how to construct the distributed neural filter (i.e., using neu-

ral networks to learn and approximate the target user A’s depth-k skyline user region).
To attain this target, the following three steps are required; (1) From A’s depth-k skyline
user region, find out proper training data to train the neural networks; (2) Retrieve the
characteristic values of these training data; (3) Construct proper neural network archi-
tecture; and conduct training via the usage of the characteristic values of the training data.
These three steps are described respectively as follows.

To accelerate the speed of the overall algorithm, step 1 in this part employs the sim-
plest way to generate the neural network training data. It is to say, using a random man-
ner to produce equivalent virtual users in depth-k skyline user region and non-depth-k
skyline user region. These virtual users are regarded as the input data of the neural net-
work. Furthermore, every one of these virtual users is also given an additional target
value. This value represents the region that an individual virtual user is located in; and is
regarded as an output of the neural network. If this value is 1, the user falls in the depth-k
skyline user region. Conversely, if the value is 1, the user falls in the non-depth-k sky-
line user region. Note that there are two reasons that virtual users (not real users) are
used here. The first reason owes to the fact that it is quite time-consuming to find a real
user in the two regions. It is impractical to use such an approach. The second reason is
because these virtual users are used only to train the neural network and are irrelevant to
the final results. Hence it is not necessary to use real users. Besides, it must also be noted
that the number of virtual users generated in these two regions must be equal, so as to
help the neural network to more accurately approximate the depth-k skyline user region.
Fig. 9 provides the example in this step. Because E to N fall into the depth-k skyline user
region, their target values are set to 1. Conversely, the target values of P to Y are set to
1

Step 2 of this part is to retrieve the characteristic values of training data. This step is
expected to significantly improve the problem of insufficient judging accuracy in previ-
ous related neural network papers [5, 13]. Past methods mostly directly input the user
values to the neural network for training. In this situation, all the depth-k skyline users
will fall on the edges of the data sets. This is unfavorable to neural network training. As
shown in Fig. 10 (a), the gray dots are general users; the black dots are depth-k skyline
users. However, the characteristic value method proposed in this paper will reflect users
from the original coordinate axes to another coordinate using characteristic values as
coordinate axes. As shown in Fig. 10 (b), the data sets in Fig. 10 (a) have been reflected
to the coordinate using minimum and summation as coordinate axes. Through this step, it

Fig. 11. The model of the proposed distributed neural filter.

YI-CHUNG CHEN AND HENG-YI SU

1108

can be observed that the depth-k skyline users originally were scattered at the edges of
data sets are now concentrated together. In this situation, the range of the depth-k sky-
line user region will be shrunk and concentrated; and now the neural network more ac-
curately approaches the depth-k skyline user region.

The characteristic values used in this paper are minimum, summation, and volume.
All these characteristic values had been proven by Bartolini et al. [2] that they can be
used to identify whether a data point is a skyline point. It is assumed that a virtual user A
with coordinate values (a1, a2, ..., ad) is used to train the neural network, where d is the
dimensional quantity. The equations for these three characteristic values can be written
respectively as:

Min(A) = minimum(a1, a2, ..., ad), (1)

Sum(A) =
1

,
d

i
i

a

 (2)

Vol(A) =
1

,
d

i
i

a

 (3)

where Min (A), Sum (A), and Vol (A) represent the minimum, summation, and volume
of virtual user A. The experimental portion of this paper will explore the characteristic
value combinations among (Min (A), Sum (A)), (Min (A), Vol (A)), (Sum (A), Vol (A)),
(Min (A), Sum (A), and Vol (A)); and will derive the combination which can be most
helpful for the neural network to approach the target depth-k skyline user region.

