
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 695-712 (2017)
DOI: 10.6688/JISE.2017.33.3.6

695

Computation Efficient Attribute Based Broadcast Group Key
Management for Secure Document Access in Public Cloud

PERUMAL PANDIARAJA1, PANDI VIJAYAKUMAR2,*,

VARADARAJAN VIJAYAKUMAR3 AND RAMAN SESHADHRI4
1Department of Computer Science and Engineering

Arunai Engineering College
Thiruvannamalai, 606603 India

2Department of Computer Science and Engineering
University College of Engineering Tindivanam

Melpakkam, Tamilnadu, 604001 India
3School of Computing Science and Engineering

VIT University
Chennai Campus, 600127 India

4GAVS Technologies Pvt. Limited
Chennai, 600119 India

E-mail: {sppandiaraja; vijibond2000; seshadhri.raman21}@gmail.com; vijayakumar.v@vit.ac.in

An efficient fine-grained encryption-based access control scheme for documents

stored in the public cloud network proposed by Mohamed et al. utilizes more computa-
tional and storage complexities. Although, Mohamed et al.’s broadcast key management
scheme communicates group key securely, it consumes massive computational and stor-
age resources for frequently changing the group key. In order to avoid these problems,
we have proposed a new broadcast group key management scheme that takes reduced
computational resources by performing minimal cryptographic operations in the data
owner and cloud user’s to update and recover the group key using a matrix called access
control vector. The computation complexity of the data owner is reduced by performing
simple arithmetic operations for updating the group key. Moreover, the computational
complexity of the cloud user is also minimized by performing only one addition and two
subtraction operations whenever there is a change in the group or access control policy.
In addition, the proposed scheme also minimizes the storage complexity of cloud users,
but maintains the same communication complexity as that of Mohamed et al.’s scheme.
The performance results show that the proposed scheme is computationally efficient in
the data owner and the cloud users.

Keywords: access controls, cryptographic controls, data encryption, data sharing, com-
putation time

1. INTRODUCTION

Many organizations use XML as an important markup language for information
distribution and data sharing among various user communities. In such a scenario, the
organization would place a large amount of documents to be shared among the users on a
Cloud Service Provider (CSP). However, such cloud providers are not always trusted
and hence may not maintain confidentiality of the documents placed in the CSP by the
organization. Therefore, maintenance of confidentiality is a major concern for many or-

Received July 8, 2016; accepted August 21, 2016.
Communicated by Balamurugan Balusamy.
* Corresponding author.

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

696

ganizations that utilize the facility of access control mechanism in a public cloud. In or-
der to provide access control policy mechanisms in public cloud for restricting unau-
thorized users from accessing the documents, various key management schemes are used
[1-3, 22]. However, in all the key management schemes, the provision of access control
facility is a challenging task. This is due to the fact that handling the process of key gen-
eration and distribution are more complex when the subdocuments are distributed to a
group of users in a secure way from the cloud servers. Moreover, the document dissemi-
nation is performed in a dynamic way and hence the users are allowed to join or depart
service at any time. When a new user joins into the service, it is the responsibility of the
data owner to prevent the new user from having access to previous documents to provide
backward secrecy. Similarly, when an existing group user leaves from any group, such a
user should not have further access to the documents to achieve forward secrecy. In or-
der to handle the issues of forward and backward secrecy, the keys are updated fre-
quently whenever a user joins or leaves the service.

The data owner takes the responsibility of generating a new group key subsequent
to user join and leave operations. After a user joins the group or leaves the group, a new
group key is generated and is shared to the group users in a secure way. In order to do
that, when membership changes in the dynamic group, it computes common public in-
formation and the access control vector at the data owner and it is sent as a broadcast
message to all the cloud users. In order to compute and to distribute the access control
vector, many researchers have worked on broadcast key management schemes [1, 2].
However, most of these schemes consume more key computation time and memory [1, 2,
4, 5]. In order to tackle these issues, it is necessary to propose a new key management
scheme. Therefore, in this paper, a new computation efficient group key management
scheme is proposed.

In all the existing Broadcast Group Key Management (BGKM) schemes [1, 2, 4, 5],
initially the data owner creates various access control policies for various subdocuments
user communities to define which subject can access which objects under which method.
These Access control policies are created using attribute conditions. An attribute condi-
tion [3] is an expression of the form “attrib op val”, where attrib is the identity attribute,
op is a comparison operator such as =, <, >, , , =, and val is a value that can be used
for the attribute (eg., “role = doctor”). Thus, an Access Control Policy (ACP) is a tuple
(A, S, D) where A denotes attribute conditions, S denotes subdocuments and D denotes
document. A is a conjunction of attribute conditions (con1 con2 … conn) that must be
satisfied by a user to have access to a subdocument (S). There will be only one main
document (D) and there can be more than one subdocument (S) for an organization. Af-
ter creating ACPs, these ACPs are implemented by an access control mechanism. While
implementing ACPs, it is necessary to consider various cases [4]. First, the same access
control policy could be applied to a set of subdocuments. Second, different access con-
trol policies could be applied to different subdocuments within the same document. Fi-
nally, the ACPs must include various conditions to access the documents from the cloud.
Moreover, the number and type of subject are not known before implementing ACPs and
hence it is not possible to create ACPs based on the user IDs. Therefore, it is necessary
to create the ACPs based on the user IDs, roles, age and qualifications. These properties
are called as Identity attributes of a subject. However, it is very difficult to create ACPs
for selectively distributing the documents among users.