Step 3 of this part is to construct a neural network to approximate the depth-k sky-
line user region of the target. The neural network expected to be used in this paper is
shown in Fig. 11. It contains input layer, hidden layer, and output layer. The node num-
ber of input layer is 2 or 3, which is determined by the input characteristic value. The
node number of hidden layer is equal to the node number of input layer. For example, if
the characteristic value entered is (Min (A), Sum (A)), the input layer and the hidden
layer of the neural network should contain two nodes. The output layer will have only
one node and is responsible for determining whether the user falls in the approximate
depth-k skyline user region (between 1 to 1). If the value is closer to 1, it indicates that
the point has a higher chance of falling to the depth-k skyline user region. If the value is
closer to 1, it indicates that the point is almost impossible to be in the depth-k skyline
user region. The Fig. 11 neural network expected network function is shown as follows.
The first part is the input layer. It is assumed that the input user is the z-th user. The input
characteristic value is then input(z). Meanwhile, since the input layer does not have any
action, the output will directly be designated as input:

(1) () ().i iout z input z (4)

Additionally, in the hidden layer, the input will go through tangent sigmoid opera-
tion, and is written as:

(2) 1 (1)

1

() () ,
r

i ij j i
j

f z w out z b

 (5)

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1109

(11)

(2) (2)
(2)

(2) (2)

exp(()) exp(())
() ,

exp(()) exp(())
i i

i
i i

f z f z
out z

f z f z

 (6)

where fi
2(z) indicates the result of the summing the outputs of input layer, w1 is the

weight value between input layer and hidden layer; b is the bias value; r is the node
number of input layer; exp() is the exponential function. The equation for the final out-
put layer is

2 (2)

1

() (),
s

j j
j

y z w out z

 (7)

where w2 is the weight value between hidden layer and output layer; s is the node num-
ber of hidden layer. After determining the target neural network architecture, the well-
known back propagation algorithm [17] is now used to train the neural network. It is
assumed that the training network required to attain target function is

Error(w, z) = ½(yd(z) y(z)) = ½error(z)2, (8)

where w can be w1, b, and w2; error(z) is the error value between ideal output yd(z) and
network output y(z) of user z.

(1)
() (1) ()

(1)

Error z
w z w z

w z

 (9)

Through using error Eqs. (8) and (9), the updated equation for w2 can be derived as fol-
lows:

2 2
2

(1)
() (1) (),

(1)

Error z
w z w z

w z

 (10)

where

(2)
2 2

(1) (1) (1) (1)
(1) 1 (1).

(1) (1)(1) (1)

Error z Error z error z y z
error z out z

error z y zw z w z

Hence,

(2) (2)
2 2

(2) (2)

exp((1)) exp((1))
() (1) ((1)).

exp((1)) exp((1))

f z f z
w z w z error z

f z f z

 (12)

Next, by using error Eqs. (8) and (9), we can obtain the updated equation for b as fol-
lows,

(1)
() (1) (),

(1)

Error z
b z b z

b z

 (13)

where

YI-CHUNG CHEN AND HENG-YI SU

1110

(14)

(17)

(2) (2)

(2) (2)

(2) (2) 2

(1)(1) (1) (1) (1) (1)

(1) (1) (1) (1)(1) (1)

4
(1) 1 (1) 1.

(exp((1)) exp((1)))

out zError z Error z error z y z f z

b z error z y z b zout z f z

error z w z
f z f z

2

Hence,

2
(2) (2) 2

4
() (1) ((1) (1)).

(exp((1)) exp((1)))
b z b z error z w z

f z f z

 (15)

Finally, according to the error Eqs. (8) and (9), the updated equation for w1, can be de-
rived as follows:

1 1
1

(1)
() (1) (),

(1)

Error z
w z w z

w z

 (16)

where

(2) (2)

1 (2) (2) 1

(2) (2) 2

(1)(1) (1) (1) (1) (1)

(1) (1)(1) (1) (1) (1)

4
(1) 1 (1) (1).

(exp((1)) exp((1)))

out zError z Error z error z y z f z

error z y zw z out z f z w z

error z w z input z
f z f z

2

Hence,

1 1

(2) (2) 2

() (1)

4
((1) (1) (1)).

(exp((1)) exp((1)))

w z w z

error z w z input z
f z f z

2 (18)

Through the above three formulas, the target neural network can be trained.

3.3 Finding Possible Depth-k Skyline Users in Clients by Using the Distributed

Neural Filter

After the construction of the distributed neural filter, step 3 of the algorithm is to

filter out target user A’s possible depth-k skyline users in each client. The algorithm of
this part is to mainly input the users’ data of each client one at a time to the neural net-
work; and calculate the possibility of becoming depth-k skyline user for each user via the
three equations (4) to (6). If characteristic value of a user B is input to the neural network
and the neural network output is greater than or equal to 0, user B is regarded as a possi-
ble depth-k skyline user; and the data of this user is fed back to the server. Conversely, if
the output is less than 0, then user B is not a possible depth-k skyline user, and the data
of this user is not fed back to the server. Note that using this method to check whether a
user can possibly become a depth-k skyline user is much faster than the traditional
method of using dominance check [6, 13]. This is because the processing time of neural
networks will only grow linearly with the amount of data, while the processing time of
dominate check will grow exponentially with the amount of data.

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1111

3.4 Finding Target User’s Depth-k Users in the Server

The last step of this algorithm is to find the depth-k skyline users from the possible

depth-k skyline users fed back by clients using the existing depth-k skyline algorithm and
sorted-loop-checking algorithm [5]. The algorithm used is divided into two parts. First of
all, the algorithm will sort all the users that were fed back based on individual user’s
summation of coordinate values. At this point, since a user with a smaller summation
will never be dominated by a user with larger summation [2, 5], it is not necessary to
check the domination of a larger summation user over a smaller summation user. Only
the domination of a user with a smaller summation user over a user with a larger summa-
tion user has to be checked, hence a large amount of domination checks are eliminated.
Besides, since smaller summation users might dominate more users, the checks are
started from smaller summation users. This step also reduces the to-be-checked users
drastically in the very beginning; and enhances the execution speed of depth-k skyline
query.

After the fed back users have completed the sorting, user A with the smallest sum-
mation will conduct domination checks with all the users behind him one by one (as user
B). After user A has completed all his domination checks, the user with the second
smallest summation becomes user A and all the remaining users become a user B one at
a time. Every time during the checking process, between the checking user A and to-be-
checked user B, one of three relationships must exist. The three relationships and their
corresponding handling methods are depicted as follows:

 A dominates B and the dominated time of B does not exceed k. In this case, the domi-

nated time of B is added by 1.
 A dominates B and the dominated time of B exceeds k. In this case, B is eliminated and

is not considered in future steps.
 A is incomparable with B. In this case, both the dominated time of A and B should not

be updated.

Eventually, after the sorted-loop-checking algorithm has checked the largest sum-

mation user, the algorithm stops. Meanwhile, the users that have yet to be eliminated are
the depth-k skyline users for target use. This completes the algorithm.

4. SIMULATIONS

In this section, we present a comprehensive set of computer simulations used to in-
vestigate the performance of the proposed algorithm, employing various combinations of
features and evaluating their effectiveness. We adopted the Gowalla dataset [21, 26] and
a synthetic dataset for the experiments. The Gowalla dataset is a benchmark commonly
used in systems for the recommendation of tourist attractions, containing 196,591 users,
1,280,969 check-in points, and 6,442,890 check-ins. The preferences reported by each
user in the Gowalla dataset are evaluate according to the type of check-in points. For
example, if the check-in times at locations A, B, C, and D are 5, 1, 10, and 4, wherein A
and D are museums, B is a park, and C is a shopping mall, then we can say the prefer-
ences of this user include knowledge-intensive attractions (5+4)/(5+1+10+4), natural att-