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 697

Consider, for example, the case of an Electronic Health Records (EHRs) [3] in
which different level of hospital employees (users) is allowed to view different subdoc-
uments by encrypting and storing them on the cloud. The hospital employees are divided
into various categories such as receptionist, cashier, doctor, nurse, pharmacist, system
administrator (data analyst) and non-employees such as patients. The EHR document is
divided into various subdocuments such as Billing Information, Contact Information,
Medication, Physical Exam, Lab Records and so on. In this example, various ACPs are
created to allow different hospital users to view different encrypted sub-documents. For
example, an ACP for a cashier is created in such a way that he/she should not have ac-
cess to any other documents except for the Billing Information document. In contrast to
this, a doctor or a nurse should not have access to Billing Information. However, they
can access other documents related to a patient with disease and medication history. The
following are some of the ACPs that are created for the “EHR.xml” that contains various
subdocuments related to health records.

1. ACP1 = (“role = receptionist”, {Contact Information}, “EHR.xml”)
2. ACP2 = (“role = cashier”, {Billing Information}, “EHR.xml”)
3. ACP3 = (“role = doctor”, {Clinical Records, Lab Records,

Physical Exams, Plan, Medication}, “EHR.xml”)
4. ACP4 = (“level 59” “role = nurse” {Contact Information, Medication,

Physical Exams, Lab Records, Plan}, “EHR.xml”)
5. ACP5 = (“role = data analyst”, {Contact Information, Lab Records}, “EHR.xml”)
6. ACP6 = (“role = pharmacist”, Billing Information, Medication, “EHR.xml”

Similarly, “EHR.xml” is divided into various subdocuments based on these access
control policies defined above:

 Contact Information: ACP1, ACP4, ACP5
 Billing Information: ACP2, ACP6
 Medication: ACP3, ACP4, ACP6
 Physical Exams: ACP3, ACP4
 Lab Records: ACP3, ACP4, ACP5
 Plan: ACP3, ACP4
 {Clinical Records}: ACP3
 Others: none

After the creation of ACPs, the data owner has to generate various group keys to

encrypt various documents ac-cording to the ACPs. However, the encryption alone is not
sufficient for an organization to enforce fine-grained access control on their data. Be-
cause, fine-grained access control is based on information such as role or project of users
on which the users are working in the organization. Moreover, a single subdocument can
be accessed by different credentials of users in an organization. In order to support fine-
grained access control and multiple access, Policy Configurations are specified in an
expressive way. The set of access control policies that can be applied for a subdocument
is called as Policy Configuration (PC). There can be multiple subdocuments that fall un-
der same policy configuration. The policy configurations and their associated subdocu-
ments are:

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

698

 PC1 = Contact Information: ACP1, ACP4, ACP5
 PC2 = Billing Information: ACP2, ACP6
 PC3 = Medication: ACP3, ACP4, ACP6
 PC4 = Physical Exams: ACP3, ACP4
 PC5 = Lab Records: ACP3, ACP4, ACP5
 PC6 = Plan: ACP3, ACP4
 PC7 = {Clinical Records}: ACP3
 PC8 = Others: none

The organization (Data owner) creates ACPs and PCs for many subdocuments en-
closed within a main document (e.g., EHR.xml) and store them in the CSP. In order to
do that, the organization divides the documents into subdocuments based on the PC and
stores them in the cloud. When user1 submits his/her original id and attribute conditions,
the data owner finds a match for the supplied attribute conditions with an access control
policy. After finding the match, the data owner delivers a set of secrets based on the at-
tribute conditions to user1. In a similar way, user2, …, usern obtains secret keys when
attribute conditions are matched with the access control policies. After that, the data
owner chooses a group key for a policy configuration and encrypts the group key using
all the entire user’s secret key which is a coarse grained encryption to inform the group
keys to users in a secure way. To encrypt the group keys, various group key management
algorithms are available [1-3]. In all the group key management algorithms, the group
key is informed to the group members by creating an Access control Vector (ACV) for
each subdocument. After that, one (or) more subdocuments coming under same policy
configuration are encrypted with a same group key. The encrypted subdocuments are
stored in the cloud along with its ACV and the hash value which is computed using the
ACVs and group key values. The cloud users use the ACV to derive the group key. In
order to do this, each cloud user receives the ACV in a secure way from the data owner.
After receiving the ACV, the users first decrypt the group key with his/her set of secrets
using key recovery procedure which is a fine grained decryption. Finally, the users can
decrypt one (or) more subdocuments downloaded from the CSP using the group key
which falls under same policy configuration. In this scenario, the security of the docu-
ments being communicated between the data owner and the cloud users is preserved.

However, the privacy of the users is not preserved since each user submits their
own identity to the data owner for accessing the documents. In order to preserve the pri-
vacy of each user, a Trusted Third Party (TTP) is introduced in the existing approaches
[1, 2]. At first, the users submit their identity attributes to TTP that issues identity tokens
to the users. An identity token contains the user’s pseudonym, a tag that identifies the
identity attribute, cryptographic semantically secure commitment of a user’s identity at-
tribute value and a digital signature. Identity tokens are used by the users in registering
them to the data owner. Each user submits their identity tokens and receives a set of se-
crets from the data owner based on each identity attribute that matches with the access
control policy condition. However, the computation complexity of data owner and cloud
users in the existing ACV-BGKM [1] approach is high. In order to improve this, in this
paper, a new computation efficient key management scheme is developed. A key ad-
vantage of the proposed broadcast key management scheme is that adding/revoking users
can be performed in a computation efficient way. The major objectives of the proposed
work are as follows:

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 699

 To propose an effective broadcast group key management scheme in order to mini-
mize the computational complexity from O(n3) to O(n) for updating the group key in
the data owner when group membership changes.