YI-CHUNG CHEN AND HENG-YI SU

1112

ractions 1/(5+1+10+4), and shopping attractions 10/(5+1+10+4). However, the types of
check-in points (e.g., restaurant, park, shop) are not specified in this dataset; therefore,
we randomly generated location types. The number of users in the Gowalla dataset is
generally too small to enable a comparison with actual social networks; we therefore
employed a synthetic dataset to test the performance of the proposed algorithm in a more
realistic setting. The proposed dataset includes 5,000,000 users in which the preferences
of each user are given directly, without further evaluation. Moreover, as the time costs of
distributed environments can be quite different under different cases, this work only dis-
cusses the sifting rate (i.e., the ratio of data that transfer from the clients to the server) of
simulations, which is the decisive factor that affect the time costs of simulations. Table 2
summarizes the parameter settings of this dataset with the default values written in bold-
face. Each performance curve in the figures represents an average of the experimental
results obtained from 30 datasets generated using the benchmark. All of the experiments
were performed on an Intel Core I7-4790 CPU at 3.60GHz with 4GB main memory,
running Microsoft Windows 7. All of the programs were written in MATLAB®.

Table 2. Experimental parameters.
Parameter Values

Dimensionality of datasets 2, 3, 4, 5, 6
Depth, k 3, 5, 8, 10, 15, 20

Number of users in the Gowalla dataset 196,591
Number of users in the synthetic dataset 5,000,000

(a) Gowalla dataset. (b) Synthetic dataset.

Fig. 12. The number of depth-k skyline users in different datasets with different dimensionality.

4.1 The Numbers of Depth-k Skyline Users Found for Datasets of Various Dimen-
sions and k

The numbers of depth-k skyline users found for datasets of various dimensions (two

to six) are presented in Fig. 12, where Fig. 12 (a) presents the results of the Gowalla da-
taset and Fig. 12 (b) presents the results of the synthetic dataset. In these two figures, we
can see that the number of depth-k skyline users in the Gowalla dataset (196,591) is
much smaller than that of the synthetic dataset (5,000,000). As shown in Figs. 12 (a) and
(b), the number of depth-k skyline users increases exponentially with the number of di-

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1113

mensions, because the number of skyline points increases exponentially with the number
of dimensions [2, 24].

Fig. 13 presents the number of depth-k skyline users obtained from datasets of var-
ious k (3 to 20), where Fig. 13 (a) presents the results of the Gowalla dataset and Fig. 13
(b) presents the results of the synthetic dataset. Clearly, the number of depth-k skyline
users increases linearly with k, due to fact that the number of users in each depth is near-
ly the same.

4.2 Comparisons of Feature Combinations in the Proposed Algorithm With Various

Dimensions

In the following, we examine the performance of the proposed algorithm with vari-

ous combinations of features under various numbers of dimensions within a distributed
system of five clients where k is fixed at 3. In the Gowalla dataset, each client stores the
information related to nearly 39,000 users. In the synthetic dataset, each client stores the
information of 1,000,000 users. Without a loss of generality, we can assume that the data
distributions of these objects in all clients are the same. We employed the average sifting
in Fig. 14, where Fig. 14 (a) presents the results of the Gowalla dataset and Fig. 14 (b)

(a) Gowalla dataset. (b) Synthetic dataset.

Fig. 13. The number of depth-k skyline users in different datasets with different k.

(a) Gowalla dataset. (b) Synthetic dataset.

Fig. 14. The sifting rates of the proposed algorithm under various data dimensions.

YI-CHUNG CHEN AND HENG-YI SU

1114

presents the results of the synthetic dataset. In most cases, fewer than 60% of the objects
need to be transferred, which represents a saving of 40%. The only exception is found in
the dataset with six dimensions, in which the number of depth-k skyline results increases
exponentially with the number of dimensions. Thus, the number of possible depth-k sky-
line objects and the average sifting rate increase accordingly. In Figs. 14 (a) and (b), we
can see that using only the combination of minimum and volume (i.e., min_vol) in the
algorithm results in the lowest sifting rate. This minimizes the number of users that need
to be examined by the sorted-loop-checking algorithm, thereby enabling the algorithm to
find all depth-k skyline users with similarities to a specific user in the social network
more quickly. This can be explained by the fact that projecting users on the axis of min-
imum and the axis of volume enables a greater separation of depth-k skyline users and
non-depth-k skyline users than could be achieved by projecting users on the axis of
summation. Thus, the neural network is better able to differentiate between these two
types of users. The second lowest sifting rate is achieved by using all three features in
the neural network for the classification of depth-k skyline users and non-depth-k skyline
users. The fact that this combination is a bit worse than that of the combination minimum
and volume (i.e., min_vol) can be attributed to two factors. First, feature summation pro-
vides no benefits with regard to the differentiation of users into depth-k skyline users and
non-depth-k skyline, which has a direct influence on the resulting sifting rate. Second, a
greater number of inputs in the neural network can reduce performance in the approxi-
mation of regions. Thus, the use of all three features can compromise the performance of
the neural network, compared to using just two features. The other two combinations
(min_sum and sum_vol) produce the highest sifting rates, due to the fact that at least one
useful feature is absent and summation is taken into account.

(a) Gowalla dataset. (b) Synthetic dataset.

Fig. 15. The sifting rates of the proposed algorithm under different k.

4.3 Comparisons of the Proposed Algorithm with Various Feature Combinations
and k Values

The performance of the proposed algorithm was evaluated using various k values in

a distributed system with five clients, where k was varied between 3 and 20 and the
number of dimensions was fixed at 4. Fig. 15 (a) presents the results of the Gowalla of

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1115

the figures, the sifting percentage of all combinations increased only slightly with k. This
can be explained by the fact that the increase in the number of depth-k skyline users
(with an increase in k) is far lower than the increase in the total number of users. As a
result, the proposed algorithm is not required to sift through a larger number of users
from the social network in order to find all of the depth-k skyline users. Fig. 15 shows
that the combination min_vol achieves the lowest sifting percentage, due to the fact that
these features are able to provide a more distinct differentiation between depth-k skyline
users and non-depth-k skyline users than can be achieved using summation. The other
combinations are unable to achieve sifting percentages lower than this due to the fact that
they take the feature ‘summation’ into consideration.

5. CONCLUSIONS

This paper introduces a distributed neural filter to facilitate the search for users with
similarities to a specific user in the social network. This new approach overcomes some
of the shortcomings of the conventional depth-k skyline algorithm. The contributions of
this work include the following: (1) We introduce the notion of using a skyline query to
find friends with similar preferences in social networks; (2) We map the information of
users within a feature space to facilitate the differentiation of the depth-k skyline users
from non-depth-k skyline users; (3) We introduce the concept of using neural networks
to accelerate computation; and (4) We provide a realistic simulation of features suitable
for the differentiation of depth-k skyline users from non-depth-k skyline users. Our sim-
ulation results verify the effectiveness and efficiency of the proposed approach. In future
work, we will continue to improve the proposed algorithm by using or developing other
neural-network-related model, such as fuzzy neural networks or wavelet neural networks.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Science and Technology of
Taiwan, under Contracts MOST 106-2119-M-224-003 and MOST 106-2221-E-035-064.

REFERENCES

1. M. J. Barranco and L. Martínez, “A method for weighting multi-value features in
content-based filtering,” in Proceedings of International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, 2010, pp. 411-
418.

2. I. Bartolini, P. Ciaccia, and M. Patella, “SaLSa: Computing the skyline without
scanning the whole sky,” in Proceedings of ACM International Conference on In-
formation and Knowledge Management, 2006, pp. 405-414.

3. T. Berka and M. Plößnig, “Designing recommender systems for tourism,” in Pro-
ceedings of ENTER, 2004, pp. 26-28.

4. S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings
of IEEE International Conference on Data Engineering, 2001, pp. 235-254.