 To propose a technique in order to minimize the computational complexity of the key
recovery process used in the cloud user from O(n) to O(3).

 To propose a technique in order to reduce the storage complexity from O(n) to O(3) at
the cloud user’s for recovering the group key.

 To maintain the same communication complexity as given in Mohamed et al.’s ACV-
BGKM scheme by sending only minimum amount of information from the data own-
er to cloud user.

The remainder of this paper is organized as follows: Section 2 provides the litera-
ture survey of some of the past related works. Section 3 depicts the complete architecture
of our proposed work. Section 4 gives a detailed explanation of our proposed work. Sec-
tion 5 explains the security strength of our proposed work. Section 6 analyzes the per-
formance of our proposed work with the other existing works. Section 7 gives the con-
cluding remarks.

2. LITERATURE SURVEY

Cloud services are deployed in the cloud servers using four methods, namely pri-
vate, public, community and hybrid cloud. In public cloud, the services are available to
the general public users and are controlled by data owner who stores the documents and
a third party Cloud Service Provider (CSP) who maintains the documents. Since the
documents are public in the public cloud, many users can access the documents located
in the cloud service provider by getting access rights from the data owner. To enhance
the confidentiality of the documents, an access control mechanism is to be implemented
in public cloud networks. Access control mechanisms are used for restricting unauthor-
ized users from accessing the documents. Many previous works on access control based
security mechanisms are present in the literature which are used to secure the data stored
in cloud servers. Among them, a Java based system that addresses the security issues of
access control was proposed by Elisa et al. [6] based on policy design for XML docu-
ments. This system supports the specification of policies at various granularities and
considers the trust level of users to enforce access control. Generally, a Role Based Ac-
cess Control (RBAC) model consists of four basic components; a set of users, a set of
roles, a set of permissions and a set of sessions. Roles have several advantages since
roles represent an organizational function. A role based access control model can directly
support an organization’s security policy so that it helps the administration. The RBAC
model is widely used for access control management, both in closed and open systems
(James et al. [7]) where authorizations are specified with respect to roles and not with
respect to individual users. Each user can have more than one privilege since they can
play more than one role at a time. Based on these roles, privileges are assigned to each of
the roles, since managing fewer roles is much more efficient than managing most indi-
vidual users. Because of its relevance, RBAC has been individually investigated by re-
searchers (Elisa et al. [6], James et al. [7] and Barker [8]). Although RBAC has been

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

700

thoroughly explored, there are still significant application requirements which are not
addressed by current RBAC models. To overcome this issue, a generalization of the
RBAC model, called the Action Status based Access Control (ASAC) was proposed by
Barker [8]. A key feature of the ASAC model is that a decision on an agent’s request to
access resources is determined by considering the agent’s ascribed status. Another im-
portant criterion for security in distributed database systems is the location constraints.
Therefore, an access control system must not only consider temporal constraints, but also
considers the spatial constraints.

Group access control can be achieved by encrypting a message (document) using an
encryption key with a large size. This key is dynamically generated for each session of
the communication session. Therefore, this dynamically generated key which is devel-
oped using an effective key management scheme is known as the Group Key (Gk) that is
shared to all legitimate users of a group to access a common data from the cloud server.
This is necessary since the group membership in a group key management scheme is
most likely to change dynamically. Whenever a new user join or an existing user leave
from the group, the encryption key must be updated in order to prevent the leaving or
joining user from accessing the data or messages from the future or prior communica-
tions as proposed by Poovendran et al. [9]. The issues of establishing and updating the
group keys have been addressed by various Group Key Management schemes present in
the literature (Kim et al. [10], Drira et al. [11] and Naranjo et al. [12]).

The process of generating, distributing and maintaining the keys is taken care by
key management schemes. There are many key management schemes that are available
in the literature (Vijayakumar et al. [13, 25-30], Yoon-Su Jeong et al. [14], and Jung-
Yoon Kim et al. [15]). The two main types of key management schemes are centralized
and distributed key management scheme and are used currently for providing security in
group communication. In the centralized scheme, a trusted third party is used to control
the activities of group members. Moreover, the trusted third party called key server (or)
group center is used for interacting with the group users and to control them in the cen-
tralized key management scheme. This key server is responsible for generating and dis-
tributing the keys. In contrast to centralized key management scheme, the keys in a dis-
tributed key management scheme are computed and maintained with the coordination of
group users.