YI-CHUNG CHEN AND HENG-YI SU

1116

5. Y. C. Chen and C. Lee, “Depth-k skyline query for unquantifiable attributes in dis-
tributed Systems,” in Proceedings of International Conference on Artificial Intelli-
gence and Soft Computing, 2011, pp. 315-322.

6. Y. C. Chen and C. Lee, “A neural skyline filter for accelerating the skyline search
algorithms,” Expert Systems, Vol. 32, 2015, pp. 108-131.

7. S. M. Chiu, Y. C. Chen, H. Y. Su, and Y. L. Hsu, “Finding similar users in social
networks by using the depth-k skyline query,” in Proceedings of IEEE Conference
on Consumer Electronics, 2015, pp. 162-163.

8. T. Emrich, M. Franzke, N. Mamoulis, M. Renz, and A. Züfle, “Geo-social skyline
queries,” in Proceedings of International Conference on Database Systems for Ad-
vanced Applications, 2014, pp. 77-91.

9. A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proceed-
ings on ACM Special Interest Group on Management of Data, 1984, pp. 47-57.

10. A. Hanze and S. Junmanee, “Travel recommendations in a mobile tourist informa-
tion system,” in Proceedings of Information Systems and its Application, 2005, pp.
86-99.

11. G. He, L. Chen, C. Zeng, Q. Zheng, and G. Zhou, “Probabilistic skyline queries on
uncertain time series,” Neurocomputing, Vol. 191, 2016, pp. 224-237.

12. T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for personalized
POI recommendations in mobile,” in Proceedings of International Symposium on
Applications on Internet, 2006, pp. 1-6.

13. C. C. Hou, C. K. Chang, Y. C. Chen, H. Y. Su, and Y. L. Hsu, “Finding similar us-
ers in social networks by using the neural-based skyline region,” in Proceedings of
International Conference on Artificial Intelligence for Engineering, 2015, pp. 292-
299.

14. H. P. Hsieh, C. T. Li, and S. D. Lin, “Exploiting large-scale check-in data to rec-
ommend time-sensitive routes,” in Proceedings of ACM SIGKDD International
Workshop on Urban Computing, 2012, pp. 55-62.

15. A. Jadhav and R. Sonar, “An integrated rule-based and case-based reasoning ap-
proach for selection of the software packages,” Information Systems, Vol. 31, 2009,
pp. 280-291.

16. C. Kalyvas, T. Tzouramanis, and Y. Manolopoulos, “Processing skyline queries in
temporal databases,” in Proceedings of Symposium on Applied Computing, 2017, pp.
893-899.

17. X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Advances in Artificial Intelligence, Vol. 2009, 2009.

18. T. M. N. Le, J. Cao, and Z. He, “Answering skyline queries on probabilistic data
using the dominance of probabilistic skyline tuples,” Information Sciences, Vol.
340-341, 2016, pp. 58-85.

19. M. J. Li, M. K. Ng, Y. M. Cheung, and J. Z. Huang, “Agglomerative fuzzy k-Means
clustering algorithm with selection of number of clusters,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 20, 2008, pp. 1519-1534.

20. W. Liang, G. Lu, X. Ji, J. Li, and D. Yuan, “Difference factor’ KNN collaborative
filtering recommendation algorithm,” in Proceedings of International Conference on
Advanced Data Mining and Applications, 2014, pp. 175-184.

A DISTRIBUTED NEURAL FILTER FOR FINDING DEPTH-K SKYLINE FRIENDS IN SOCIAL NETWORKS

1117

21. E. H. C. Lu, C. Y. Chen, and V. S. Tseng, “Personalized trip recommendation with
multiple constraints by mining user check-in behaviors,” in Proceedings of Interna-
tional Conference on Advances in Geographic Information Systems, 2012, pp. 209-
218.

22. M. Okabe, M. Yanagisawa, H. Yamazaki, K. Kobayashi, A. Yoshioka, and T. Ya-
maguchi, “Organizational knowledge transfer of intelligence skill using ontologies
and a rule-based system,” Practical Aspects of Knowledge Management, Vol. 5345,
2008, pp. 207-218.

23. R. Pan, P. Dolog, and G. Xu, “KNN-based clustering for improving social recom-
mender systems,” in Proceedings of International Workshop on Agents and Data
Mining Interaction, 2012, pp. 115-125.

24. D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm
for skyline queries,” in Proceedings of ACM SIGMOD International Conference on
Management of Data, 2003, pp. 467-478.

25. Y. Park, J. K. Min, and K. Shim, “Efficient processing of skyline queries using Map-
Reduce,” IEEE Transactions on Knowledge and Data Engineering, Vol. 29, 2017,
pp. 1031-1044.

26. K. Pelechrinis and P. Krishnamurthy, “Location affiliation networks: Bonding social
and spatial information,” in Proceedings of European Conference of Learning and
Knowledge Discovery in Databases, 2012, pp. 531-547.

27. Z. Peng, C. Wang, F. Tao, and L. Han, “SkyBoundary: An improved approach to
member promotion in social networks,” in Proceedings of IEEE International Con-
ference on Dependable, Autonomic and Secure Computing, 2011, pp. 838-845.

28. Z. Peng and C. Wang, “Member promotion in social networks via skyline,” World
Wide Web, Vol. 17, 2014, pp. 457-492.

29. J. Salter and N. Antonopoulos, “CinemaScreen recommender agent: combining col-
laborative and content-based filtering,” IEEE Intelligent Systems, 2006, pp. 35-41.

30. O. Shamir and N. Tishby, “Stability and model selection in k-means clustering,”
Machine Learning, Vol. 80, 2010, pp. 213-243.

31. G.S. J. Gong, “Joining case-based reasoning and item-based collaborative filtering in
recommender systems,” in Proceedings of International Symposium on Electronic
Commerce and Security, Vol. 1, 2009, pp. 40-42.

32. K. C. Ting, R. P. Wang, Y. C. Chen, D. L. Yang, and H. M. Chen, “Finding m-simi-
lar users in social networks using the m-representative skyline query,” Information
Discovery and Delivery, Vol. 45, 2017, pp. 121-129.

33. J. S. Wang and Y. C. Chen, “A Hammerstein-Wiener recurrent neural network with
universal approximation capability,” in Proceedings of IEEE International Confer-
ence on Systems, Man and Cybernetics, 2008, pp. 1832-1837.

34. S. Zheng, A. Zaman, and Y. Morimoto, “Friend recommendation by using skyline
query and location information,” Bulletin of Networking, Computing, Systems, and
Software, Vol. 5, 2016, pp. 68-72.

YI-CHUNG CHEN AND HENG-YI SU

1118

Yi-Chung Chen (陳奕中) received the B.S. and M.S. de-
grees in Electrical Engineering from National Cheng Kung Uni-
versity, Tainan, Taiwan, in 2007 and 2008, and the Ph.D. degrees
in Department of Computer Science and Information Engineering
from National Cheng Kung University, Tainan, Taiwan, in 2014.
He joined the faculty of Department of Information Engineering
and Computer Science, Feng Chia University in 2014 and partici-
pated in some projects related to AI techniques. He is currently an
Assistant Professor in the Department of Industrial Engineering

and Management, National Yunlin University of Science and Technology. His research
interests include spatio-temporal databases, recommendation systems, social network
analyses, artificial intelligences, and techniques of Industry 4.0.

Heng-Yi Su (蘇恆毅) was born in Taipei, Taiwan, in 1980.
He received the M.S. and Ph.D. degrees in Electrical Engineering
from National Taiwan University, Taipei, Taiwan in 2005 and
2014, respectively. Currently, he is an Associate Professor of Elec-
trical Engineering at Feng Chia University. His research interests
include techniques of artificial intelligence, and applications of
PMUs to power system voltage stability monitoring and control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