Attribute Based Encryption (ABE) is a technique which is mainly used for manag-
ing the overlapping users with different credentials. Initially, the concept of ABE has
been introduced by A. Sahai and B. Waters [16]. This ABE system is limited only to
fixed policies with less number of common attributes. M. Pirretti et al. [17] overcame the
drawback by choosing a very large value where number of common attributes is big in
number. However, this scheme was not significant for the privacy of users was not pre-
served. V. Goyal et al. [18] introduced the idea of key-policy ABE (KP-ABE) systems
and J. Bethencourt et al. [19] introduced the idea of ciphertext-policy ABE (CP-ABE)
systems. These approaches fulfilled privacy, security and large number of overlapping
users. However, these schemes did not handle group dynamics where users join and
leave are frequent. Therefore, proxy based encryptions encryption schemes [20, 21] were
adopted for the public cloud. These systems handled group dynamics efficiently. One of
the important limitations of this approach is that duplicate encryptions are performed and
hence the computational complexity is increased.

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 701

Di Vimercati et al. [22] identified this problem and proposed a solution to handle
the data hosted in the public cloud. However, this approach does not support significant
attribute based policies with overlapping users. Attribute Based Encryption (ABE) is a
technique which is mainly used for managing the overlapping users with different cre-
dentials. Recently, Mohamed Nabeel et al. [1, 2] proposed an approach in the year 2013
and 2014 to support privacy and selectively disseminating documents in a secure way
from the public cloud. However, the computation complexity of data owner in their
ACV-BGKM approach is high and it is O(n3) where n is the number of cloud users. The
computation complexity of (ACV-BGKM) scheme [1] is O(n3) because the data owner
uses Gaussian-Jordan elimination method [23] to find the new access control vector
whenever there is a change in the group. The computation complexity of cloud user is
O(n) because each cloud user computes a row using which n multiplication operation is
performed to get the group key. Moreover, the storage complexity is also O(n) both in
the data owner and the cloud users. In addition to this, the communication complexity is
O(n).

The improved ACV-BGKM scheme has also become inefficient when bucketization
and subset cover approaches are used. In bucketization approach, as the bucket size in-
creases, improved ACV-BGKM becomes computationally inefficient. Moreover, in sub-
set cover approach, the group dynamics are handled only for revoking cloud users. When
numbers of joining cloud users are large, it makes use of basic ACV-BGKM for key
generation and hence subset cover approach also becomes inefficient. Therefore, we
propose a computation, storage and communication efficient group key management
scheme in this paper. The main idea of proposed group key management scheme is to
give some secrets to the cloud users based on the identity attributes from which it allows
the users to recover the group key. The major advantage of this proposed group key
management scheme is that it minimizes the computation complexity for updating the
group key in the data owner side. In addition to this, it also minimizes the computation
complexity of the cloud users.

3. SYSTEM ARCHITECTURE

The system architecture shown in consists of four components, namely, Data Owner,
Cloud Service Provider (CSP), Token Generator, and cloud User. The data owner is the
one who places the original documents in the public cloud that are accessed by the cloud
users. A CSP operates a single or a collection of servers used to maintain the data own-
er’s data. The token generator is used to generate a token which should be given to each
cloud user to get a secret key from the data owner.

A cloud user is a person (or application acting on behalf of this user) who wants to
access the data from the CSP. Initially, each cloud user must send their identity attributes
to the token generator to get a token. The token generator receives the identity attributes
from the cloud user and generates an identity token. After generating this token for a
cloud user, based on their identity attributes, it gives the newly generated identity token
to the cloud user and then sends the same identity token to the data owner for verification.
The verification should be performed after giving the token to the cloud user, since the
token generator has to send the identity token of a cloud user to the data owner only if it

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

702

is correctly delivered to that particular cloud user. After receiving confirmation from that
cloud user only, the token generator will send the identity token to the data owner. All
these processes are used as explained in the existing approach [1]. In this paper, we use
the existing Pedersen commitment scheme [24] to preserve the privacy of the cloud user
to hide the cloud user’s identity from the data owner.

Fig. 1. Privacy preserving group key management architecture.

The cloud user registers their identity token with the data owner to get a secret key.
The data owner gives secret keys to the cloud users based on their identity token. After
providing the cloud user with a secret key, the data owner generates a Group Key (GK)
for each group of users. After that, the data owner encrypts the group key based on their
individual secret key values. Then, the data owner broadcast the encrypted group key in
an ACV format to the cloud users along with their index value. After that, the data owner
encrypts the subdocuments using group key and then uploads the encrypted subdocu-
ments to the CSP. Each cloud user can derive (recover) the GK using their secret key and
thus can use this GK to decrypt the encrypted documents placed in the cloud. When
group membership changes, it is the responsibility of the data owner to change the GK.
The data owner may also change the GK periodically. For example, when a user leaves
or joins the group, the data owner downloads the corresponding document from the
cloud service provider and re-encrypts the document with the new GK. Then, the re-
encrypted document is uploaded into the cloud. In this paper, we mainly concentrate on
developing a new broadcast group key management that takes care of the job of generat-
ing the secret and group keys and also updating them when group membership changes.
In addition to this, we have also introduced a new key recovery process in this paper to
allow the cloud users for finding the group key from ACV value. Hence, our proposed
work concentrates from Steps 3 to 9 in Fig. 1.

4. PROPOSED BROADCAST GROUP KEY MANAGEMENT SCHEME

In this section, we provide a detailed explanation about our proposed broadcast
group key management scheme (PBGKM). The PBGKM scheme provides forward se-
crecy, backward secrecy, and collusion resistance. In addition to these facilities, our

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 703

proposed scheme is also efficient in terms of computation and storage complexities. The
proposed broadcast group key management (PBGKM) works in four phases. The first
phase is the Data owner initial setup phase and user join phase, where a multiplicative
group is created by the data owner. In this phase, the cloud users send join requests to the
data owner and obtain all the necessary keys for computing the group key in order to
download the documents from the cloud. The second phase is Group key computation
phase, where the data owner generates and encrypts the group key in ACV format. The
third phase is called as Group key recovery phase that deals with the key recovery pro-
cess used in the cloud users. The final phase is Group key updating phase that deals with
updating of the group key when there is a change in the dynamic group in order to pro-
vide forward/backward secrecy.

4.1 Data Owner Initial Setup Phase and User Join Phase

In this phase, the data owner selects a large prime number (p) to define a multiplica-
tive group z*

p which is used to generate the secret keys (i)(1 i n) and random seed
keys (ri)(1 i n) for n number of users with respect to the prime number (p). In addi-
tion to this, it also generates an arbitrary value ‘’ The secret keys (i), random seed keys
(ri) and arbitrary value ‘’ are used for updating the group key at the data owner. The
secret and seed keys corresponding to legitimate cloud users are used in the cloud users
to recover the updated group key. Initially, when the cloud user sends join request to the
data owner, the data owner informs the secret keys (i) and its corresponding seed keys
(ri) to all the existing cloud users in a secure way using Secure Socket Layer (SSL). For
example, when a new user ‘i’ is authorized to join a group to access the documents
stored in the public cloud for the first time, the data owner sends a secret key (i) and its
corresponding random seed key (ri) with respect to their identity (pseudonym value).
This secret key (i) and random seed key (ri) are known only to the cloud user (Usri) and
to the data owner. All the cloud users of the group store the secret key (i) and the ran-
dom seed key value (ri) in their respective storage area.

4.2 Group Key Computation Phase

In this phase, the data owner generates and encrypts the group key in the following
ways to create the ACV for a particular subdocument and broadcast it to the cloud users
of the group.

1. Initially, data owner creates a column vector ‘A’ for number of users. If there are ‘n’
users in a group, it constructs (n+1) column vector in which the first element of the
column vector is a group key and remaining elements a(i,1)(1 i n) are calculated
with respect to Eq. (5) and are placed in the column vector.

1,1

2,1

3,1

a

A a

a

 (1)

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

704

2. After creating ‘A’, the data owner constructs an arbitrary numbered column vector ‘B’
equal to the size of ‘A’ that consist of zeros followed by an arbitrary number ‘’ as
shown in Eq. (2).

0

0

0

0

B

 (2)

In this column vector, the arbitrary value ‘’ is randomly chosen from the group z*
p.

3. Then, the data owner adds the column vector ‘A’ with the column vector ‘B’ to obtain
a new column vector ‘C’ as shown in Eq. (3) and it is the initial process of encrypting
the group key.

(A) + (B) = (C) (3)

The result of this process can be expressed as shown in Eq. (4).

1,1 1,1

2,1 2,1

3,1 3,1

,1 ,1

0

0

0

0

n n

a a

a a

a a

a a

 (4)

In general, data owner obtains value of (ai,1) using the formula shown in Eq. (5).

(ai,1) = (+ i) where (1 i n) (5)

4. Next, the data owner creates a column vector ‘R’ and places all the random seed key
values (ri) in that column vector followed by a value zero as shown in Eq. (6).

1

2

3

0

n

r

r
R

r

r

 (6)

5. This column vector ‘R’ is added with the vector ‘C’ to produce the access control
vector ACVi of a subdocument Si as shown in Eq. (7).

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 705

1,1 1,11

2,1 2,12

33,1 3,1

,1 ,1

0

i

nn n

a xr

a xr
ACV

ra x

ra x

 (7)

6. Finally, the data owner broadcasts the ACVi value along with their index value to all
the cloud users present in the group. The index value is used by the cloud users in
order to extract a particular value according to their positions from the ACVi value.

4.3 Group Key Recovery Phase

In this phase, the group key encrypted by data owner is decrypted by the authorized
cloud users using their own random seed key (ri) and secret key (i) in the following
ways:

1. Each cloud user of the group receives the broadcast message and extracts value and

xi,1 alone from the ACVi according to their positions indicated by the index value. Us-
ing these two values, each cloud user subtracts their random seed key from xi,1 in or-
der to get ai,1 which is the first step in finding the group key as shown in Eq. (8).

(xi,1) (ri) = (ai,1) (8)

2. In the second step of finding the group key, each cloud user adds their secret key (i)
with (ai,1) and subtracts from the resultant value to obtain the group key as shown in
Eq. (9).

(ai,1 + i) = (9)

3. Finally, each cloud users can decrypt the subdocument Si downloaded from the public
cloud using the corresponding group key ().

The proposed scheme does not change privacy preserving scheme of Mohamed et

al.’s scheme. The proposed approach focuses only on enhancing efficiency of the group
key management scheme used in their approach so that the group key is updated both
when a user joins and leaves a group with minimum computational and storage complex-
ities.

4.4 Group Key Updating Phase

The final phase of this scheme is called as key updating phase where the data owner
updates (changes) the group key when a user joins/leaves the dynamic group. The data
owner also updates the group key when the cloud user’s credentials have to be updated
dynamically from time to time for various reasons such as promotions, change of re-

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

706

sponsibilities, and so on. If a user updates his/her credentials with the data owner, then
the data owner needs to update the column vector A and B in order to update the ACVi
value only for the subdocuments involved.

The information to be updated by data owner in the column vector A and B are old
group key () to new group key (), (ai,1) to (bi,1), arbitrary number () to () and to
 respectively. The data owner obtains the value of (bi,1) using the formula shown be-
low:

(bi,1) = (+ i).

The updated information is sent as a broadcast message to the cloud users, from

which all the existing cloud users of the group obtain the new group key () using ()
and (bi,1) respectively. When the data owner sends the updated group key in ACVi format
to the existing cloud users, it also includes the updated index value along with the new
ACVi value.

Theorem 1: The proposed key management scheme is correct.

Proof: The correctness of proposed scheme can be easily proved as shown below:

() = (ai,1 + n)
() = (ai,1 + n (ai,1 + n))
(Since, () = (ai,1 + n))
() = (ai,1 + n ai,1 n +) = ()

5. SECURITY ANALYSIS

This paper analyzes the proposed scheme for forward secrecy, backward secrecy
and collusion resistance. The assumption of the implemented scheme is that an adversary
might be a group member in prior and the data owner keeps the cloud users entire key
values secretly which is also kept secret by the users.

5.1 Forward/Backward Secrecy

Computing the newly updated group key (′) to break forward or backward secrecy

in the PBGKM scheme depends on the method used to calculate the members secret key
(i) and random seed key value (ri) in a particular amount of time. In the proposed work,
the data owner broadcast ACV matrix to all the cloud users present in the group. Hence,
an attacker (old or new user) will try to capture this matrix and by using his/her secret
key and random seed key values, the attacker can try to find the value of updated group
key (′). This updated group key (′) can be computed only by using any one the existing
user’s secret and random seed key value. If the attacker is not an active adversary (i.e.,
not a member of existing group), then the attacker can use brute force attack to learn
about any one member’s secret key i and seed key value (ri) If the size of i is w bits,
then the attacker has to use the total number of trials of 2w to learn about secret key. Sim-

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 707

ilarly, the attacker has to use another 2w trials to find the random seed key value and
hence the attacker has to perform 2w+w = 22w trials in total. The time taken to derive i and
ri values can be increased by choosing large i and ri for each user’s secret and seed key
values. Therefore, when large size i and ri are used, it is infeasible for an adversary to
find the value of ′ and hence it provides forward and backward secrecy.

5.2 Collusion Resistance

Collusion resistance is the one in which two or more adversaries outside the group
cannot cooperatively compute the updated group key after leaving the group. Since, the
group key and ai,1 values are updated in the column vector A and arbitrary value is up-
dated in column vector B after the leaving operation is performed, any number of previ-
ous users collision will not be used to derive the updated group key ′. The following
scenario describes a kind of collusion attack in which two adversaries act as legitimate
members. Assume that u1 is an adversary ‘a’ who knows the secret key value 1 and seed
key value r1 and u3 is an adversary ‘b’ who knows the 3 and seed key value r3 and group
key at time (t 2). In time (t 1), the adversary ‘a’ leaves the group with the key val-
ues (1, r1) and . ‘b’ receives the rekeying message from the data owner at the time (t)
and computes . In time (t + 1), ‘b’ leaves the group with the two key values (3, r3) and
. Both of these adversaries exchange their known key values and they have 1, r1, 3, r3,
 and . Using these known values, the adversaries ‘a’ and ‘b’ cannot cooperatively find
the updated group key () which is will be broadcast at time (t + 2) in a feasible amount
of time.

6. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of our PBGKM scheme with the exist-
ing ACV-BGKM scheme. Table 1 shows the computation, storage and communication
complexities of ACV-BGKM scheme and our proposed broadcast group key manage-
ment (PBGKM). From Table 1, it is clear to understand that the existing ACV-BGKM
approach takes O(n) hashing operations for computing the row vectors to be placed in
the matrix.

In addition to this, it also takes O(n3) computational complexity for solving the ma-
trix using the Gauss Jordan elimination method to find the inverse matrix. However, our
PBGKM approach takes (n) additions in the data owner for adding the column vector ‘R’
with the vector ‘C’. Moreover, it also takes (n) subtractions for computing ai,1 values as
shown in Eq. (5) during the group key updating in ACV format. Therefore, our modified
PBGKM scheme takes less computational complexity in the data owner. It also takes
only two subtractions and one addition operations in the cloud users in finding the group
key, which is better than ACV-BGKM approach. With regard to the storage complexity,
our PBGKM scheme stores only 3 values in the cloud users to recover the group key.
Therefore, our proposed approach takes less computational and storage complexity by
maintaining the same communication complexity.

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

708

Table 1. Comparison between ACV-BGKM scheme and PBGKM scheme.
Parameters ACV-BGKM PBGKM

Data owner’s com-
putation complexity

a) O(n)-Hash value computing time. a) O(n) additions
b) O(n3)-Gauss Jordan elimination

time.
b) O(n) subtractions for compu-

ting ai,1 values.

c) 1 addition. c) 1 addition
Cloud user’s compu-
tation complexity

a) O(n)-Hash value computation. a) 2 subtractions.
b) O(n) multiplications b) 1 addition.
c) O(n) additions.

Storage complexity
of data owner

O(n(n+1)) for storing the n(n+1)
matrix.

O(n)

Storage complexity
of cloud user

O(n) O(3)

Communication
complexity

1 broadcast consists of ACV and
public key values.

1 broadcast consists of ACV
value and index value of users.

Table 2. Computation time of key updating and key recovery process.

No. of
users

Key Size
(bits)

Key updating Process (ms) Key recovery process (ms)

ACV-
BGKM

PBGKM
ACV-

BGKM
PBGKM

1000 64 21773498 196 4564800 1

2000 64 44893209 246 9150123 1

3000 64 64320789 336 12989789 1

4000 64 86759987 396 18789985 1

5000 64 109123103 472 21999987 1

6000 64 129789569 526 27459789 1

7000 64 151456989 596 32123009 1

8000 64 175012412 706 36789899 1

9000 64 195769120 902 40899789 1

10000 64 209878978 1025 44759219 1

The proposed method has been implemented in JAVA (Intel Core i5-2450M CPU
@2.50 GHz, 2GB RAM, 500 GB Hard disk, Microsoft’s Windows 7 Professional 64-bit
operating system) for a group of 10000 users and we have compared the group key
computation time and recovery time for various key sizes in our proposed approach. For
implementing this proposed approach, a private key and random seed key values are se-
lected from the z*

p. For generating large integers as secret key values in our program, we
use BigInteger class that supports various methods for handling large positive integers.
The methods multiply(), add() and subtract() supported by Biginteger class are used to
perform multiplication, addition and subtraction operation in the large integer values.
TABLE 2 shows the measured computation time in milliseconds (ms) for performing key
updating process in the data owner and key recovery process in the cloud user’s. It is
evident from the values that the computation time of our PBGKM scheme is found to be
better both in the data owner and the cloud user’s than ACV-BGKM scheme.

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 709

7. CONCLUDING REMARKS

In this paper, a new computational and storage efficient broadcast group key man-
agement scheme has been proposed to improve the efficiency of Mohamed et al.’s ACV-
BGKM scheme for accessing the selected documents from the CSP to the cloud users in
a secure way. Even though, Mohamed et al.’s ACV-BGKM scheme is a secured one, the
computation and storage complexity are extremely large. The proposed scheme has two
dimensional focuses, namely minimal computation complexity and minimal storage
complexity. The computation complexity of the data owner is O(n) and cloud users
computational complexity is O(3). With respect to the communication complexity, the
communication complexity of our proposed scheme is O(1) which means that our pro-
posed scheme takes only one broadcast message as that of Mohamed et al.’s scheme to
inform the ACV value to the cloud users for finding the group key. The storage com-
plexity of data owner is O(n) and the cloud users storage complexity is O(2). The further
extension of this work is to devise a technique to handle document overlapping.

REFERENCES

1. M. Nabeel, N. Shang, and E. Bertino, “Privacy preserving policy-based content
sharing in public clouds,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 25, 2013, pp. 2602-2614.

2. M. Nabeel, N. Shang, and E. Bertino, “Privacy preserving delegated access control
in public clouds,” IEEE Transactions on Knowledge and Data Engineering, Vol. 26,
2014, pp. 2268-2280.

3. N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving approach to
policy-based content dissemination,” in Proceedings of IEEE 26th International
Conference on Data Engineering, 2010, pp. 944-955.

4. E. Bertino and E. Ferrari, “Secure and selective dissemination of XML documents,”
ACM Transactions on Info and System Security, Vol. 5, 2002, pp. 290-331.

5. E. Bertino, S. Castano, E. Ferrari, and M. Andmesiti, “Specifying and enforcing ac-
cess control policies for XML document sources,” World Wide Web Journal, Springer,
Vol. 3, 2001, pp. 139-151.

6. E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-based access
control model,” ACM Transactions on Information and System Security, Vol. 4,
2001, pp. 191-233.

7. J. B. D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, “Access-control language for
multidomain environments,” IEEE Transactions on Internet Computing, Vol. 8,
2004, pp. 40-50.

8. S. Barker, “Action-status access control,” in Proceedings of the 12th ACM Sympo-
sium on Access Control Models and Technologies, 2007, pp. 195-204.

9. R. Poovendran and J. S. Baras, “An information-theoretic approach for design and
analysis of rooted-tree-based multicast key management schemes,” IEEE Transac-
tions on Information Theory, Vol. 47, 2001, pp. 2824-2834.

10. Y. Kim, A. Perrig, and G. Tsudik, “Group key agreement efficient in communica-
tion,” IEEE Transactions on Computers, Vol. 53, 2004, pp. 905-921.

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

710

11. K. Drira, H. Seba, and H. Kheddouci, “ECGK: An efficient clustering scheme for
group key management in MANETs,” Computer Communications, Vol. 33, 2010,
pp. 1094-1107.

12. J. A. M. Naranjo, J. A. Lopez-Ramosz, and L. G. Casado, “A suite of algorithms for
key distribution and authentication in centralized secure multicast environments,”
Journal of Computational and Applied Mathematics, Vol. 236, 2012, pp. 3042-3051.

13. P. Vijayakumar, S. Bose, and A. Kannan, “Chinese remainder theorem based cen-
tralized group key management for secure multicast communication,” IET Infor-
mation Security, Vol. 8, 2014, pp. 179-187.

14. Y.-S. Jeong, K.-S. Kim, Y.-T. Kim, G.-C. Park, and S.-H. Lee, “A key management
protocol for securing stability of an intermediate node in wireless sensor networks,”
in Proceedings of IEEE 8th International Conference on Computer and Information
Technology, 2008, pp. 471-476.

15. J.-Y. Kim and H.-K. Choi, “Improvements on Sun et al.’s conditional access system
in pay-TV broadcasting systems,” IEEE Transactions on Multimedia, Vol. 12, 2010,
pp. 337-340.

16. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proceedings of Euro-
crypt, LNCS 3494, 2005, pp. 457-473.

17. M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-based sys-
tems,” in Proceedings of the 13th ACM Conference on Computer and Communica-
tion Security, 2006, pp. 99-112.

18. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM Confer-
ence of Computer and Communication Security, 2006, pp. 89-98.

19. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-
tion,” in Proceedings of IEEE Symposium on Security and Privacy, 2007, pp. 321-
334.

20. X. Liang, Z. Cao, H. Lin, and J. Shao, “Attribute based proxy re-encryption with
delegating capabilities,” in Proceedings of the 4th International Symposium Infor-
mation, Computer, and Communication Security, 2009, pp. 276-286.

21. G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption
schemes with applications to secure distributed storage,” ACM Transactions on In-
formation System Security, Vol. 9, 2006, pp. 1-30.

22. S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, “Over-
encryption: Management of access control evolution on outsourced data,” in Pro-
ceedings of the 33rd International Conference on Very Large Databases, 2007, pp.
123-134.

23. D. Dummit and R. Foote, “Gaussian-Jordan elimination,” Abstract Algebra, 2nd ed.,
Wiley, 1999, p. 404.

24. T. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” in Proceedings of the 11th Annual International Cryptology Conference
on Advances in Cryptology, 1992, pp. 129-140.

25. P. Vijayakumar, M. Azees, A. Kannan, and L. J. Deborah, “Dual authentication and
key management techniques for secure data transmission in vehicular ad-hoc net-
works,” IEEE Transactions on Intelligent Transportation Systems, Vol. 17, 2016, pp.
1015-1028.

COMPUTATION EFFICIENT ATTRIBUTE BASED BGKM 711

26. P. Vijayakumar, S. Bose, and A. Kannan, “Centralized key distribution protocol
using the greatest common divisor method,” Computers and Mathematics with Ap-
plications, Vol. 65, 2013, pp. 1360-1368.

27. P. Vijayakumar, S. Bose, A. Kannan, and L. J. Deborah, “Computation and commu-
nication efficient key distribution protocol for secure multicast communication,”
KSII Transactions on Internet and Information Systems, Vol. 7, 2013, pp. 878-894.

28. P. Vijayakumar, S. Bose, and A. Kannan, “Rotation based secure multicast key
management for batch rekeying operations,” Networking Science, Vol. 1, 2012, pp.
39-47.

29. P. Vijayakumar, K. Anand, S. Bose, V. Maheswari, R. Kowsalya, and A. Kannan,
“Hierarchical key management scheme for securing mobile agents with optimal
computation time,” Procedia Engineering, Vol. 38, 2012, pp. 1432-1443.

30. S. Audithan, T. S. Murunya, and P. Vijayakumar, “Anonymous authentication for
secure mobile agent based internet business,” Circuits and Systems, Vol. 7, 2016, pp.
1421-1429.

Perumal Pandiaraja received Bachelor of Engineering in

Computer Science and Engineering degree from Anna University,
Chennai, India, in 2006 and the Master of Engineering degree in
Computer Science and Engineering from Anna University, Chen-
nai, India in 2009. He is working as a part time Research Scholar
in the Department of Computer Science and Engineering at Uni-
versity College of Engineering, Tindivanam. His research areas
are key management, cloud security.

Pandi VijayaKumar completed his Ph.D. in Computer Sci-

ence and Engineering in Anna University Chennai in the year 2013.
He Completed Master of Engineering in the field of Computer
Science and Engineering in Karunya Institute of Technology affil-
iated under Anna University Chennai in the year 2005. He com-
pleted his bachelor of Engineering under Madurai Kamarajar Uni-
versity, Madurai in the year 2002. He was working as a Senior
Lecturer in All Nations University Ghana, West Africa from 2007
to 2008. He is presently working as a Dean at University College

of Engineering Tindivanam which is a Constituent College of Anna University. His main
thrust research areas are key management in network security and multicasting in com-
puter networks.

P. PANDIARAJA, P. VIJAYAKUMAR, V. VIJAYAKUMAR AND R. SESHADHRI

712

Varadarajan Vijayakumar is a Professor in the School of
Computing Science and Engineering at Vellore Institute of Tech-
nology Chennai campus. His primary research interest is in cloud
computing, grid computing, big data and security. He received the
BE and ME degree from Madras University and Ph.D. degree from
Anna University and MBA degree from Periyar University. He has
more than 14 years of experience in teaching and industry. He has
more than 20 publications which includes Journals and Confer-

ences. He is also the reviewer for Springer’s Journal of Super Computing and many oth-
er journals.

Raman Seshadhri has completed his bachelor of Engineer-
ing in the field of Computer Science and Engineering department
at University College of Engineering Tindivanam (A Constituent
College of Anna University, Chennai). His research adviser is Dr.
P. Vijayakumar. His research interests include computer networks,
cryptography and network security. At present he is working as
E4-Trainee-Systems in GAVS Technologies Pvt. Limited, Chen-
nai.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

